
A Graphical User Interface for the

Study of Heart Rate Variability

PP Domitrovich

Washington University School of Medicine, St Louis, MO, USA

Abstract

A truly windows-based graphical user interface (GUI)

for Heart Rate Variability (HRV) is an easy-to-use,

educational, and valuable research tool. The

development of such a GUI is not a trivial endeavor.

The document-view architecture of the Microsoft

Visual Studio (MSVS), which is based upon the Microsoft

Foundation Classes (MFC) written in C++, is utilized. A

dynamic splitter-window is included to provide 4

simultaneous views. The GUI allows 720 various segment

lengths. A total 270 different 4-paned views are possible,

and 59 adjustable parameters are available. One view

contains an interactively editable heart-rate-arousal and

duration detector. The Lomb periodogram, the fast-

Fourier transform (FFT), Poincare' plots, HRV in text

format, phase-plane plots, multi-line heart-rate

tachograms, and 2-minute-averaged Lomb and FFT

power spectral amplitude plots are available.

1. Introduction

The input information for any HRV calculation is the

interbeat-interval or beat file. HRV calculations often

provide output that can be displayed graphically to

provide additional insight into the underlying physiology.

Such graphical displays can also promote the

development of intuition concerning HRV if approached

cautiously and thoughtfully. This HRV GUI was

developed to provide opportunities for learning with

immediate feedback, which can be used to correct

intuition when necessary. It was also developed to be the

basis for applications requiring user interaction. Its

success is heavily dependent upon the user in any case.

This paper provides a minimal overview of the work

that went into the development of this GUI. The most

basic concepts are covered, and several more difficult

GUI programming steps are discussed briefly. HRV is

discussed at the application level, with little detail

provided. With supplemental literature concerning MFC

and the document/view architecture, and with sufficient

experience with HRV calculations and programming,

reproduction of this GUI is possible.

2. Methods

The document/view architecture was written by

Microsoft Corporation (Redmond, WA, U.S.A) with the

MFC of the MSVS. There are several very useful texts

written about MFC in the MSVS [1,2]. This architecture

still exists today and still utilizes the MFC in the most

recent versions of the MSVS [3].

The document/view architecture of MFC provides

many classes to assist in the development of certain

GUI’s. This HRV application fits nicely into the

document/view architecture. The architecture provides a

method for storing and loading files, and a method for

presenting the information stored in the files to the user.

The classes of the architecture are abstract enough that

the type of information and the method of presentation of

the information are quite unrestricted. Many standard

functions expected of a user interface are built-in, which

allows the programmer to focus on the data presentation

and manipulation. Since MFC is written in C++, and the

details of the user interface must be written in C++, a

good deal of programming is required. Nevertheless, a

distinct advantage of using C++ and MFC is that the

graphical user interface can manipulate and present data

very rapidly on modern computers. Several C/windows

functions, which have not been wrapped in MFC, are

required for this application.

The classes of the document/view architecture most

relevant to this work are called the document, the view,

and the mainframe. The document class manages the

data, the view class presents the data to the user, and the

mainframe class manages the frame window containing

the view along with menus, tool bars, and status bars

attached to the frame window. Through pointers to the

document, view, and mainframe objects, there is essential

communication made possible. The communication

between the document and view objects is bidirectional,

while the communication from the mainframe object

proceeds only to the view object.

Interbeat-interval files must include the start time of

the first beat, the beat labels for all beats, and the RR

intervals for all beats. Periods of noise or ectopy can be

labeled as desired. It is convenient if all interbeat-interval

ISSN 0276−6574 469 Computers in Cardiology 2007;34:469−472.

or beat files have the same or similar extensions, which

can be selected with the typical dialog available for

opening files. However, the extension chosen for the GUI

must differ from commonly utilized beat file extensions.

The extension for the serialized beat file is saved in the

registry when implementing the wizard in MSVS to set

up the single-document interface (SDI).

One way to serialize the beat file is first to rewrite the

file in binary format as a series of structures containing

sufficient information to allow for quick and easy

navigation through the serialized beat file once it is stored

in memory. The structure chosen for this GUI contains

the segment number, the beat label, the real time of the

beat, and the RR interval. The built-in File->Open menu

selection must call a user-supplied method to call the

built-in file-open dialogue, to accomplish the translation

of the text file into a series of structures in binary format,

and to save the translated file with the extension required

by the GUI and the given base name of the original beat

file. Then the supplied MFC methods in the document

class for creating a new document, opening a document,

and serialization are overridden for processing the saved

binary file. Serialization results in storing the beat file in

memory for use with the GUI.

An additional tool bar, created in the mainframe and

positioned below the views, is utilized for navigation

through the beat file. Buttons are created to move one

segment to the left or right, and also one hour to the left

or right. For segments greater than one hour, the one-hour

change is not available. A reset button is provided to set

the segment number to zero and bring the views back to

the beginning of the beat file. The code for the buttons is

user-supplied and written in the document class.

In detail, a sequential search through the serialized

data in memory is performed until the desired segment

number is found. Once these data are found, they are

written to a text file and read back into memory, although

the data can be copied directly within the program if

desired. Two public methods are user-supplied in order to

aide in the transfer of the raw segment data and other

tracking data to the view classes. The tracking data

consists of the document length in bytes, the number of

document lines or structures, the segment number, the

segment start time, and several other current display

settings for several specific applications for the various

views. The MFC document class method GetDocument is

used in the view classes to obtain a pointer to the

document object. This pointer allows access to the user-

supplied methods in the document class for transferring

the raw segment data and tracking data.

The actual code to create the MFC dynamic splitter-

window object is available from a Microsoft textbook [4].

The splitter window object is instantiated in the

mainframe class using the MFC method OnCreateClient.

The default view, or view1, is created automatically in

row 0, column 0. View2 is placed in row 1, column 0;

view3 in row 0, column 1; and view4 in row 1, column 1.

The views are filled sequentially. The splitter bars can be

moved at will with the mouse pointer, which resizes the

views accordingly. Font sizes for each view are

programmed to adapt accordingly, utilizing the automatic

changes in size of the characters as the view size changes.

Note that only view1 maintains a pointer from the

mainframe, while all views have equal access to a pointer

from the document class. The connection of view1 to the

mainframe class dictates that view1 will always be

displayed. Buttons can be added to the mainframe to

display various combinations of a selection of the 4

views; i.e., either 1 or 2 views, where view1 must always

be included. The code to implement these combinations

is user supplied and written in the various view classes.

In detail, a CWnd pointer from the parent of the

particular view class is obtained and then cast as a

general CSplitterWnd pointer. Next, this pointer is cast as

a pointer to the specific splitter window class of the GUI.

This allows access to the GUI’s MFC splitter-window

methods.

HRV classes are based upon a segment of data as

input. Segments can be as short as 10s or as long as two

hours, in increments of 10s. The data required for each

segment contains the real time of each beat, each beat

label, each RR interval, and the segment number.

Whenever a segment is viewed, the document object

writes a text file containing the segment’s de-serialized

data. This text file can be very useful when comparing

the input data to the displayed data.

The HRV classes do not directly utilize any of the

MFC. Each view instantiates a HRV object for

manipulation of the segment data. The mainframe creates

an HRV object to translate the decimal start and stop

times of the current segment into Cstrings. Implementing

this requires a user-supplied method to update the status

bar when the segment number is updated and, within this

method, a cast of a pointer obtained from the active

document to a pointer to the document object of the GUI.

The document instantiates a HRV object for a HRV

computation over each segment and outputs the results

into a file.

Each major GUI object dynamically creates memory

for the data of the segment each time a segment is chosen

for display. The memory is freed by hand when the object

is destroyed. Note that the entire serialized beat file

remains in memory throughout the view time. The MFC

document method DeleteContents is overridden to clear

the memory of the current serialized beat file and to reset

other parameters when a new file is opened. Several

GUI’s can actually be run in the same directory without

interference.

470

The HRV methods in the HRV class are public

methods that calculate both HRV for a segment and

provide some user-supplied utility methods. Methods for

HRV calculation of the time domain and several non-

linear variables are included in this class. The basic

methods for a FFT [5] or Lomb [6] spectral analysis are

also included. The special method for detecting sleep

apnea is in this class. The general utility methods include

a stationarity test, a sorting method, and a method to

obtain RR intervals as a function of time. The data for a

segment in this class is protected.

The HRVFFT class inherits from the HRV class. This

class contains public methods that are auxiliary methods

for the FFT and Lomb spectral analyses. Such methods

include sampling of the NN interval time series for a

segment, determining the sampling interval for any

segment length automatically, and other standard

methods for a FFT. The frequency band limits, sampling

interval, and number of FFT points are all protected data

members. Parameters adjustable for spectral plots are

separately included in a 2-sheet set of property sheets

available on the mainframe. This property sheet is called

in the document class so that any changes can be shared

with all views.

The remainder of the code required for the various

views resides in the particular view classes themselves.

Plotting-related classes could be implemented to reduce

the amount of code contained in the views. All

calculations required for the views are selected with

parameters set in the various dialogue boxes, menus,

toolbars, or additional buttons. Each possible view is

available during runtime due to message handling of the

architecture of the GUI and the MFC update methods for

views.

3. Results

For brevity, not all of the applications available for

each view will be discussed. Each view has its own

dialogue box, where most of the applications can be

selected for display. The dialogue boxes can be accessed

through the context menu included in each view, through

buttons on the frame window, and through menus on the

frame window. Accelerator keys and tool tips are

provided appropriately. The data exchange code for each

dialogue box is contained in the appropriate view class,

as is the code for each context menu. Each view will be

discussed separately. See Figures 1 and 2 for examples.

View1 is always displayed, as discussed earlier. It

contains a text editor for taking notes while viewing the

other 3 views and a menu item and associated method to

save the notes to a text file. The view also contains a

multi-line heart-rate tachogram, the format of which was

originally developed by the author and utilized to detect

sleep apnea [7]. The time duration of the lines in the

multi-line tachogram is a settable parameter in the

dialogue box for view1. View1 also displays a power

spectral plot using a FFT associated with 2 property

sheets, a Poincare’ plot with adjustable limits for the

maximum and minimum NN plot limits, and a unique

graphical representation of approximate entropy. The

approximate entropy (ApEn) display plots the re-sampled

point number i versus ln of the total number of times

points i and i+1 are both within a distance r of the points j

and j+1, respectively, for all j, divided by the total

number of times points i, i+1, and i+2 are within a

distance r of the points j, j+1, and j+2, respectively, for

all j. ApEn is the mean of the plotted values. The

Poincare’ plot indicates the number of occurrences of a

particular point with darker shades of red corresponding

to larger numbers of occurrence.

View2 contains a single-line and multi-line heart-rate

tachogram with adjustable maximum- and minimum-

plotted heart rates. The multi-line tachogram also has

adjustable time duration of the lines. This view contains

an editable heart-rate arousal detector, which

automatically locates the peak, beginning, and end of

each arousal. The algorithm is original and is based upon

slope for all 3 times of interest and upon heart rate

maximum and minimum differences. Peaks, beginnings,

and ends of the arousals can be removed with the mouse

wheel click, Cntrl+mouse wheel click and Shift+mouse

wheel click, respectively. Peaks, beginnings, and ends

can be added in the same manner, but with a double-click

instead of the mouse wheel. The times of the peak,

beginning, and end of the arousal, along with the duration

of the arousal and the maximum to minimum heart rate

change are automatically written to a text file as one

proceeds through the beat file. One can take advantage of

the capability of the button that displays only view1 and

view2 in order to enlarge the single-line tachogram for

heart rate arousal detection.

View3 contains a 2-dimensional phase plane plot and a

textual listing of HRV results for the current segment.

The phase plane plot has adjustable maximum and

minimum NN plotting limits.

View4 offers the same Poincare’ and power spectral

plots as view1. It also offers a Lomb power spectral plot.

These options are contained in the dialogue box for

view4. In addition to the options offered in the dialogue

box, two buttons on the tool bar offer a 2-minute-

averaged FFT and Lomb power amplitude spectral plot.

HRV options located on the tool bar were written

primarily to facilitate applications not presented in this

paper and utilized for other publications [8].

4. Discussion and conclusions

The GUI’s most important classes, the document class

and the view class, along with the HRV classes, require

471

Figure 1. View1 displays ApEn. View2 displays the

multi-line-tachogram. View3 displays HRV results.

View4 displays the Lomb periodogram.

considerable user-supplied development. The basic

functions of the GUI are handled primarily with built-in

code. Plotting code and HRV calculations can be added

to the view classes, while parameters to run these

applications can be chosen or modified in dialogue boxes.

The HRV applications displayed in this GUI are

mostly standard HRV calculations. Clearly, freedom

exists to calculate and display any HRV application

desired. The fact that the GUI is based upon segments

still allows for 24-hour HRV calculations segment-by-

segment. The results of these 24-hour calculations can be

displayed in certain applications of this GUI.

Once a functioning basic SDI GUI is developed, one

may create a HRV GUI as desired. The document/view

architecture of the MSVS is a reasonable way to proceed.

Acknowledgements

I wish to that Phyllis K. Stein, Ph.D. for her funding

support for this work.

Figure 2. View1 (top) shows the FFT power spectrum,

and view2 shows the heart-rate arousal detector.

References

[1] Blaszczak M. Professional MFC with Visual C++ 6.

Birmingham UK: Wrox Press Ltd, 1999.

[2] Prosise J. Programming Windows with MFC, 2nd Ed.

Redmond, WA, USA: Microsoft Press, 1999.

[3] Skibo C, Young M, Johnson B. Working with Microsoft

Visual Studio 2005. Redmond WA, USA: Microsoft Press,

2006.

[4] Blaszczak M. Professional MFC with Visual C++ 6.

Birmingham UK: Wrox Press Ltd, 1999:338-46.

[5] Rottman JN, Steinman RC, Albrecht P, Bigger JT Jr,

Rolnitzky LM, Fleiss JL. Efficient Estimation of the Heart

Period Power Spectrum Suitable for Physiologic or

Pharmacologic Studies. Am J Card 1990;66:1522-4.

[6] Press WH, Teukolsky SA, Vetterling WT, Flannery BR.

Numerical Recipes in C, 2nd Ed. New York, NY, USA:

Cambridge University Press, 1992:575-84.

[7] Stein PK and Domitrovich PP. Detecting OSAHS from

Patterns Seen on Heart-Rate Tachograms. Computers in

Cardiology 2000;27:271-4.

[8] Stein PK, Cohen RJ, Mau B, Domitrovich PP, Gottdiener

JM, Redline S. A Comparison of Holter- and

Polysomnogram-Based Detection of Bed and Wake Times.

Computers in Cardiology 2007 (in press).

Address for correspondence

Peter P. Domitrovich, Ph.D.

Washington University School of Medicine

Department of Internal Medicine

Division of Cardiovascular Diseases

Box 8086

St. Louis, MO 63108

U.S.A.

ppd@hrv.wustl.edu

472

