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Abstract 

A method is presented for the detection of ventricular 

fibrillation using binary sequences derived from the 

surface electrocardiogram. The binary sequences are 

used to obtain threshold crossing interval and Lempel-

Ziv complexity measurements which together form the 

inputs to a neural network classifier. It is shown that the 

method outperforms the sequential hypothesis testing of 

either measurement on the MIT, AHA and CU databases. 

 

1. Introduction 

The detection of ventricular fibrillation (VF) by 

sequential hypothesis testing of measurements taken from 

the surface electrocardiogram (ECG) has been reported in 

several papers [1-7]. Two time-domain measurements 

which demonstrate some utility for this purpose are the 

threshold crossing interval (TCI) and the normalised 

complexity of the ECG as quantified using the Lempel-

Ziv algorithm. Common to both these measurements is an 

initial conversion of the ECG to a binary sequence, and 

the published results for sequential hypothesis testing of 

either measurement show good performance on small, 

well-defined training and tests sets. However, the 

ANSI/AAMI standards EC38:1998 and EC57:1998 [8,9] 

require VF detection algorithms to be tested on three 

standard databases, namely the MIT arrhythmia database, 

the AHA database for evaluation of ventricular 

arrhythmia detectors, and the Creighton University (CU) 

ventricular tachyarrhythmia database. This paper presents 

results for sequential hypothesis testing of TCI or 

normalised complexity measurements on these databases. 

The results reveal unacceptable numbers of false positive 

and false negative detections. To address this the VF 

detection problem is reformulated in terms of the well-

known pattern recognition paradigm of feature extraction 

and classification. It is then shown that using both TCI 

and complexity measurements as input features to an 

artificial neural network (ANN) classifier outperforms the 

sequential hypothesis testing of either TCI or normalised 

complexity measurements.  

2. Methods 

To convert the ECG to a binary sequence the ECG is 
first divided into fixed-length segments of n samples, 
x1,x2,…,xn, and the DC offset is subtracted from the 
samples in each segment: 
 

1 n 

xi = xi – n
 ∑

i=1

xi (1)

 
Each zero-mean sample, x1,x2,…,xn, is then compared 

against an amplitude threshold, Td, to generate a binary 
sequence, s1,s2,…,sn: 
 

0  if xi < Td si = {
1  otherwise 

(2)

 
For a segment length of one second the threshold 

crossing interval (TCI) is calculated as follows: 
 

1000 
TCI  =

N – 1 + t2 / (t1+t2) + t3 / (t3+t4) 
 ms (3)

 
where N is the number of pulses in s1,s2,…,sn; t1 is the 

time from the last threshold crossing in the previous 

segment to the start of s1,s2,…,sn; t2 is the time from the 

start of s1,s2,…,sn to the first threshold crossing in 

s1,s2,…,sn; t3 is the time from the last threshold crossing 

in s1,s2,…,sn to the end of s1,s2,…,sn; and t4 is the time 

from the end of s1,s2,…,sn to the first threshold crossing 

in the next segment. N and t1–t4 are illustrated in Figure 1. 

Figure 1. TCI calculation. 
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The complexity of s1,s2,…,sn is denoted by cn and 
calculated using the Lempel-Ziv algorithm [10]. cn is 
usually expressed in its normalised form, Cn, where 0 ≤ 
Cn ≤ 1, since Cn is largely independent of n for n > 1000: 
 
Cn = cn log 2 n / n (4)

 
The amplitude threshold, Td, in (2) is re-calculated for 

each new segment, x1,x2,…,xn, according to whether TCI 
or Cn is being measured. If xmax and xmin are the maxi-
mum and minimum amplitude values in x1,x2,…,xn then: 
 
Td =  0.2 xmax (5)

 
for TCI [1,2,3,6] and: 
 

0 if Pc + Nc < 0.4 n 
Td = { 

0.2xp otherwise 
(6)

 
for Cn [4,5,6,7], where Pc and Nc are the numbers of 
samples, x, in x1,x2,…,xn for which 0 < x < 0.1xmax and 
0.1xmin < x < 0 respectively, and xp = xmax if Pc < Nc or xp 
= xmin otherwise. Using (5) and (6) on a given segment of 
ECG yields different binary sequences for TCI and Cn. 

For TCI and/or Cn to be useful for VF detection there 
must be a measurable difference between the values 
obtained during VF compared to those obtained during 
non-VF. With this in mind the distributions of TCI and 
Cn values for various training sets of VF and non-VF data 
have been investigated in several papers [1-4,7]. The 
means, µ, and standard deviations, σ, of the Gaussian 
approximations to these distributions are reprinted in 
Table 1 for TCI and in Table 2 for Cn with n ≥ 1000. 
 

Table 1. Published values of µ and σ, in ms, for TCI. 

n µVF σVF µnon-VF σnon-VF Ref. 

200 105 6.5 220 16.5 [1] 
250 158 16 350 75 [2] 
250 180 47 264 156 [2] 
n/k 210 62 280 62 [3] 

 
Table 2. Published values of µ and σ for Cn. 

n µVF σVF µnon-VF σnon-VF Ref. 

1000 0.595356 0.043018 0.315968 0.077467 [4] 
1200 0.589194 0.034976 0.321613 0.085398 [4] 
1400 0.587551 0.033346 0.305053 0.076662 [4] 
1600 0.587520 0.029779 0.299566 0.070999 [4] 
1250 0.236900 0.036900 0.164100 0.027300 [7] 

 
To classify segments of ECG as VF or non-VF via 

sequential hypothesis testing of TCI or Cn measurements, 
the sequential hypothesis testing algorithm must first be 
told what the distributions of TCI or Cn values during VF 
and non-VF look like. This is done by setting values of 
µVF, σVF, µ non-VF and σnon-VF such as those in Tables 1 and 
2 on the algorithm, and comparing these two distributions 

against the TCI or Cn measurements obtained from the 
segments of ECG to be classified. Specifically, if 
X1,X2,...,Xm is the series of TCI or Cn measurements 
obtained from m consecutive segments of ECG then 
sequential hypothesis testing proceeds by evaluating the 
following log-likelihood function, starting with m=1: 
 

1 m 1 m 

Fm =
σ

2
VF
∑

i=1
( Xi – µ VF )2 – 

σ
2
non-VF 

∑ 
i=1 

( Xi – µ non-VF )2

(7)
Fm is then compared against two decision thresholds: 
 
Fm ≤ 2 ln[ß/(1 – α)] + 2m ln[σnon-VF / σVF] (8)

 
Fm ≥ 2 ln[(1 – ß)/α] + 2m ln[σnon-VF / σVF] (9)

 
If (8) is satisfied then the VF hypothesis is accepted 

and the segment of ECG corresponding to X1,X2,…,Xm is 
classified as VF. Conversely if (9) is satisfied the non-VF 
hypothesis is accepted and the segment of ECG is 
classified as non-VF. However, if neither (8) nor (9) is 
satisfied then the test is inconclusive. In this case Xm+1 is 
measured and X1,X2,...,Xm,Xm+1 is used to evaluate Fm+1 
which in turn is compared against (8) and (9). This is 
repeated for Fm+2, Fm+3, etc., until one of the hypotheses is 
accepted or the number of steps, m, reaches a predefined 
upper limit (a lower limit can also be placed on m to 
avoid reaching a decision ‘too hastily’). Either way, 
sequential hypothesis testing restarts on the next segment 
of ECG at m=1. The values of α and ß in (8) and (9) are 
error probabilities. Specifically, α is the probability of 
rejecting the VF hypothesis when it is true (false 
negative) and ß is the probability of rejecting the non-VF 
hypothesis when it is true (false positive). This offers a 
trade-off between the probability of error, α, ß, and the 
number of steps, m, required to reach a decision, with 
larger values of α and ß requiring fewer steps, m. The 
derivation of (7)–(9) is given elsewhere [1,3]. 

The sequential hypothesis testing procedure is illust-
rated in Figure 2. The first segment of ECG is used to 
obtain a measurement, X1, which in turn is used to 
calculate F1. However, it can be seen that F1 lies between 
the two decision thresholds, so no decision is made and 
the next segment of ECG is used to obtain a second 
measurement, X2. X1 and X2 are used to calculate F2 but 
this also lies between the decision thresholds, so again no 
decision is made and the third segment of ECG is used to 
obtain another measurement, X3. X1, X2 and X3 are used 
to calculate F3, which lies above the upper decision 
threshold, whereupon the segment of ECG corresponding 
to X1, X2 and X3 is classified as non-VF. 

Results for VF detection using sequential hypothesis 
testing of TCI or Cn measurements have been reported in 
several of the papers cited earlier [1-3,7]. These results 
look promising but should be regarded with caution for 
two reasons. First, the test sets used to generate these 
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results are typically small and consist of short, isolated 
segments of carefully selected VF and non-VF data. Such 
test sets do not reflect the clinical situation where the 
ECG is recorded continuously and for long periods of 
time, and is frequently corrupted by noise. Secondly, in 
most cases the test set is not independent of the training 
set since the data used to test the sequential hypothesis 
testing algorithm are also used to determine the values of 
µVF, σVF, µnon-VF and σnon-VF used by the algorithm. For 
these reasons the results give little if any indication of the 
expected performance if the method were to be deployed 
clinically. Furthermore, the use of sequential hypothesis 
testing itself has two drawbacks. The first is the reliance 
on a single measurement, TCI or Cn, to discriminate VF 
from non-VF rather than multiple independent, or quasi-
independent, measurements. The second is the reliance 
on a priori Gaussian approximations for VF and non-VF, 
and in particular the specific values of µVF, σVF, µnon-VF 
and σnon-VF used for sequential hypothesis testing. It can 
be seen in Tables 1 and 2 that each of these values can 
differ significantly for different training sets, although the 
reasons for this are currently not understood. 

To overcome these limitations a new method was 
developed that uses TCI and Cn measurements as inputs 
to a multilayer perceptron (MLP) artificial neural net-
work. The use of neural networks for VF detection has 
been reported previously [11] but did not include an 
assessment against the MIT, AHA and CU databases. 

The MLP was trained so that TCI and Cn measure-
ments presented to its inputs propagate through the MLP 
to provide at its output an estimate of the probability that 
the segment of ECG from which these measurements are 
taken is VF. This probability is denoted by p(VF|TCI,Cn) 
where 0 ≤ p(VF|TCI,Cn) ≤ 1; hence if p(VF|TCI,Cn) > 0.5 
the segment of ECG is classifed as VF, otherwise it is 
classifed as non-VF. The method also uses an improved 
ECG to binary sequence converter that takes into account 
the polarity of the ECG and generates a single binary 
sequence from which both TCI and Cn can be measured: 
 

0.2 xmax  if xmax > xmin Td = { 
0.2 xmin  otherwise 

(10)

 

1  if xi ≥ Td ≥ 0 or xi < Td < 0 
si  = {

0  otherwise 
(11)

 
The use of (10) and (11) is in preference to (5) and (6) 

since the latter yield different values of Td, and hence 
different binary sequences, for TCI and Cn. Finally, a 
caveat arising from the scarcity of VF data is that the 
MLP’s training set had to be taken from the AHA and 
CU databases; therefore the test set is not entirely 
independent since 3.5% of it is also in the training set. 

The MLP was tested on the MIT, AHA and CU data-
bases and its performance compared with sequential 
hypothesis testing of TCI or Cn measurements on the 
same databases. All methods were tested in the following 
way. The ECG was resampled to 250Hz and bandpass 
filtered using the Medilog ADAPT analysis algorithm 
[12,13]. VF detection was then performed on each 
channel separately using TCI and/or Cn measurements in 
conjunction with (a) sequential hypothesis testing or (b) 
the MLP classifier. For each method the results from all 
channels were combined using a logical AND function. 
This ensures that VF is signalled only where there is 
temporal overlap across all channels of the VF detections 
on each individual channel; elsewhere the ECG is 
classified as non-VF. The duration of an episode of VF 
extends from the time at which VF is first detected on all 
channels to the subsequent time at which non-VF is first 
detected on any channel. Finally, episodes of VF that did 
not meet a minimum duration requirement of 3 seconds 
were deleted, and those that did not meet a minimum 
separation requirement of 3 seconds were merged into a 
single episode. The values of α and ß used for sequential 
hypothesis testing were 0.00024 and 0.00089 respectively 
[1,4]. If no decision was reached after m=10 the segment 
of ECG corresponding to X1,X2,...,X10 was assumed to be 
the same as the segment preceding it and classified as VF 
or non-VF accordingly. Since the ECGs were resampled 
to 250Hz only those values of µVF, σVF, µnon-VF and σnon-VF 
in Tables 1 and 2 obtained using a value of n that is an 
integer multiple of 250 were selected. The following five 
methods were therefore compared: 
 
A : Sequential hypothesis testing of TCI measurements 
      using the values in row 2 of Table 1. 

B : Sequential hypothesis testing of TCI measurements 
      using the values in row 3 of Table 1. 

C : Sequential hypothesis testing of C1000 measurements 
      using the values in row 1 of Table 2. 

D : Sequential hypothesis testing of C1250 measurements 
      using the values in row 5 of Table 2. 

E : Sequential hypothesis testing of C1250 measurements 
      using the values in row 5 of Table 2. 
 

For all methods both TCI and Cn were measured at one 

second intervals, which means that adjacent Cn measure-

ments correspond to segments of ECG that overlap by 3 

Figure 2. Fm versus m for sequential hypothesis testing.

F1 

F2 

F3 
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seconds for n=1000 or 4 seconds for n=1250 (adjacent 

TCI measurements do not overlap). 

 

3. Results 

The AHA database comprises 80 two-channel ECGs 
of 35 minutes duration each. It contains 10 episodes of 
VF (excluding a one-second episode in record 8206) 
ranging in duration from 67 seconds to 23 minutes 36 
seconds. All 10 episodes of VF occur in records 8201–
8210. The MIT database comprises 48 two-channel ECGs 
of 30 minutes duration each. It contains no episodes of 
VF but does contain 6 episodes of ventricular flutter in 
record 207. The CU database comprises 35 single-
channel ECGs of 8¾ minutes duration each. It contains 
47 episodes of VF ranging in duration from 12 seconds to 
5 minutes 26 seconds. ‘Hands off' testing was performed 
for each of the methods A–E in the previous section 
according to ANSI/AAMI EC38:1998 and EC57:1998 
[8,9] and the results are presented in Table 3. The 
columns in this table list the numbers of true positive 
(TP), false negative (FN) and false positive (FP) VF 
detections along with the corresponding percentages for 
sensitivity (E Se) and positive predictivity (E +P). The 
results reveal that using both TCI and Cn measurements 
as inputs to an MLP classifier outperforms the sequential 
hypothesis testing of either measurement separately. 

 

Table 3. Results for sequential hypothesis testing (SHT) v 

an MLP on the combined AHA, MIT and CU databases. 

 TP FN FP E Se E +P

A: TCI → SHT 16 47 76 25 17 

B: TCI → SHT 23 40 40 36 36 

C: C1000 → SHT 0 63 0 0 – 

D: C1250 → SHT 43 20 624 68 6 

E: TCI+C1000 → MLP 47 16 57 75 45 

 

4. Discussion and conclusions 

A new VF detection algorithm has been presented that 

uses an MLP neural network to classify segments of ECG 

as VF or non-VF. The algorithm uses a new ECG to 

binary sequence converter that takes into account the 

polarity of the ECG and generates a single binary 

sequence from which both TCI and Cn can be measured. 

These TCI and Cn measurements form the inputs to the 

MLP. The results show an improvement on previous 

methods but still fall short of the accuracy required for 

clinical use. To address this two further improvements 

are being investigated. These are the use of frequency-

domain measurements [14,15] as additional MLP inputs 

alongside the TCI and Cn time-domain measurements, 

and sequential hypothesis testing of the MLP output 

values, thereby using the MLP for data fusion rather than 

for classification. For this it will first need to be establish-

ed that the MLP output produces values for σVF, µnon-VF 

and σnon-VF that are independent of the MLP’s training set. 
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