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Abstract

This  paper  describes  a  modeling  technique  for  
studying propagation in cardiac tissue at a microscopic 
level.  The  model  consisted  of  realistically  shaped 
myocytes  embedded  in  an  extracellular  matrix  and  
coupled by means of gap junctions. The model was used  
to estimate propagation velocities along and across the 
fiber structure of the myocardium, specifically to estimate 
the effects of altering the amount of extracellular space  
that  separates  the  myocytes.  The  model  shows  that  
shrinking the extracellular space causes propagation to  
slow down along the fiber, but to speed up  across the  
fiber structure of cardiac tissue. 

1. Introduction

 In  the  quest  to  better  understand  the  mechanisms 
underlying  cardiac  arrhythmias,  the  use  of  computer 
simulations  is  a  common  tool.  Computer  simulations 
have the advantage of being able to resolve potentials and 
currents with a finer level of detail than is possible with 
measurements.  However,  in  order  to  be  useful, 
simulations need to reproduce observations, in this case 
from electrophysiology, and  hence  they  must  produce 
results  against  which  to  compare  with  experimental 
findings.

The most common approach to the simulation of the 
propagation  of  depolarization  fronts  inside  the 
myocardium is the use of the “bidomain model” [1]. The 
bidomain  model  is  based  on  the  notion  that  the 
myocardium  can  be  separated  into  intracellular  and 
extracellular spaces, which are joined to each other by a 
membrane  that  acts  both  as  a  current  source  and  a 
pathway allowing current to flow between both spaces. 
More specifically, the bidomain model assumes that the 
intracellular  space,  the  extracellular  space  and  the 
membrane all  coexist  at  each point  in space.  Hence at 
each location the myocardium can be characterized by a 
conductivity  tensor  for  the  intracellular  space,  a 
conductivity  tensor  for  the  extracellular  space,  and  an 
ionic model that describes the current flowing through the 
membrane.  

The two conductivity tensors describing the electrical 
properties  of  the  tissue  represent  the  homogenized 
conductivity of either the intracellular or the extracellular 
space.  The  most  common  way  of  estimating  these 
parameters is to choose them so that simulated cardiac 
propagation  speeds  fit  experimentally  observed  values. 
Although this is a valid way of setting these parameters, 
it  fails to relate them to the underlying tissue structure 
and composition. 

In  this  paper,  we  describe  a  model  that  simulates 
cardiac propagation based on a more detailed description 
of the microscopic tissue morphology than that provided 
by  the  standard  bidomain.  One  of  the  reasons  for 
including more  details  into the  model  is  to be  able  to 
simulate  pathologies  like  ischemia  based  on  their 
physiological origins rather than by assigning parameters 
to  fit  experiments.  For  instance,  during  an  episode 
of]ischemia  the  amount  of  extracellular  space  changes 
with  time  [2]  altering  the  way  a  depolarization  front 
propagates along the fiber [3].

In order to create such a model, we built on the models 
of Spach  et al. [4], who created a 2D model of cardiac 

tissue  that  consisted  of  several  hundred  realistically 
shaped  myocytes  that  were  coupled  by  gap  junctions. 
Their model was limited by the fact that it did not include 
an  extracellular  space.  Two-dimensional  models  are 
intrinsically  limited  because  the  intracellular  and 
extracellular  current  paths  cannot  cross  each  other, 
thereby limiting the amount of available extracellular and 
intracellular pathways. 

To avoid these limitations of a 2D model, we created a 
full 3D model of cardiac tissue that included realistically 
shaped myocytes coupled by gap junctions and embedded 
in an extracellular  matrix.  We present here preliminary 
simulations aimed at exploring the differences in cardiac 
conduction along and across myocardial fibers that make 
up  the  myocardium.  We  pay  special  attention  to 
conduction  perpendicular  to  the  myocardial  fiber 
structure, which is not fully understood and thought to be 
influenced  by  factors  ranging  from  gap  junctions  to 
capacitive  coupling  between  myocytes  [5].  Our 
hypothesis is that reduction of the interstitial space affects 
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propagation  wavespeed  differently  along  and  across 
fibers. 

2. Methods

Our  model  consisted  of  three  components:  (1)  a 
geometrical  model  of  cardiac  tissue,  (2)  an  electrical 
simulation process,  and (3) a finite element solver  that 
combined  the  geometrical  and  electrical  model  and 
computed potentials as a function of time.

The geometrical  model  that  underlies the simulation 
was based on previous work that focused on computing 
passive  electrical  characteristics  of  myocardial  tissue 
such as the conductivity tensor for a bidomain [2,6]. We 
created a computer algorithm for filling up a space with 
realistically shaped myocytes that fit together like pieces 
of a jigsaw puzzle of which the average length and cross 
section could be altered to fit histological data. The initial 
step  of  the  algorithm filled  the  space  completely  with 
myocytes and in a second step space was carved out to 
generate  an  adjustable  interstitial  space  between  the 
myocytes.  Figure  1  contains  an  example  of  such 
computer  generated  meshes.  For  the  results  presented 
here we generated two separate tissue geometries, one for 
conduction along the myocardial fiber and one for across 
the fiber (Figure 2) . The reason for using two separate 
geometrical models was to constrain the number of cells 
needed in  the  model.  In  figure  2,  an  example  of  both 
models is given. For longitudinal propagation, we created 
a  model  with  more  cells  along  than  across  the  fiber; 
stimulating  the  fiber  at  one  end  producs  a  stable 
depolarization  front  that  spreads  along  the  fiber  after 
traversing  a  series  of  myocytes.  Similarly, the  second 
model was created that had more cells across the fiber 
bundle,  in  order  to  accurately  simulate  a  wavefront 
spreading across the fiber. 

For  the  example  case  shown  in  this  paper  we 
generated  two different types  of  meshes  with  different 
amounts of extracellular space (an extracellular volume 
fraction of respectively 12% and 3%). The latter could, 
for instance, reflect the collapse of the interstitial space 
during the onset of acute ischemia [2]. The extracellular 
space was carved out on the lateral sides of the myocytes 
(perpendicular to the fiber direction) and the amount of 
extracellular  space  was  regulated  by  altering  the 
thickness of the sheet of interstitial space that surrounds 
the myocytes. As no extracellular space was carved out at 
the long ends of the myocytes, these were touching the 
next layer of neighboring myocytes. It was assumed that 
where two myocytes shared a surface, this surface was 
infused  with  gap-junctions  forming  a  conductive  path 
between two myocytes.

The geometrical models were created from a lattice of 
hexagonal, hexahedral, and prism elements. The various 
geometrical elements that describe the tissue morphology 
were subsequently subdivided into tetrahedral elements, 
which  are  used  as  a  basis  of  the  computation  of  the 
potentials  throughout  the  model.  The  resulting  meshes 
consisted of about 300,000 nodes.

Figure 1 – Creating a computer generated geometry for the 
structure  of  cardiac  tissue.  The  upper  panel  shows  how 
geometrical  shapes  are  grouped  together  to  form  layers  of 
myocytes.  The  lower  panel  shows  the  final  model  with 
extracellular space carved out between the myocytes. The two 
lower right figures show a cross section through the computer 
generated model.

 Figure 2 – Two separate geometrical models for simulating 
propagation along the fiber of the tissue and one for simulating 
propagation across the fiber. Note the models are displayed at a 
different scale.

Figure 3 – Layout of the electrical model that is used in the 
simulations. The figure depicts the subdivision of the tissue into 
several small domains that each represent a volume conductor 
and which are coupled by means of their boundary conditions.
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For the electrical model, we assumed that each domain 
in  the  model  could  be  described  by  an  ohmic  volume 
conductor,  with  a  conductivity  of  20  mS/cm  for  the 
extracellular space and a conductivity of 3 mS/cm for the 
intracellular  space.  We  assumed  that  the  membrane 
separating  both  spaces  was  infinitely  thin and  that  the 
current  flowing  through  the  membrane  could  be 
approximated by a ionic membrane model that describes 
the current  through the membrane as a  function of the 
potential difference between both spaces and the internal 
state of the ion channels. This leads to a description in 
which  the  domains  (each  myocyte  and  the  interstitial 
space)  are  a  separate  volume  conductors  that  are 
connected  to each  other  by means  of  shared  boundary 
conditions.  When  the  shared  interface  was  between 
myocytes, we assumed a passive surface resistor, in case 
the shared interface was between the interstitial space and 
a myocyte we assume that the voltage current relation is 
described by the Luo-Rudy I membrane model that was 
modeled after ventricular myocyte of  a guinea pig [7]. 
When  the  interface  is  an  outer  boundary  a  no-flux 
boundary  condition  is  assumed.  The  model  and  its 
governing equations are summarized in figure 3, which 
schematically depicts the subdivision in different spaces 
as well.

In  order  to  solve  the  set  of  partial  differential 
equations depicted in figure 3, we used the finite element 
method. We used the geometrical mesh of the computer 
generated  myocyte  shapes  as  the  basis  for  the 
computation.  This  mesh  was  sliced  up  into  several 
domains by splitting the nodes at the interfaces between 
the various intracellular and extracellular  domains.  The 
split nodes were subsequently used as collocation points 
at  which  the  membrane/gap-junction  equations  were 
evaluated  based  on  the  potential  difference  across  the 

mesh. The latter equations served as common boundary 
conditions  that  linked  the individual  volume conductor 
models together.

The  potentials  in  the  model  were  solved  using  an 
semi-implicit time stepping scheme, in which current at 
the boundaries was solved first and was used to compute 
the potential  distribution.  The latter  was  used  again  to 
compute the currents that flow through the membrane. In 
order  to  reduce  the  number  of   time steps  needed  for 
computation we used an adaptive time stepping scheme 
with  a  linear  estimator  of  the  next  step,  in  a  scheme 
similar to the one published by Luo et al. [7]. We used an 
iterative  solver  for  each  time  step  using  the  MINRES 
algorithm.
  The stimulation current was injected directly into the 
membrane  and  consisted  of  a  0.4ms  wide  pulse  that 
injected a homogeneously distributed current into the cell 
membranes. In order to stabilize the membrane equations 
we did run the simulation in a simple strand of myocytes 
with a similar intracellular to extracellular volume ratio, 
and  used  the  average  state  of  the  membrane  as  an 
initializer for the model. In order to simulate propagation, 
we simulated the first 8 ms after stimulation. 

Matlab (www.mathworks.com) was used to generate 
the  geometries  for  the  models,  a  modified  version  of 
CardioWave  was  used  to  run  the  simulation 
(cardiowave.duke.edu),  and  the  SCIRun  software  was 
used to setup the finite element computation and to link 
all the components together (software.sci.utah.edu). Each 
simulation took about half a day to complete on a MacPro 
(two quad-core Xeon processors of each 3GHz).

3. Results

To characterize  the  differences  between  conduction 
along the fiber structure of the tissue and across it,  we 
simulated two different amounts of extracellular space: a 
volume fraction of 12%, and one of  3% respectively. For 
each of these cases the tissue was stimulated at one end 
by a short  pulse and the resulting wavefront inside the 
tissue  piece  was  simulated.  In  order  to  measure  the 
conduction  velocity  of  the  propagating  wavefront  we 
measured the time delay between the wavefront passing 
through two different surfaces located in the center of the 
fiber, as shown in figure 4. We defined the wavefront as 
the  location  at  which  the  average  transmembrane 
potential in the cross section through the tissue is equal to 
a value of -30 mV. By computing the time it took for the 
wavefront to pass between both surfaces and dividing the 
distance between both surfaces  by  this  time delay, we 
estimated  the  conduction  velocity.  The  resulting 
velocities  for  both  fiber  directions  are  summarized  in 
table 1. 

The results show: (1) that for the chosen configuration 
the  conduction  velocity  across  the  cells  increases  and 
conduction   velocity  along  the  cells  decreases  when 
restricting the amount of extracellular space and 2) the 
conduction velocity along the cells is more sensitive to 
changes  in  extracellular  space  than  the  conduction 

Figure  4 –  Example  of  the  simulations.  The  upper  panel 
shows the transmembrane potential  throughout the volume of 
the  simulated  piece  of  tissue.  The  lower  panel  shows  the 
activation  map  and  the  two  planes  where  we  measured  the 
average activation time for measuring propagation speeds. 
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velocity  across  the  cells.  The  results  indicate  that  the 
anisotropy ratio of the conduction velocity is a function 
of the amount of extracellular space in the tissue.

Table 1. Conduction velocities

Conduction Velocity (m/s) Parallel to the 
fiber

Perpendicular 
to the fiber

large ECS (12%) 0.83 0.17

small ECS (3%) 0.51 0.19

4. Discussion and conclusions

When the amount of extracellular space is reduced in 
the model, the sheets of extracellular space that  laterally 
separate  the  the  myocytes  become  thinner.  The  latter 
results in the resistance along these sheets in the direction 
of the fibre structure to be larger, which in turn leads to a 
larger extracellular voltage gradient along these sheets. In 
the case where we simulated propagation along the fiber 
structure of the tissue, the additional resistance along the 
extracellular sheets causes the potentials to fall off more 
rapidly along the fiber, and as well the added resistance 
causes  the  amounts  of  currents  to  be  reduced  in  the 
extracellular space. This leads to a slower charging of the 
membranes in front of the depolarization front. The latter 
results in lower conduction velocities along the fiber. In 
the  case  of  conduction  across  the  fiber  structure,  the 
resistance across the thickness of the extracellular sheets 
becomes smaller, as the thin layer of extracellular space 
gets thinner. For the conduction across the fiber structure 
the currents flow both perpendicular to these extracellular 
sheets as well as along them. When the membrane of the 
myocyte on one side of the extracellular sheet depolarizes 
it absorbs currents from these small extracellular spaces, 
which leads to a drop in the potentials in this extracellular 
space. As the extracellular spaces are thin, they are poorly 
coupled to  the  rest  of  the  extracellular  matrix  and the 
changes in the extracellular potentials will not only alter 
the transmembrane potentials  on the side of  where the 
cell gets depolarized, it  will  alter  the the transmembrane 
potentials of the membrane on the other side as well. The 
latter leads to a coupling of cells over these small clefts, 
rendering a possible explanation of why cells get better 
coupled with a smaller amount of extracellular space. 

In previous work, simulations aimed at computing the 
bulk  conductivity  of  tissue  using  the  same  underlying 
tissue model showed that reducing the extracellular space 
raised the  impedance both  along as  well  as  across  the 
fiber  [6].  Hence,  the  examples  presented  in  this  paper 
show that  one  cannot  directly  translate  the  changes  in 
macroscopic tissue conductivity into the bidomain model, 
as the bidomain model predicts assumes a similar relation 
between  resistance  and  propagation  velocity  for  both 
directions.

Moreover the apparent tissue conductivity depends on 

the  actual  location  of  the  current  sources,  e.g.  for 
measuring macroscopic tissue conductivity the electrodes 
are  far  apart.  However  in  the  case  of  propagation  the 
current  sources  are  deeply  embedded  inside  the  tissue 
structure and hence the apparent impedances and current 
paths  in  this  setting  are  different  from the  ones  when 
measuring macroscopic impedances.

Experimentally  a  similar  phenomena  has  been 
observed  by  Bursac  et  al.  [8],  who  by  means  of 
microabrasion  increased  the  amount  of  extracellular 
space and observed a speed up along the fiber structure 
and a slow down across the fiber structure.

In conclusion,  the conduction velocity is affected by 
the  distribution  of  the  interstitial  space  and  as  such 
changes in the fraction of interstitial space due to disease 
of aging may have different effects on propagation along 
and across cells. 

Acknowledgments

We want to acknowledge support for this work through 
NIH grants RO1 HL076767, P41- RR12553-07,  and the 
Nora Eccles Treadwell Foundation.

References

[1] Henriquez  CS.  Simulating  the  electrical  behavior  of 
cardiac tissue using the bidomain model. Crit Rev Biomed 
Eng. 1993; 21(1): 1-77.

[2] Stinstra  JG,  Shome  S,  Hopenfeld  B,  MacLeod  RS. 
Modelling passive cardiac conductivity during ischaemia. 
Med Biol Eng Comput. 2005; 43(6):776-82.

[3] Stinstra  JG,  Roberts  SF,  Pormann  JB,  MacLeod  RS, 
Henriquez  CS.  A Model  of  3D Propagation  in  Discrete 
Cardiac Tissue, Proc. Computers in Cardiology, 2006

[4] Spach MS, Barr RC. Effects of cardiac microstructure on 
propagating electrical waveforms, Circ Res. 2000: 86(2): 
E23-28

[5] Sperelakis  N,  An  Electric  Field  Mechanism  for 
Transmission  of  Excitation  Between  Myocardial  Cells. 
2002; Circ Res 91(11): 985-987

[6] Stinstra  JG,  Hopenfeld  B,  Macleod  RS.  On the  passive 
cardiac  conductivity.  Ann  Biomed  Eng.  2005; 
33(12):1743-51.

[7] Luo CH, Rudy Y. A model of the ventricular cardiac action 
potential.  Depolarization,  repolarization,  and  their 
interaction. Circ Res. 1991 Jun;68(6):1501-26.

[8] Bursac N, Parker NN, Iravanian S, Tung L, Cardiomyocyte 
cultures with controlled macroscopic anisotropy: A model 
for  functional  electrophysiological  studies  of  cardiac 
muscle, Circ Res. 2002; 91: e45-e54

Address for correspondence:

Jeroen Stinstra
Scientific Computing & Imaging Institute
University of Utah
50 S Central Campus Drive
Salt Lake City, UT 84112
USA
E-mail address (jeroen@sci.utah.edu)

132


