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F Alonso-Atienza1, JL Rojo-Álvarez1, D Álvarez2, M Moscoso2, A Garcı́a-Alberola3

1Universidad Rey Juan Carlos, Fuenlabrada, Madrid, Spain
2Universidad Carlos III de Madrid, Leganés, Madrid, Spain
3Hospital Universitario Virgen de la Arrixaca, Murca, Spain

Abstract

Recent endocardial mapping systems reconstruct an in-

stantaneous image of the endocardial electrical activity

performing the inverse problem of electrocardiography

(IPE), which consists of estimating the endocardial sur-

face potentials from intracavitary probe potentials. Even

though the IPE has been long studied, it still being paid at-

tention due to its ill-posed nature, and many different regu-

larization techniques have been explored in this setting. In

this study we analyzed Support Vector machines (SVM) as

an alternative regularization technique regarding their ro-

bustness against ill-posed problems. We propose here two

new SVM algorithms, specifically adapted to the ill-posing

issues of the IPE, and develop the equations for endocar-

dial mapping of transmembrane currents. We show, both

in simple simulations and in a previously developed cel-

lular automata, that the ill-posing robustness of the SVM

is higher when compared to regularized approaches dur-

ing the depolarization phase. In conclusion, the properties

of the developed SVM algorithms stand for an appropriate

framework for addressing the IPE.

1. Introduction

Endocardial mapping is a clinical procedure for study-

ing the electrical activity of the heart, in which an image of

the cardiac activation patterns in the endocardium is con-

structed, and the regions of abnormal electrical behavior

can be localized, hence allowing for a proper electrophys-

iological diagnosis and treatment. Recently, mapping sys-

tems are being introduced, which construct an instanta-

neous image of the endocardial electrical activity by es-

timating the endocardial potentials from signals measured

on a intracardiac non-contact multipole electrode balloon

[1]. These techniques emerge from the inverse problem

of electrocardiography (IPE) principle, which consists of

estimating the endocardial or the epicardial cardiac elec-

trical sources (transmembrane voltage or currents) from

a number of probing electrodes. Both epicardial and en-

docardial potential mapping have been widely studied [2].

However some of its major problems, such as ill-posing,

curse of dimensionality, and clinical validation, are still

being paid attention. IPE problems are highly ill-posed,

mainly due to: (1) the low number of measurements avail-

able about the cardiac sources; and (2) the attenuation and

spatial smoothing inside the torso (for epicardial imaging)

or inside the heart (for endocardial imaging). Intuitively,

ill-posedness means that small perturbations of the data

result in large perturbation of the solution, leading to os-

cillatory or non-physiological waveforms. Therefore, reg-

ularization techniques are required to stabilize and to con-

strain the solution, which represent a trade-off between

measured data fit and a priori imposed constraints. As

a consequence, many regularization techniques have been

explored, demonstrating always a limited scope. [3].

In this paper we explore an alternative approach to the

IPE, focusing on endocardial mapping applications, based

on Support Vector Machines (SVM) [4]. SVM are sta-

tistical learning algorithms that emerge from the Empiri-

cal Risk Minimization Principle (ERMP), and they have

shown excellent performance in many different ill-posed

problems [4]. Two of the main advantages of SVM are

regularization and robustness against the course of dimen-

sionality, which make it an interesting framework for the

IPE requirements. Specifically, we present here the equa-

tions of two new SVM algorithms, which are adaptations

to the IPE of two recently proposed SVM algorithms for

time series interpolation [5].

2. Forward formulation

To solve the inverse problem, a formulation to the for-

ward problem is first required, accounting for the rela-

tionship between the cardiac volume sources and the vol-

ume conductor. In our implementation, cardiac sources are

modeled by using a previously developed state machine

formulation [6]. Additionally, bioelectrical propagation is

simulated according to the monodomain formalism, where
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cardiac tissue has been considered to be an homogeneous,

continuous, and isotropic medium, with conductivity σt .

Under these assumptions, an explicit relationship between

transmembrane current im and transmembrane potential vm

can be obtained [7] as:

im = σt∇
2vm (1)

We model cardiac tissue a 2D grid sheet lying in the xy

plane. Then, the electric potential registered in an exter-

nal point of the endocardial surface of a volume conductor

of homogeneous conductivity σe representing the intracar-

diac space can be approximated [8] as :

v(p) =
1

4πσe
∑
n

imn
√

(xe − xn)2 +(ye − yn)2 + z2
e

(2)

where n is an indexation for all the elements of the 2D

active tissue, and where the denominator inside the sum

term represents the distance from the nth source element

(xn,yn), to the eth measurement point p = (xe,ye,ze).
When considering an array of probing catheters, and by

using vector-matrix notation, (2) can be denoted as v = Hi,

where H(m,n) = 1/rmn (with rmn representing the dis-

tance between element m to element n) is a matrix relating

the measured potentials array v to transmembrane currents

in the tissue i at any given time instant. Note that v is a

[K×1] vector, with K the number of catheters in the array;

i is a [L×1] vector with i(k) = imk , and matrix H is [K×L].

3. Inverse formulation: SVM algorithms

As shown in [9], performance of signal processing es-

timation methods benefits from the application of SVM

when properly formulated. We present two SVM algo-

rithms, namely Primal Signal Model (PSM) and Dual Sig-

nal Model (DSM), which have been adapted here for en-

docardial imaging of transmembrane currents. Both algo-

rithms are based on the two algorithms presented in [5] for

time series interpolation. Therefore, we skip here many

of the details. In order to explore the ill-posedness of the

SVM algorithms, we take an ideal situation in which we

have the same number of sensors than of current sources,

K = L. Despite this is an unrealistic situation, we consider

that this is the first step to analyze the possibilities of the

SVM in IPE. Obviously, the next step, using K << L, is

the immediate to be taken, but it is still not considered in

this paper.

The PSM algorithm. The signal model in (3), can be

expressed as:

vk =
K−1

∑
n=0

in ·hn−k + ek = ik ∗hk + ek (3)

where ∗ denotes discrete convolution (1D or 2D convolu-

tion). We keep the index reference to matrices for notation

simplicity of 2D functions. The PSM optimization crite-

rion is given by

JPSM =
1

2
‖î‖2

2 +
K−1

∑
k=0

LεH (ek) (4)

where the ε-Huber robust cost is defined in [5] and in [9].

As in common optimization problems, once stated the pri-

mal problem, then the dual problem can be obtained, which

in this case consists in maximizing:

LPSM = −
1

2
ηT(R+δ I)η +vTη − ε1T(α +α∗) (5)

with respect to the lagrange multipliers α(∗), constrained

to 0 ≤ α(∗) ≤C, where η = α −α∗. Kernel matrix is here

given by Rk = hk ∗h−k, which is the autocorrelation matrix

of hk. Then, the estimate current is given by:

îk = hk ∗ηk (6)

that defines a regularized problem, which could be limited

by the lack of sparseness of the solution current.

The DSM algorithm. In this case, we model obser-

vations {vk} as a nonlinear regression of each of the

spatial locations k, by using a nonlinear transforma-

tion φ : R → H , that maps the locations to an unknown

and high dimensional Reproducing Hilbert Kernel Space

(RKHS) H . We can build a linear regression model in the

RKHS, given by:

vk = 〈w,φ(k)〉+ ek (7)

where w ∈ H is the regression vector. By following the

SVM methodology [5], the functional to be minimized is:

JDSM =
1

2
‖w‖2

2 +
K−1

∑
k=0

LεH (ek) (8)

and the dual problem is obtained as the maximization of:

LDSM = −
1

2
ηT(G+δ I)η +vTη − ε1T(α +α∗) (9)

constrained to 0 ≤ α(∗) ≤ C, and where G( j,k) =
〈φ(j),φ(k)〉. Given the convolutional model in (3), it can

be shown that

vk =
K−1

∑
j=0

η j 〈φ( j),φ(k)〉 =
K−1

∑
j=0

η jh j−k (10)

so using the well-known kernel trick [4] (as hk is a Mer-

cer Kernel so 〈φ( j),φ(k)〉 = h j−k), the estimated current

is given by:

îk = ηk (11)

and then v̂k = ηk ∗hk. In this case, transmembrane currents

are obtained from the Lagrange multipliers, and according

to the SVM principles a sparse solution for the currents is

achieved, which is a plausible condition for the solution,

specially in depolarization conditions.
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Figure 1. 1D Simulations. (a) Estimation comparison of RLS, PSM and DSM for a pulse-shape current, (b) algorithms

performance vs SNR. (c) Realistic depolarization 1D transmembrane current calculated from an 200 ms AP travelling at

50 cm/s in the x direction. This AP has an spatial length of λ = 50 · 0.2 = 10 cm. For clarifying, just 2 cm long tissue is

depicted, (d) algorithms performance vs SNR.

4. Results

In this section, PSM and DSM algorithms are com-

pared to a standard Tikhonov approach whose solution is

performed by Regularized Least Squares (RLS) method:

î =
(

HTH+ γI
)−1

HTv, where T and −1 denote transpose

and inverse of a matrix, respectively, and γ is the regu-

larization parameter. A series of experiments have been

conducted involving synthetic signals and realistic trans-

membrane current for both 1D and 2D simulations. In

all cases, inverse problem has been solved from simulated

electrograms corrupted by Gaussian noise. Estimation per-

formance of the transmembrane current has been tested for

different Signal to Noise Ratio (SNR) values by means of

the MSE criterion: MSE = ∑K−1
k=0

(

ik − îk
)2

/K

1D Synthetic Data. In this example, a predefined steep

current has been chosen to analyzed the regularization

properties of the PSM and DSM algorithms. Solving the

inverse problem to reconstruct a pulse-shape transmem-

brane current (Fig.1(a) solid line) demonstrates that the

DSM algorithm outperforms PSM and RLS for high SNR

values (Fig.1(b)). Indeed, for a SNR = 80 dB, DSM esti-

mated current fit quite well to the original data. It is also

remarkable that the PSM exhibits better performance than

the RLS curve in all cases (Fig.1(b)). Inferiority of the

DSM at low SNR is attributed to the SVM free parameters

(ε,C,δ ) tuning procedure, which requires a high computa-

tional cost. This hypothesis is corroborated from results to

be presented in the following paragraphs.

1D Realistic Data. In this case, transmembrane current

has been obtained from (1), where vm is the simulated Ac-

tion Potential (AP) derived from the automaton model [6].

Fig.1(c) (solid line) represents the depolarization trans-

membrane current of an AP travelling in the x direction at

a fixed time instant. Sparse solution of the DSM algorithm

better performs with respect to PSM and RLS for all SNR

Fig.1(d), since lagrange multipliers can be well adjusted to

counteract abrupt changes in the depolarization current.

2D Realistic Data. Just the DSM is analyzed here, as 2D

image reconstruction is done by using a nonlinear regres-

sion of each pixel location. A depolarize transmembrane

current 2D image (Fig.2 (a)) is used for studying the esti-

mation properties of the DSM and the RLS algorithms. As

expected, DSM outperforms RLS algorithm for almost all

SNR, except for very noisy data (SNR = 0 dB) (Fig.2 (b))

even tough both algorithms perform a good estimation.
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Figure 2. 2D realistic simulations. Cardiac tissue is represented as a 20×20 grid sheet lying in the xy plane, with dx and dy

having 0.1 cm resolution. (a) Snapshot of the transmembrane current obtained form the automaton model. (b) Algorithms

performance.

5. Discussion and conclusions

In the present seminal study, a new regularization ap-

proach based on SVM properties has been analyzed. Pro-

posed algorithms, namely PSM and DSM, have shown

good performance compared to zero-order Tikhonov reg-

ularization. Concretely, DSM sparse solution has demon-

strated to be superior in all the cases under study, which

confers it a special attention for further analysis. On the

other hand, for simplicity, we have found the inverse solu-

tion for a single time instant, however the algorithms can

be easily extended to include more than one time instant.

An important issue of the SVM is the free-parameters tun-

ing procedure which in some cases could reduce SVM per-

formance. This is still an open problem that is paying a lot

of attention in the literature. Our results show a promis-

ing future research. Firstly, Transmembrane current is an

informative magnitude of both depolarization and repolar-

ization processes, and from which activation time patterns

can be extracted. This quantities result of great importance

to display from the IPE [10]. And second, clinical vali-

dation of algorithms presented here can be done by con-

trasting our results from current mapping systems used in

cardiac electrophysiology.
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