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Abstract

In this study, nonlinear dynamics techniques toward de-

tecting cardiac murmurs from phonocardiograms (PCG)

are used. With this purpose, a methodology for tuning

parameters (reconstruction delay −τ and embedding di-

mension −m) involved in the reconstruction of a meaning-

ful state space from scalar time series is presented, using

genetic algorithms (GA), as well as constructing a meta-

algorithm combined with support vector regression to ad-

just the GA parameters in order to decrease the computa-

tional cost. The forecasting capacity is used as cost func-

tion of the GA. The PCG records belong to the National

University of Colombia, 360 beats were chosen by special-

ist, 180 normal and 180 with cardiac murmur evidence.

The obtained results show that by using the tuned GA an

efficient procedure for the consistent determination of τ
and m is achieved. Murmur detection by using nonlinear

features was obtained with classification accuracy of 96%

using a k nearest neighbor classifier in cross-validation

with 10 folds.

1. Introduction

Due to the complexity involved in cardiac dynamics [1],

nonlinear dynamics techniques for detecting cardiac mur-

murs from phonocardiographic signals (PCG) have been

proposed [2]. A topological equivalent corresponding to

the true state space of a system can be reconstructed with

the method of delays [3]. The embedding dimension m
and the reconstruction delay τ are mandatory information

for the state space reconstruction, or embedding, of a series

[4, 5]. Estimating these values allows for the construction

of state vectors, also called regressors, which contain all

the information about system dynamics [6]. However, in

time series analysis there exist several difficulties. Usually,

the attractor dimension is not known and therefore there is

no idea about the minimal embedding dimension m. In

another way, the reconstruction delay τ is not subject to

the embedding theorems; in principle, arbitrary τ yields

an embedding, and according to this, the main difficulty is

related to the observability of interesting structures [7].

Several methods have been developed for estimating

the embedding dimension: correlation dimension [8],

false neighbors [9], Box–Couting [5], minimum dimension

[10], etc. Concerning with the selection of the time delay,

common approaches are: the use of the series autocorrela-

tion, or the mutual information (MI) [11]. The goal is to

select the regressor components, as uncorrelated or inde-

pendent as possible. Genetic Algorithms (GA) have been

widely used for tuning parameters taking into account an

adequate cost function, for example, in [12], an approach

based on evolutionary algorithms was developed to find

parameters for optimal embedding and, the application of

chaotic time series forecasting as cost function to build

a nonlinear model from the dataset is proposed in [13].

However, when the task implies building the state space

from a lot of different systems, computational complexity

considerably increases.

In this study, the use of nonlinear dynamics techniques

for characterization of FCG signals in the detection of car-

diac murmurs is proposed. The problem lies in the adjust-

ment of τ and m of the nonlinear model, so we propose the

use of GA to accomplish that task. The evaluation function

is based on measuring the forecasting capabilities obtained

with each pair of values for m and τ . A probabilistic ap-

proach is used for comparing the predicted and original at-

tractors. In order to minimize the computational cost in the

tuning procedure, the control parameters of the GA must

be carefully selected as well. A methodology is presented

where a meta-algorithm combined with support vector re-

gression is used for tuning the GA control parameters.

2. Materials and methods

2.1. Database

The database is made up of 148 de-identified adult sub-

jects, who gave their formal consent, and underwent a

medical examination (the valve lesion severity was eval-

uated by cardiologists according to clinical routine). 50

patients were labelled as normal, while 98 with evidence of

cardiac murmurs, caused by valve disorders (aortic steno-

sis, mitral regurgitation, etc). Besides, 8 recordings cor-
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responding to the four traditional focuses of auscultation

(mitral, tricuspid, aortic and pulmonary areas) were taken

for each patient in the phase of post-expiratory and post-

inspiratory apnea. Each record lasts 12 s and was obtained

with the patient standing in dorsal decubitus position. Fi-

nally, 360 representative beats were chosen by specialist,

180 normal and 180 with evidence of cardiac murmur.

An electronic stethoscope (WelchAllynr Meditron model)

was used to acquire the heart sounds simultaneously with a

standard 3-lead ECG (the DII derivation was used because

the QRS complex is clearly defined). Both signals were

digitized at 44.1 kHz with 16-bits per sample.

2.2. Embedding theorem

The state space reconstruction is based on the Time-

Delay Embedding Theorem presented in [4], which can

be written as follows [5]: Given a dynamical system with

a m-dimensional solution space and an evolving solution

h(t), let x be some observation x(h(t)). Let us also define

the lag vector (with dimension m and common time lag

τ ) x(t) ≡
(

xt, xt−τ , xt−2τ , . . . , xt−(m−1)τ

)

. Then, under

very general conditions, the space of vectors x(t) gener-

ated by the dynamics contains all of the information of the

space of solution vectors h(t). The mapping between them

is smooth and invertible. This property is referred to as dif-

feomorphism and this kind of mapping is referred to as an

embedding. Thus, the study of the time series x(t) is also

the study of the solutions of the underlying dynamical sys-

tem h(t) via a particular coordinate system given by the

observable x.

The embedding theorem establishes that, when there is

only a single sampled quantity from a dynamical system,

it is possible to reconstruct a state space that is equivalent

to the original (but unknown) state space composed of all

the dynamical variables [14].

2.3. Predicting chaotic time series

If the data are a single time series, the first step is to em-

bed them in a state space. If the attractor is of dimension

D, a minimal requirement is that m ≥ D. The next step

is to assume a functional relationship between the current

state x(t) and the future state x(t + T ) = fT (x(t)). To

predict x(t + T ), a metric on the state space denoted by

‖ ‖ should be imposed, and find the k nearest neighbors

of x(t), i.e., the k states x(t′) with t′ < t that minimize

‖x(t)−x(t′)‖. A local predictor is constructed, regarding

each neighbor x(t′) as a point in the domain and x(t′ +T )
as the corresponding point in the range. For convenience,

the range is treated as a scalar, mapping m-dimensional

states into one-dimensional values, although for some pur-

poses it is desirable to let the range be m-dimensional. The

fit can be made in any of several ways; for the work re-

ported here, two approaches are used: when the regression

problem is well-posed, least squares by singular value de-

composition is used; on the other hand, when the k near-

est neighbors produce an ill-posed problem (the condition

number of the matrix with the k nearest neighbors is too

large), the Tikhonov regularization method is used for es-

timating the regression value [15].

2.4. Genetic meta-algorithm

Genetic algorithms are computational methods inspired

on natural selection and evolution precesses, frequently

used for optimization tasks. However, for a maximum ef-

ficiency, it is necessary to adjust the control parameters

(i.e., population size r, crossover rate χ and mutation rate

µ) [16]. For this purpose, a tuning method called meta-

algorithm (meta-GA) has shown to be an effective way to

select the best values of control parameters [17, 18]; this

method is composed by a low level GA, that is, the one

that works on the specific optimization problem, and a high

level GA, which is optimizing the control parameters of the

first one, by using some evaluation function that reflects its

performance in terms of accuracy and computational cost.

The main difficulty involved with the meta-GA implemen-

tation is its own computational cost. For that reason, dif-

ferent methodologies has been proposed [19].

2.5. Proposed procedure

The PCG record is taken as a time series x(t) and the

evaluation function must be established in order to have a

performance measure for each set of m and τ . This one

will be given by the forecasting skills obtained by the re-

constructed attractor of x(t). Figure 1 depicts the proposed

procedure for evaluating the reconstruction quality. m and

τ values for reconstructing the state space are found by us-

ing Algorithm 1.

Algorithm 1 Low level genetic algorithm

Require: x(t), m ∈ [2, 34] and τ ∈ [2, 128]. ⋆\x(t) is a single
time series\⋆
Initial population of chromosomes (bit strings). ⋆\Encodings of
several values for m and τ (randomly)\⋆
repeat
1. Calculate fi{chromosome} ⋆\Being fi, i = 1 . . . r, the fit-
ness measure by Kullback-Leibler distance (see Figure 1)\⋆
2. Select the best fitted chromosomes by remainder stochastic
sampling
3. Perform one-point crossover between randomly paired chro-
mosomes ⋆\With probability χ\⋆
4. Apply mutation operator over each bit of the population
⋆\With probability µ\⋆
until 95% of population members are the same [20]

Output: m and τ values.

The proposed methodology for tuning the GA control

parameters (see Figure 2) begins with the execution of
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Figure 1. Evaluation function

Algorithm 1 (low level GA), with different sets of con-

trol parameters. For each execution, the evaluation of the

found solution and the the total number of evaluations are

recorded for constructing two regression surfaces (i.e., us-

ing the support vector regression method [21]). Thus,

without executing the low level GA, the evaluation value

and the number of evaluations can be estimated by us-

ing these surfaces. In this way, the high level GA can

be optimized with the obtained surface, since it minimizes

the number of evaluations and maximizes the evaluation

value in lower processing time. For further details on this

methodology, in [22] there is a wide explanation.
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Figure 2. Control parameters optimization methodology

After attractor reconstruction, in order to detect cardiac

murmurs, the following features are estimated over the

whole training database:

Correlation Dimension (D2): Calculation of D2 is achieved

by using the method proposed in [23], requiring a previ-

ous estimation of the correlation sum, C(r). The function

lnC(r) vs. ln(r) is evaluated for every PCG beat, estimat-

ing its scaling region by the derivation, dlnC(r)/dln(r).
Largest Lyapunov Exponent (λ1): It gives a measure of

chaos in the system, estimating the exponential separation

of the trajectories. λ1 can be estimated as the average rate

of separation from the nearest neighbors like is proposed

in [23].

Attractor probabilistic weighted variance (νpw): It gives

a measure of the attractor dispersion, weighted with the

correspondent density from a state space box arrangement.

The classification strategy used for detecting cardiac mur-

murs from nonlinear features was k-NN, trained by using

10-fold cross-validation.

3. Results

Previous studies present excellent classification results

well above 89% ±3.1 when the attractors are reconstructed

using the same embedding parameters for all signals [2].

In this study, the obtained classification result by using the

k-NN classifier was 96.3% ±1.2. This means that the fact

of considering cardiac dynamics of each subject as a dif-

ferent dynamic system with its own parameters, improves

the quality of the extracted features for the cardiac murmur

detection.

4. Conclusions

– The parameters associated with true state space recon-

struction can be adjusted by the use of genetic algorithms

joined with support vector regression for its own control

parameter tuning. Additionally, the reconstruction of the

diffeomorphic attractor, that is originated with all the dy-

namical variables, allows the estimation of features with

high discriminatory capability for detecting cardiac mur-

murs.
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– According to the obtained results, the proposed method-

ology, for tuning the GA control parameters, successfully

reduces its computational cost without degrading the fit-

ness of the solution. Such a reduction is a necessary com-

ponent in the proposed classification process, given the in-

herent computational cost of the nonlinear dynamics meth-

ods used.

– It is remarkable that the optimal embedding parameters

can be found using as cost function the best possible fore-

cast skill, in this way, good forecasting skills imply good

embedding properties.
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