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Abstract

This study proposes a hybrid feature weighting and se-

lection model for reducing the system dimensionality, im-

proving the classification accuracy. The hybrid selection

model is tuned by means of genetic algorithms, where the

involved evaluation uses the Rademacher complexity using

the k-nearest neighbors classifier. This approach simul-

taneously minimizes the feature number and training er-

ror and provides information about the relevance of each

feature. The model was tested on artificial databases as

well as by using features extracted from cardiac signals.

The used ECG records for ischemic detection correspond

to the E-STT database and the used heart sound database

for cardiac murmur detection corresponds to phonocar-

diographic (PCG) records assembled in the National Uni-

versity of Colombia. The classification error result in the

ischemic detection was 1.3% with 50.7% of dimensionality

reduction rate, while in the cardiac murmur detection was

6.9% with 87.3% of dimensionality reduction rate.

1. Introduction

The automatic detection of cardiac pathologies strongly

depends on the appropriate feature selection (effective data

representation), which mostly are related to timing, mor-

phology and spectral properties of cardiac signals. More-

over, the cardiac signals have high within-class variability.

Unfortunately, many of the candidate features are irrele-

vant to the target concept [1]. This procedure is known

as feature selection, where the main purpose is to select

the best subset of the input feature set, which has a prob-

lem related to the relevance measure election, since the

reduced feature space should ideally contain the total in-

trinsic information, in such a way that the generalization

capacity does not decrease. Feature weighting is a more

general method which the original feature set is multiplied

by a weight value proportional to the ability of the fea-

ture to distinguish pattern classes [2]. Modern heuristic

search procedures, such as genetic algorithms, have been

found effective to obtain near-optimal solutions in large-

sized feature sets but nonlinear interactions add more com-

plexity to the evaluation function design. In [3], a hybrid

system is proposed using genetic algorithms and decision

trees in order to reduce the feature number, obtaining er-

ror rates up to 16.9% and a feature reduction around 61%.

In [2], a dimensionality reduction is performed using ge-

netic algorithms and the k-nearest neighbor classifier on

biochemical data, the feature space is geometrically trans-

formed, obtaining error rates up to 1% and feature reduc-

tion of 85%. A simultaneous feature selection and feature

weighting is performed in [4], using Tabu search and the

k-nearest neighbor classifier. The main objective of this

study is to find a reduced representation space of the nor-

mal and pathological cardiac dynamic that allows process-

ing time reduction and improves the classification accuracy

using the Rademacher model. According to this, a hybrid

system formed by genetic algorithms, decision trees and

the k nearest neighbor rule for developing feature selec-

tion and feature weighting is proposed. The genetic algo-

rithm will generate parameter evolution by means of the

Rademacher complexity minimization using a k-NN clas-

sifier. Thus, a feature subset (with low order and high dis-

criminatory capability, both in parallel) is searched. The

inclusion of Rademacher complexity included in the eval-

uation function will increase the generalization capacity of

the classifiers, since an uncertainty component is added

in the subset evaluation stage. Experiments and compar-

isons between the proposed model and well-known meth-

ods for feature selection have been performed on synthetic

databases and cardiac-signal features, showing the effec-

tiveness of this approach in pathologies recognition tasks.

2. Overview of Rademacher Complexity

Rademacher complexity is a measure proposed in [5]

which attempts to balance the complexity of the model

with its fit to the data by minimizing the sum of the train-

ing error and a penalty term. The computation of the

Rademacher complexity is data driven which means that
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it depends on the distribution of the data and hence one

can expect better performance for particular instances of

learning problems.

Let {xi, yi}
n

i=1 be a set of training instances, where xi

is the pattern or example associated with features {Fj}
q

j=1,

and yi is the label of the example xi. Let h (xi) be the

class obtained by the classifier h, trained using {xi, yi}
n

i=1.

Then, the training error is defined as:

ê (h) =
1

n

n∑

i=1

I{h(xi) 6=yi}

where,

I{h(xi) 6=yi} =

{
1, when h(xi) 6= yi

0, when h(xi) = yi

Let {σi}
n
i=1 be a sequence of Rademacher random vari-

ables (i.i.d.) independent of the data {xi}
n

i=1 and each

variable takes values +1 and -1 with probability 1/2. Ac-

cording to this, the computation of the Rademacher com-

plexity involves de following steps:

– Generate {σi}
n

i=1.

– Get a new set of labels, doing zi = σiyi.

– Train the classifier hR using {xi, zi}
n

i=1.

– Compute the Rademacher penalty, given by

Rn =

∣
∣
∣
∣
∣

1

n

n∑

i=1

σiI{hR 6=yi}

∣
∣
∣
∣
∣

– Train the classifier h, using {xi, yi}
n

i=1.

– Compute the training error ê (h).
– The Rademacher complexity RC is given by

RC = ê (h) + Rn

3. Experimental setup

3.1. Dataset

3.1.1. Artificial data sets

A number of experiments and comparisons on well-

known benchmark data sets (where the truly relevant fea-

tures are known) were performed.

Monk-1. It is a two-classes, six discrete features {Fi}
6
i=1

and 432 instances dataset. Only F1, F2 and F5 are relevant

to the target concept.

Monk-3. It is a two-classes, six discrete features {Fi}
6
i=1

and 432 instances dataset. Only F2, F4 and F5 are relevant

to the target concept.

Syndata. It was generated by a dataset generator, avail-

able in [6]. Thus, a two-classes, fourteen real features

{Fi}
14
i=1 and 500 instances dataset was obtained. Only F1

to F10 are relevant to the target concept.

3.1.2. Real data sets: cardiac signal charac-

terization

PCG database. Corresponds to features extracted from

phonocardiographic (PCG) records: 50 subjects without

valve disorders and 98 with evidence of cardiac murmurs,

8 records per subject (different auscultation areas). Sig-

nals were acquired at a sampling rate of 44.1 kHz with 16
bits per sample. 360 representative beats were chosen by 3
specialists: 180 normal and 180 with evidence of cardiac

murmur. 93 features are derived from acoustical, spectral

and fractal analysis. The PCG records belong to the Na-

tional University of Colombia.

E-STT database. Corresponds to features extracted from

the ECG records of the E-STT database, available in [7].

Signals were acquired at a sampling rate of 250 Hz with

12 bits per sample. 1800 representative beats were chosen:

900 considered normal beats and 900 beats with evidence

of ischemia. 85 features are derived from wavelet analysis,

diagnostic measures and nonlinear analysis.

3.2. Proposed method

The proposed method for feature selection is shown in

Figure 1. The feature space reduction is carried out by in-

ducing a decision tree (ID3 algorithm) [8] on the whole

sample set and selecting only features used to build it.

Then, an heuristic approach is applied, with the purpose

of minimizing the classification error rate and searching a

low order feature subset with high discriminatory power,

both in parallel. This is done by using a genetic algorithm,

which generates and allows the evolution of the method

parameters using the classifier error (with the Rademacher

penalty included) as evaluation function. The classifier is

based on the k-nearest neighbor rule. The method param-

eters are:

– {wj}
q

j=1: feature weights into the interval [0, 1], where

wj is the weight of the feature Fj . The feature space is ge-

ometrically transformed, improving the classification ac-

curacy and giving a relevance level of each feature.

– θw: It is a decision threshold into the interval [0, 1]. If

wj < θw, then Fj is discarded.

– k: Number of nearest neighbors.

– Pm: Mutation probability of the genetic algorithm.

Additionally, the genetic algorithm specifications are

listed below:

Encoding. Taking into account the features set {Fi}
q

i=1,

the method parameters are encoded into binary chromo-

somes, as follow:

0 . . . 10
︸ ︷︷ ︸

w1

20 bits

0 . . . 10
︸ ︷︷ ︸

w2

20 bits

· · · 0 . . . 10
︸ ︷︷ ︸

wq

20 bits

0 . . . 10
︸ ︷︷ ︸

θw

20 bits

0 . . . 10
︸ ︷︷ ︸

k
4 bits

0 . . . 10
︸ ︷︷ ︸

Pm

20 bits
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Figure 1. Proposed model for feature selection

Evaluation function. In this approach for evaluating fea-

ture subsets is used the Rademacher complexity as a clas-

sification error measure (from k-NN classifier).

Mutation. In literature it is found that varying the mutation

rate during the run better results are given [9, 10]. There-

fore, an isotropic self-adaptive mutation is used, where the

mutation probability is encoded into each chromosome.

Other parameters. In [11] and [12] are recommended ex-

perimental values for adjusting the genetic algorithm pa-

rameters: crossover rate of 0.95, population size of 40

chromosomes, a generation gap of 95% and 300 gener-

ations. The algorithm will end when all generations are

accomplished.

The proposed model is tested using an accuracy measure

(i.e., the classification error rate) as evaluation function, in

order to observe the ability of the Rademacher complex-

ity for addressing the genetic algorithm search. Also, it

is estimated the predictive accuracy by five replications of

two-fold cross-validation (5× 2cv) [13]. Each time a two-

crossvalidation is performed, the procedure is executed in-

dependently in each fold and it has no access to the another

fold: the accuracy of the selected subset in each execu-

tion is measured in the no accessed fold. In this way, the

reported accuracy will be the mean of the ten accuracies

and the standard deviation, since the 5 × 2cv scheme is

used. With the aim of observe the generalization ability of

the model, a classification noise on the training folds with

probability of 15% is applied. At least, all dataset elements

were divided into two groups: Seventy percent for the pro-

cessing stage and thirty percent for method verification. In

this way, the method is verified by completely unknown

elements.

3.3. Comparison with other methods

In order to evaluate the effectiveness of the proposed

method on cardiopathies detection, experiments over ar-

tificial data sets and cardiac-signal feature sets were car-

ried out. Initially, the classification results (using k-NN

and ID3 algorithm) were obtained over all data sets with-

out feature selection. After, comparisons between the pro-

posed method and conventional methods were also per-

formed. The conventional methods are listed below [14]:

Sequential Forward Selection (SFS). This procedure se-

lects the best single feature and adds one feature at a time

which in combination with the selected features maximizes

the criterion function. Once a feature is retained, it cannot

be discarded. This routine stops when criterion function

cannot be maximized adding another feature.

Sequential Forward Floating Search (SFFS). First en-

large the feature subset by l features using forward selec-

tion and then delete r features using backward selection.

The values of l and r are determined automatically and up-

dated dynamically. It provides a result close to the optimal

solution.

Branch and Bound Search(B&B). Uses the branch-and-

bound search method; only a fraction of all possible feature

subsets need to be enumerated to find the optimal subset.

4. Results

Tables 1 and 2 show the experimental results: the clas-

sification error rate using 5 × 2cv and the dimensionality

reduction rate, respectively. Where PM6R is the proposed

methodology (ID3/GA/k-NN) using the training error as

evaluation function, while PMR is the proposed method-

ology (ID3/GA/k-NN) using the Rademacher complexity

as evaluation function. Table 3 shows the verification re-

sults of the proposed scheme with/without the Rademacher

complexity. It is notable that the generalization capability

was increased when the Rademacher penalty was included

in cardiac pathology detection (ischemia and cardiac mur-

murs). In this table, εv is the verification error.

Table 3. Verification error rate
5 × 2cv (%) εv (%)

PMR Ischemia detection 1.3±0.3 2.1
Cardiac murmur detection 6.9±1.9 8.2

PM 6R Ischemia detection 2.0±0.6 10.8
Cardiac murmur detection 7.2±3.8 18.3

259



Table 1. Classification error rate
Database 1-NN ID3 SFS/1-NN SFFS/1-NN B&B PM6R PMR

Monk1 29.4±2.7 27.8±2.2 14.7±3.6 16.1±2.7 22.1±3.7 9.1±5.7 8.5±2.2

Monk3 31.7±0.6 36.1±1.7 15.6±3.8 20.0±5.7 18.3±6.8 4.1±2.1 3.3±1.2

SynthData 15.0±1.7 24.4±2.1 16.0±6.2 14.6±1.5 17.2±3.5 4.5±1.8 3.6±1.5

E-STT 15.6±1.3 28.6±1.2 14.9±1.2 14.5±0.9 15.9±2.3 2.0±0.6 1.3±0.3

PCG 18.3±4.5 26.6±0.3 18.2±0.9 18.9±3.2 23.7±2.9 7.2±3.8 6.9±1.9

Table 2. Dimensionality reduction rate
Database 1-NN ID3 SFS/1-NN SFFS/1-NN B&B PM6R PMR

Monk1 0.0 50.0 31.7 31.7 57.1 59.2 53.3

Monk3 0.0 33.3 35.0 30.0 57.1 68.5 65.0

SynthData 0.0 14.3 55.3 48.0 33.3 35.7 29.3

EST-T 0.0 72.9 77.1 71.9 80.1 89.1 50.7

PCGset 0.0 35.7 74.7 77.4 87.7 69.8 87.3

5. Conclusions

– The effectiveness of error penalization by using the

Rademacher model has been proved to be of high value

for automatic detection of cardiac pathologies, giving the

best classification results among the considered models.

– The results show that the Rademacher penalty adds gen-

eralization capacity to the classifier, which is a necessary

constraint due to the high within-class variability of car-

diac signals. This uncertainty included in the feature se-

lection allows an effective dimensionality reduction.

– The resultant weighting vector allows to determine the

relevance level on each selected feature, which helps to

obtain a physical interpretation.
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on gas ẅithout parameters.̈ In PPSN VI: Proceedings of the

6th International Conference on Parallel Problem Solving

from Nature. London, UK: Springer-Verlag. ISBN 3-540-

41056-2, 2000; 315–324.

[11] DeJong KA. An analysis of the Behavior of a class of Ge-

netic Adaptative System. Ph.D. thesis, University of Michi-

gan, 1975.

[12] Grefenstette JJ. Optimization of control parameters for ge-

netic algorithms. IEEE transactions on Systems Man and

Cybernetics 1986;16(1):122–128.

[13] Alpaydin E. Combined 5 x 2 cv f test for comparing super-

vised classification learning algorithms. Neural Computa-

tion 1999;11(9):1885–1892.

[14] Dash M, Liu H. Feature selection for classification. Intelli-

gent Data Analysis Elsevier 1997;1:131–156.

Address for correspondence:

Name: Edilson Delgado-Trejos

Full postal address: Universidad Nacional de Colombia. Cam-

pus La Nubia. Vı́a al aeropuerto. Oficina V-212. Manizales -

Caldas. Colombia. Tel: +57 3007809495.

E-mail address: edelgadot@unal.edu.co

260


	Introduction
	Overview of Rademacher Complexity
	Experimental setup
	Dataset
	Artificial data sets
	Real data sets: cardiac signal characterization

	Proposed method
	Comparison with other methods

	Results
	Conclusions

