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Abstract 

A machine learning technique [support vector 

machines (SVM)] for automated recognition of 

obstructive sleep apnoea syndrome OSAS types from 

their nocturnal ECG recordings is investigated.  Total 70 

sets of nocturnal ECG recordings [35 sets  (learning set) 

and 35 sets (test set)]  from normal subjects (OSAS-) and 

subjects with OSAS (OSAS+) were collected from 

physionet. Features extracted from successive wavelet 

coefficient levels after wavelet decomposition of RR 

intervals and QRS amplitudes of whole record were 

presented as inputs to train the SVM mode to recognize 

OSAS+/- subjects. The optimally trained SVM showed 

that a SVM using a subset of selected combination of 

HRV and EDR features correctly recognized 20 out of 20 

OSAS+ subjects and 10 out of 10 OSAS- subjects. For 

estimating the relative severity of OSAS, the posterior 

probabilities of SVM outputs were calculated. 

 

1. Introduction 

 

Obstructive sleep apnoea syndrome (OSAS), 

commonly known as sleep apnea is defined by frequent 

cessation of breathing due to the partial or complete 

obstruction of upper airway for short periods during 

sleep. The fragmented sleep due to OSAS can result in 

poorer daytime cognitive performance, increased risk of 

motor vehicle and workplace accidents, depression, 

diminished sexual function, and memory loss [1]. 

Undiagnosed OSAS is now regarded as an important risk 

factor for the development of cardiovascular diseases 

(e.g. hypertension, stroke, congestive heart failure,  left 

ventricular hypertrophy, acute coronary syndromes) [2]. 

Therefore, early recognition of subjects at risk of OSAS 

is essential.  

 Based on early in the investigation, it was 

recognised that the events of apnoea are accompanied by 

concomitant cyclic variations in R-R intervals (beat to 

beat heart rate) of ECG signals [3].  A comparative study 

[4] on different algorithms for apnoea detection based on 

ECG signals reported that the combination of parameters 

of  HRV and  the EDR signal gave the best OSAS 

recognition results. Parameters related to cardiac and 

respiratory dynamics can readily be extracted from heart 

rate variability (HRV) and ECG derived respiration 

(EDR) signals [5]. However, after deriving and 

combining suitable index parameters, an appropriate 

computational method must be chosen to discriminate 

between healthy and OSAS subjects. Several machine 

learning techniques, i.e., Linear and Quadratic Discrimant 

model [6], CART method [7] have been used for 

automatic recognition of  OSAS subjects based on the 

selected  subset of  parameters derived from HRV and 

EDR signals.  

 Recently, support vector machines (SVM) have 

emerged as a powerful technique for general purpose 

pattern recognition [8-9]. The primary advantage of SVM 

is its ability to minimize both structural and empirical 

risk [10] leading to better generalization for new data 

classification even with limited training data set. 

Therefore, it was hypothesized that an SVM model would 

be suitable for constructing relationship between features 

extracted from ECG signals and the presence or absence 

of OSAS. Thus, in this study, we propose to apply SVM 

for automated recognition of OSAS based on overnight 

ECG signals. 

 

2. Methods 

 

Overnight sleep ECG signals were collected from 

Physionet Apnea-ECG database (www.physionet.org). 

The database was divided into two sets each containing 

35 recordings. The first set (learning) was used to 

optimize the classification algorithm  and the second set 

(test) was used to provide an independent performance 

assessment.  

Amplitudes of each QRS complex [5] and the intervals 

between successive R waves of QRS complex were 

determined with 1 ms accuracy of precision for all 

recordings using an algorithm described in another study 

[11]. Each RR-intervals series was divided in subintervals 
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of 5 points each. Through a moving average procedure 

we deleted suspect RR interval  if  its value exceeds by 

more than 20% of the median value of RR intervals 

during each subinterval. Then, HRV and EDR signals 

were resampled using cubic spline interpolation  to make 

32768 points for wavelet (Wv) decomposition at 14 

levels using daubechies wavelets with order 10  and 

feature extraction. In order to eliminate the bias of mean 

and variance of the signal on feature extraction, all 

signals were normalized by calculating their z-scores (i.e., 

(x – µ)/j, where µ is the mean and j is the standard 

deviation for the feature). Then features were used as 

input features to the SVM model, and an output 

representing the OSAS types (-1 = OSAS-, +1=  OSAS+) 

for learning the complex relationship of the HRV and 

EDR patterns with the potential of OSAS. All SVM 

architectures were trained and tested on the MATLAB 

SVM toolbox [10]. SVM is an approximate 

implementation of the method of “structural risk 

minimization” aiming to attain low probability of 

generalization error and finds  the optimal separating 

hyperplane (OSH) by maximizing the margin between 

the classes [8]. Regularization parameter (‘C’) determines 

the trade off between the maximum margin and minimum 

classification error.   SVM first transforms input data into 

a higher dimensional space by means of a kernel function 

and then constructs a linear (OSH) between the two 

classes in the transformed space. Those data vectors 

nearest to the constructed line in the transformed space 

are called the support vectors (SV). An overview of SVM 

pattern recognition can be found in [8,10]. 

 In this study, we experimented with three kernels as 

follows. 1) Linear kernel, xxxx jijiK .),( =  
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3. Results and discussion 

 

Although enhancement of the coefficients for the 

levels 256 to 2 in the OSAS+ subject (Fig 1) can be 

visually noted, compared with the OSAS- subject, 

variances of the coefficients at  levels 2048, 512, 256, 32 

and 16 are significantly different (student t test; p<0.001; 

Table 1) between the two groups. On the other hand, 

variance of the coefficient level 2 of EDR signals (Fig. 1)  

was found to be significantly different between two  
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  (A)    (B) 

Figure 1.  Wavelet decomposition of heart rate variability 

(HRV) and ECG derived respiration (EDR) signals into 

fourteen levels for A) an OSAS- (file c02; apnea period 1 

min; AHI=0.12) subject and B) an OSAS+  (file a19; 

apnea period 204 min; AHI=24.43) subject during 32768 

samples 

groups (p<0.001, Table 1). Since the changes in EDR are 

due to the movement of the chest electrodes during 
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respiration, the sleeping position of the subject  have 

influenced on the EDR signals (Fig. 1 bottom panel). 

In order to provide the relative importance of features, 

receiver-operating curve (ROC) analysis was used. ROC 

curves were built separately for each feature and areas 

under all ROC curves were calculated and summarized in 

Table 1. The single best HRV feature was found to be 

HRVwv32 (ROCarea=0.99, p<0.01) and the best EDR 

feature was EDRWv2 (ROCarea=0.77, p<0.01). 

HRVwv32 corresponds to LF component (0.0625Hz) 

indicating apnea specific cyclic oscillation pattern of 

heart rate rhythm. EDRwv2  corresponds to HF 

components caused by respiration.  

Considering 14 HRV, 14 EDR and 28 combined 

(HRV+EDR) features as input of SVM, classification 

performance was separately tested  in ROC curves built 

for polynomial (d=3;C=1) kernel. Combined 

(HRV+EDR) features showed overall better performance 

(ROCarea=0.90)  compared to individual feature types 

(ROCarea= 0.87 for HRV and 0.50 for EDR features). 

A leave-one-out cross-validation scheme was adopted 

to evaluate the generalization ability of the classifier. 

Using Polynomial (d=3;C=1), RBF (j=1.0; ;C=1) and 

linear kernels classification accuracy plotted as a function 

of features selected by (hill-climbing) feature selection 

algorithm [9] was presented in Fig. 2. The first best 

subset of all features selected by the algorithm to achieve 

maximum accuracy (96.67%) was found to be 

{10,28,12,9,20} using polynomial kernel. Performance 

remained unchanged for adding features 13,14 and 26. 

When linear kernel was used, the first best subset was 

found to be {10,5,9,21} and  addition of feature 12,28 

and 13 did not alter the classification performance 

(accuracy=96.67%). Overall, it emphasizes that  classifier 

was able to discriminate well when trained with a subset 

comprising a few good features. Compared to 

performances of RBF kernel, linear and polynomial 

kernel performed better on learning set. Kernel parameter 

(d) was varied from 1 to 20 to generate models on the 

basis of the highest accuracy on the validation set is 

taken. Overall performance of the classifier was found to 

be highest (96.67%) at d=3.  

Results of independent test on classification 

performance (overall accuracy, sensitivity and 

specificity) of  the SVM classifier as a function  of 

number of HRV and EDR features showed  that 100% 

accuracy was obtained using polynomial kernel (d=3 and 

C=0.1, 1, 10) with four subsets of features [{10, 28, 12, 9, 

20}, {10, 28, 12, 9, 20, 13},{10, 28, 12, 9, 20, 13, 

14},{10, 28, 12, 9, 20, 13, 14, 26}]. However, linear 

kernel performed the same accuracy when only two 

subsets of features with C=10.0 [{10, 5, 9, 21, 12, 28}, 

{10, 5, 9, 21, 12, 28, 13}] were used.   

Besides the recognition of OSAS types (+/-), it was 

interesting to look at the influence of observations from 

the available samples on the probability of being OSAS+. 

In order to estimate the relative severity of apnoea for 

each individual of the test sets (35 records), the posterior 

probabilities of SVM classifier outputs were calculated 

using the method described by Platt [12].  The posterior 

probabilities (shown in Fig. 3) can provide an estimate of 

the severity of apnoea (0 indicates no apnoea whereas a 

value close to 1 indicates severely apnoea).Within 35 

subjects’ sample, threshold probability level was set at 

0.5.  Out of 5 borderline subjects, 3 subjects were in the 

range of probability 0.50~0.55. However, 2 subjects were 

found to be equal or above the 0.70 probability.  

 

Table 1.  p  value and area under ROC curves of  features 

extracted from wavelet analyses of HRV signals and 

EDR signals. * indicates the significance at p<0.01. 

 

Feature 

No. 
Feature p value ROC Area

1 HRVwv16384 0.3620 0.62 

2 HRVwv8192 0.6779 0.64 

3 HRVwv4096 0.0617 0.77 

4 HRVwv2048 0.0003* 0.75 

5 HRVwv1024 0.0126 0.79 

6 HRVwv512 0.0027* 0.90 

7 HRVwv256 0.0026* 0.89 

8 HRVwv128 0.0914 0.81 

9 HRVwv64 0.3340 0.53 

10 HRVwv32 0.0013* 0.99 

11 HRVwv16 0.0006* 0.94 

12 HRVwv8 0.1970 0.76 

13 HRVwv4 0.1250 0.81 

14 HRVwv2 0.1623 0.51 

15 EDRwv16384 0.2775 0.54 

16 EDRwv8192 0.2174 0.68 

17 EDRwv4096 0.4267 0.51 

18 EDRwv2048 0.3257 0.64 

19 EDRwv1024 0.7145 0.69 

20 EDRwv512 0.7795 0.58 

21 EDRwv256 0.9118 0.62 

22 EDRwv128 0.6646 0.51 

23 EDRwv64 0.4502 0.56 

24 EDRwv32 0.0436 0.66 

25 EDRwv16 0.2076 0.60 

26 EDRwv8 0.1005 0.67 

27 EDRwv4 0.0727 0.68 

28 EDRwv2 0.0049* 0.77 
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Figure 2. Dependence of % classification accuracy for 

learning set on the number of features selected by “hill-

climbing” feature selection Best classification 

performance (shown by arrow) was obtained using 

selected subsets of HRV +EDR features.  
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Figure 3. Posterior probability estimate 

P(y=OSAS+|f(x)), for test subjects with OSAS+ (1-20), 

OSAS- (21-30) and borderline subjects (31-35), 

calculated from SVM output values for each class.  

 

4. Conclusions 

These results suggest superior performance of SVM in 

OSAS recognition based on HRV and EDR features of 

ECG, and  demonstrate considerable potential in applying 

SVM in ECG based screening device that can aid sleep 

specialist in the initial assessment of patients with 

suspected OSAS. 
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