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Abstract

The two fatal ventricular arrhythmias, Ventricular

Fibrillation (VF) and Ventricular Tachycardia (VT), are

better treated using different electrical therapies: a lower

energy cardioversion for VT and a defibrillation shock

for VF. Automated External Defibrillators (AED), whose

use for children is recommended since 2003, should

discriminate between VT and VF in adult and pediatric

patients.

We propose a new method to discriminate VT from

VF that applies sequential hypothesis testing to the wave

mode sample entropy values of the ECG. Wave mode

sample entropy values are calculated every second using

overlapping 4 second signal windows. The algorithm

was designed using a development database of 154 adult

cases, 53VT/101VF, and then tested on two independent

databases: an adult database of 92 cases, 64VT/28VF, and

a pediatric database of 78 cases, 49VT/29VF.

We obtained an overall accuracy of 96.8%, 94.3% for

VT and 98.0% for VF, for the development database. The

accuracies obtained for the test databases were: 94.6%

for the adult patients, 93.8% for VT and 96.4% for VF;

and 94.9% for the pediatric patients, 93.9% for VT and

96.6% for VF. The algorithm accurately discriminates VT

from VF in adult and pediatric patients.

1. Introduction

The electrical shock treatment is different for the two

fatal ventricular arrhythmias; Ventricular Fibrillation (VF)

is better treated applying a high energy shock while

Ventricular Tachycardia (VT) is reverted using low-energy

cardioversion, a synchronized shock. It is therefore

convenient that electrical defibrillators, both implantable

or Automated External Defibrillators (AED), accurately

discriminate the two types of shockable arrhythmias.

Based on two independent studies, the International

Liaison Committee on Resuscitation (ILCOR) approved

the use of AED in children under 8 years of age in the year

2003 [1]. Consequently, VT/VF discrimination methods

should be applicable to pediatric and adult patients, that

is independent of age specific characteristics such as the

higher heart rate of pediatric patients.

Most VT/VF discrimination methods exploit that VT is

a more regular and less complex rhythm than VF. Several

parameters have been applied to measure complexity

and regularity in ventricular arrhythmias: the distribution

of Threshold Crossing Intervals (TCI) [2], Blanking

Variability (BV) [3] or Complexity Measure (CM) [4, 5].

We propose an alternative measure of the regularity

of the ECG based on the sample entropy introduced

by Richman et al [6]. We have modified the vector

comparisons which are now based on the similarity of

the shape of the vectors rather than on the value of the

samples; such vector similarity is termed Wave Mode

approximate [7].

The Wave Mode Sample Entropy (WMSE) values are

calculated every second using overlapping signal windows

of 4 seconds. We discriminate VT from VF by applying

the Sequential Hypothesis Testing (SHT) algorithm [2, 5]

to the sequence of WMSE values. The method was

developed using an adult VT/VF database and tested

on two independent databases: an adult database and a

pediatric database. This is, to our knowledge, the first

time in which a VT/VF discrimination method is tested on

pediatric and adult rhythms.

2. Materials and methods

2.1. Wave mode sample entropy

Different methods that estimate entropy, the rate of

information production, have been devised to analyze

the regularity and complexity of physiological time

series. Approximate Entropy (ApEn) was introduced

by Pincus [8] in 1991. In the year 2000, Richman et

al. [6] proposed a new family of statistics, Sample Entropy

(SampEn), that reduce the bias due to self-matches in

ApEn.

SampEn is the negative logarithm of the conditional

probability that two sequences similar for m points remain

similar for m + 1 points, excluding self-matches. For a
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time series of N points, {ui, i = 1, .., N} we form the

k = 1, .., N − m + 1 vectors of length m as follows:

xm(k) = {ui+k, i = 0, ..,m − 1}. Then the distance

between two such vectors is calculated using the maximum

norm as:

d(xm(k),xm(l)) = max
i=0,..,m−1

(|ui+k − ui+l|)

If the distance between two different vectors is below

a threshold r, the vectors are considered similar and 1
is added to the similarity count, Bm(r, N). Repeating

the process for vectors of length m + 1 we obtain a

second similarity count Am(r, N) and the sample entropy

is defined as:

SampEn(m, r) = lim
N→∞

− ln
Am(r, N)

Bm(r, N)

which is estimated using the statistic:

SampEn(m, r,N) = − ln
Am(r, N)

Bm(r, N)
(1)

Following Ning et al. [7] we use shape rather than

coordinates to measure similarity. Wave Mode similarity

is based on the principle that vectors which only differ in

base line content should be added to the similarity count,

so the mean value is subtracted from each vector to obtain

a new family of vectors:

ϕm(k) = xm(k) − 1

m

m−1
∑

i=0

ui+k

then the similarity counts are calculated for the vectors

{ϕm(k)} and {ϕm+1(k)}, and the WMSE is calculated

applying equation (1).

There are no guidelines to choose the optimum values

for the critical parameters: m and r. In order to make

the SampEn scale-invariant, the tolerance r is chosen as

a fraction of the standard deviation (σ) of the time series,

although Ning et al. [7] propose the use of a Basic Measure

(BM ) which for white noise is proportional to σ:

BM =

√

∑N

i=1
(ui+1 − ui)2

N
=

√

E[(ui+1 − ui)2]

=
√

E[u2
i+1

+ u2
i − 2ui+1ui] ≡

White Noise

√
2σ

m = 4 and r = 0.2 · BM were used to compute WMSE

values in this study.

For an ECG record of N samples a set of WMSE values

will be calculated using a sliding observation window of

fixed length Nw and starting sample tsk. The window will

be shifted by L < Nw samples, that is the observation

windows partially overlap. The vector of observed WMSE

values Sk = {Sj}j=0,..,k reflects the time evolution of the

WMSE values from tso = 0 to tsk = kL.

2.1.1. Sequential hypothesis testing

Given Sk = {Sj}j=0,..,k, a vector of observed

WMSE values, we want to discriminate between the

two hypothesis (VF or VT): HV F and HV T . The

log-likelihood ratio for Sk is:

lnΛk = ln

(

L(Sk|HV F )

L(Sk|HV T )

)

where L(Sk|Hr) is the likelihood of observing Sk given

the hypothesis Hr is true. Two threshold values determine

the decision rule:

A =
1 − β

α
, B =

β

1 − α
, (A > B > 0)

where α and β are, respectively, the probabilities of

rejecting HV T or HV F when these are true. If lnΛk >

lnA (or lnΛk < lnB) the algorithm selects HV F (or

HV T ). If the log-likelihood ratio falls between the two

threshold values the test is undecided, the observation

window is shifted L samples and a new WMSE value

(Sk+1) is added to the vector of observations to repeat the

test.

Assuming that the observed values are independent

and normally distributed (SV F ∼ N(µV F , σ2
V F );

SV T ∼ N(µV T , σ2
V T )), the likelihood function is:

L(Sk|Hr) =
1

σr

√
2π

k
∏

j=0

e−
1

2

(

Sj−µr

σr

)

2

and the log-likelihood ratio assumes the simple form:

lnΛk =k ln
(σV T

σV F

)

+
1

2σ2
V T

k
∑

j=0

(Sj − µV T )2

− 1

2σ2
V F

k
∑

j=0

(Sj − µV F )2 (2)

2.2. The VT/VF discrimination method

Figure 1 shows the flow chart describing the VT/VF

discrimination method. Every second (L = fs) a new

value of the WMSE is calculated using an observation

window of 4 seconds (Nw = 4fs), where fs stands for

the sampling frequency. The set of WMSE values obtained

after k seconds are arranged in a vector of observations Sk,

used to compute the log-likelihood ratio, equation (2). The

mean and standard deviations in equation (2) are calculated

using the development database described in section 2.3:

VF : µV F = 1.663 σV F = 0.276

VT : µV T = 0.814 σV T = 0.316
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Figure 1. A sliding window of Nw samples is used to construct a sequence of observed WMSE values Sk. If the vector

of observations is not sufficient to decide the type of rhythm (log-likelihood ratio test) the observation window is shifted

L samples and a new observation is added. The process ends when either a diagnosis or the end of the ECG record are

reached.

The log-likelihood ratio is compared to the two

thresholds that determine the type of rhythm. We set the

probability of rejecting VT when it is true to α = 0.1 and

VF to β = 0.2. If at time k the log-likelihood ratio test is

within the threshold limits the diagnosis cannot be decided.

Then the observation window is shifted 1 second and the

process repeated until either a diagnosis or the end of the

ECG record are reached.

2.3. Databases of VT and VF records

Three ventricular arrhythmia databases, obtained from

independent sources, were used: one to develop the

algorithm and two to validate the algorithm for adult

and pediatric patients. All the database samples had a

minimum duration of 9 seconds to guarantee the SHT

algorithm results in a diagnosis.

The development database is a subset of the ventricular

f (Hz)

P
x
x

(W
/
H

z
)

VT

VF

0 2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

Figure 2. Averaged normalized power spectral density of

the VF and VT episodes, calculated using Welch’s method

with 4.8s hamming window and 50% overlap.

arrhythmias found in the Reanibex 200 AED testing

library, it contains 154 adult cases, 53VT/101VF. The test

adult database consists of 92 cases, 64VT/28VF obtained

from electrophysiology studies conducted at the Donostia

Hospital in Spain. The pediatric database is a subset of the

ventricular rhythms of the database described in [9].

We have decreased the number of samples of the 4

second observation windows by lowering the sampling

frequency of the original VF/VT records. Figure 2

represents the normalized averaged power spectral density

of all the VF and VT episodes (development + testing),

the contribution of the frequencies above 15 Hz to total

power is negligible, so all the records were downsampled

to fs = 50 Hz (Nw = 200). The samples were then

preprocessed using a band-pass filter with passband 1.5 −
20 Hz.

3. Results

We calculated the WMSE values for all the overlapping

4 second windows in the three databases, these

values were then sequentially tested to reach a VT/VF

diagnosis. Table 1 summarizes the results obtained for

the development and the two testing databases. Despite

the different origin and nature of the databases the WMSE

values for all the VF databases are similar. There are small

differences in the WMSE values for the VT databases

because of the different heart rates and morphologies of

the VTs.

The overall detection accuracy is 95.7%, 96.8% for the

development database and 94.7% for the testing databases.

The algorithm detects VF more accurately (97.5%) than

VT (94.0%). Accuracy and VF/VT sensitivities are similar

in both (pediatric and adult) testing databases. These
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Table 1. Summary of the results for the development and

testing databases.

Database a Results

WMSE b sensitivity accuracy

Develop.

VF (101) 1.66± 0.28 98.0%
96.8%

VT (53) 0.81± 0.31 94.3%

Test: adult

VF (28) 1.67± 0.31 96.4%
94.6%

VT (64) 0.71± 0.25 93.8%

Test: ped.

VF (29) 1.70± 0.30 96.6%
94.9%

VT (49) 0.89± 0.24 93.9%

Total

VF (158) 1.67± 0.29 97.5%
95.7%

VT (166) 0.80± 0.28 94.0%

a Number of samples in parenthesis.
b Mean value ± standard deviation.

results show that WMSE (or SampEn) values serve to

discriminate VT from VF, regardless of the patient age

group.

On average a diagnosis was reached in 4.34 ± 0.87 s,

in fact 80.24% of the episodes were diagnosed on the first

observation window (4s). All cases but one (a VT from the

test adult database) reached a VT or VF diagnosis.

4. Discussion

We present a method to discriminate VT from VF based

on the regularity of the ECG, quantified using a new

entropy, WMSE, derived from the well known SampEn.

Successive WMSE values are sequentially tested to avoid

misclassification due to local regularities/irregularities in

the rhythm.

The algorithm has a higher sensitivity for VF than for

VT. The development database contains more VF than VT

(approx 2:1), which is not reflected in the testing databases

(approx 1:2). The results are therefore biased toward

VF detection, but this better represents the AED scenario

where VF is more frequent than VT.

The accuracy is higher than that reported in previous

papers where SHT was used in combination with a

regularity measure, TCI [2] or BV [3]. Each work is based

on different VT/VF databases, consequently the results are

not fully comparable. In fact Chen et al [3] tested TCI

on their database and the accuracy fell from the 100%

reported in [2] to 84%. Recently an SHT algorithm based

on CM [5] was shown to have a 97% accuracy but the

algorithm was developed and tested on the same database

which only contained 30 samples.

We have for the first time reported the performance of
an algorithm on a pediatric database. Since 2003, when

the ILCOR updated its recommendation to allow the use

of AEDs in children between 1-8 years of age, all rhythm

detection algorithms to be implemented in an AED should

be tested for pediatric use.
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