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Abstract 

Anaerobic threshold is one of the most important 

parameters used in exercise physiology. It signals a 

power value during dynamic physical exercise where 

anaerobic energy formation for muscle contraction is 

added to the aerobic counterpart-what allows the 

quantification of aerobic capacity. In this study, we 

describe the development and validation of an artificial 

neural network model to identify anaerobic threshold 

based on electrocardiogram R-R interval time series 

collected during physical exercise tests applied in healthy 

subjects. The results showed that the artificial neural 

network had its best performance in gradual increasing 

power. Scatter plot and ROC curve was constructed 

showing high correlation (r = 0.93), and good accuracy 

(area under the ROC curve = 0.9851) when compared to 

autoregressive integrated moving average (ARIMA) 

statistical method.   

 

1. Introduction 

This paper presents a new non-invasive method 

to identify a very important physiologic parameter, the 

anaerobic threshold, which allows quantifying oxygen 

transport during an exercise, and, therefore, the exercise 

evolution with respect to duration and intensity [1]. R-R 

intervals time series were acquired from 

electrocardiograms and, then, the series were analyzed 

using an artificial neural network for such task through 

personal computers. Artificial neural networks have been 

used as a decision support system [2] in the clinical 

environments. The heart rate variability has been used as 

a parameter for non-invasive system development aimed 

to solve problems of pattern recognition in medicine [3]. 

The physical exercise, as a spontaneous activity 

of daily life, involves complex physiological processes, 

which nowadays are not completely known. Most 

exercises result on movements of body segments and 

living organisms, related to different degrees of force 

generation to guarantee the survival of such organism in 

the environments. The muscle contraction involves the 

transformation of chemical energy stored as a molecule, 

adenosine tri-phosphate (ATP), into mechanical energy 

plus heat. In order to maintain this energy transformation 

for several seconds, or to be repeated for short intervals, 

the whole physiological system must be activated [4]. 

There are several kinds of muscle contraction, 

and therefore, different kinds of exercises. It is important 

to have in mind the differences between isometric and 

isotonic effort. The first one, also called static effort, does 

not result in changes to muscle length, what occurs in 

situations like weight lifting. The second one, also called 

dynamic effort, is followed by movement of muscular 

segment, and thus, by skeletal displacement. The 

nervous, cardiovascular, respiratory and muscular 

systems can be considered subsystems that transport the 

oxygen from the air into the muscular mitochondria and, 

on the other hand, the carbon dioxide, produced by 

aerobic metabolism, out of muscular cells. Carbon 

dioxide is the final result of the aerobic metabolism that 

constitutes in the most efficient production of energy 

process.  

The magnitude of the cardiorespiratory variables 

induced by the exercise depends on many factors. When a 

person makes exercise in a cycloergometer, with the 

power increasing gradually, the consumption of oxygen 

(VO2) raises in linear way, until the point where 

additions of power levels do not modify the VO2; in 

these conditions, the VO2 reached its maximum value. 

The VO2 maximum is one of the most reliable 

parameters to measure the maximum magnitude of the 

oxygen transport involved in the chain of the 

physiological processes previously mentioned. In healthy 

individuals and patients with cardiorespiratoy diseases 

this point is rarely reached, because people interrupt the 
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exercise before this limit, due to the discomfort 

manifested as fatigue or muscular pain. In these 

circumstances, it is possible to get only VO2 peak, which 

always corresponding to a lower value compared to VO2 

maximum. 

Due to these facts, the VO2 peak, generally, 

depends much more on the perception intensity (fatigue, 

muscles pain and air lack) of the effort magnitude, at a 

defined intensity of applied power, than on the saturation 

of the physiological systems. Therefore, it cannot consist 

in an objective measure of the transport of O2 in the 

dynamic exercise. The Anaerobic Threshold (AT), due to 

the combination of some metabolic and neuro-humoral 

processes, still not totally known, is the starting point of 

the rise of the blood latic acid, which is related to the 

unbalance between its muscular production and its 

metabolization processes by the liver and other tissues. 

There is a high level correlation between the maximum 

VO2 and the AT, which allows estimating maximum 

VO2 from the AT. From metabolic and neuro-humoral 

point of view, it is worth to state that the AT has a great 

physiological importance, being the limit between two 

different functional states. The study of the transport of 

O2 in healthy individuals and patients with 

cardiorespiratory diseases had great advances in the last 

two decades, thanks to the possibility to measure the AT 

from respiratory methods, using automatic and non-

invasive procedures. 

Some non-invasive methods and protocols have 

been used with the purpose of measuring the AT. The 

most commonly used methods nowadays that satisfy the 

required sensitivity and accuracy are based on the change 

in the pattern of respiratory and metabolic responses in 

AT. In such studies, it is mandatory to use equipment that 

allows the measurement of the mentioned variables at 

each breath, or the average value for each 15 seconds. 

This equipment is expensive, which limits its use to few 

centers. In exercise studies, using discontinuous step test, 

it has been shown that below AT a reduction of 

parasympathetic (vagal) efferent occurred in the sinusal 

node, what causes a fast rise in heart rate, with a full 

stabilization of it around one minute of the effort. Besides 

the vagal system participation, at powers above the AT, 

stimulation of sympathetic efferent occurred proportional 

to the intensity of the power applied, causing a slow rise 

in the in HR, starting at the first effort minute until the 

end of the effort; in these conditions there is no 

stabilization of this variable values during the physical 

effort.  

In this work, we use the artificial neural network 

technique, which is an adaptive non-specialist system, 

already used by other authors for clinical foreseeing for a 

particular disease [5, 6]   or for various diseases. In this 

context, this work was developed aimed to identify the 

anaerobic threshold in healthy subjects.  

The experimental data were collected with two 

protocols: the subjects were submitted to a physical effort 

by a cycloergometer, where the load varied in alternate 

way in first protocol, and progressively in a second one. 

The present work has the aim to develop an artificial 

neural network model to classify R-R time series 

according to anaerobic threshold from healthy subjects in 

dynamic effort test, verifying the feasibility of such 

system as a decision support. The system validation is 

accomplished with the studied data set collected in 

alternating effort protocol that showed a better 

generalization performance by the neural network in 

finding the anaerobic threshold. 

  

2. Methods 

It has been chosen fourteen input variables to the 

proposed neural network. The first three parameters 

calculated in all the series were first order statistical 

estimations: the RR time series mean value, the standard 

deviation and the root mean square of the side difference 

(RMSSD). All written in equations 1, 2 and 3, 

respectively: 
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In addition to these three calculated parameters, 

it was also submitted to the net the respective power of 

the bicycle in each RR time series. The ten order auto-

regressive model for each series was calculated and 

added to these parameters as input of the net, totalizing 

fourteen input parameters. to the neural net. For training 

and model output testing, the neural net output was 

compared to the results obtained using ARIMA method 

for the same data set.  

The pattern classification in this study was done 

with neural nets with one and two intermediate layers, 

one input layer, and one output layer. The first layer was 

constituted of fourteen input parameters. Architectures 
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with an intermediate layer of 13, 15, 17, 19, 21, 23, 25, 

27, 29 and 31 neurons were implemented and analyzed, 

as well as a net with two intermediate layers with 17 and 

19 neurons in each one of them. It was chosen, in the 

present study, a hyperbolic tangent as transfer function 

for all the neurons of artificial neural network.  

The original data set included more than 300 

series: 147 of gradual increasing powers and 153 of 

alternating powers. For each studied protocol, the series 

were divided in three subgroups: training, validation and 

test - where 80% was reserved for training phase, 10% 

for the validation phase, and 10% for the test phase. The 

data from these subgroups were chosen randomly to 

improve the performance. Two algorithms were used for 

training the nets: 1) Rprop, backpropagation with 

adaptative learning rate; and 2) backpropagation with 

momentum. The parameters for every algorithm were: 

1.0e-10 for minimum performance gradient; 0.01 for 

learning rate and a momentum rate of 0.9. The training 

was repeated five times, for each selected network 

architecture, with random initial weights, generating five 

distinct parts of the training, validation and test sets to 

attenuate the weights initializing effect, which may 

results on net stabilization in local minimums and, also 

provide a more accurate evaluation of the net 

performance.  

 

3. Results 

The chosen model using the neural network technique 

has advantages from other mathematical models due to its 

simplicity and required computation time in calculations. 

The matrices of weights and biases of the best net found 

for each tested set had been stored after the training. The 

model considered for Neural Nets is shown in figure 1. 

The best performance neural net architecture was with 14 

neurons in input layer, a neuron in the output layer, and 

an intermediate layer with 29 neurons. All the neurons of 

a layer were connected to all the neurons of the following 

layer. The transfer function for all the neurons of the net 

was set to hyperbolic tangent. The results of performance 

from three different experiments of the net training with 

gradual discontinuous powers are shown in Figures 2 and 

3. The correlation coefficients of the sets of training, 

validation and test were 0.896, 0.854 and 0.716, 

respectively. The accuracy of the net was measured by 

the area under the ROC curve plotted for the best 

performance architecture and is shown in Figure 4. The 

experimental data was fitted to a exponential curve 

shown in equation 4, with the error less than 7.4x10-2: 
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Fig 1: The neural network model 
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Fig 2: Linear regression of the real results against 

desired results for the training set of discontinuous 

increasing power protocol.  
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Fig 3: Linear regression of the real results against 

desired results for the validation set of discontinuous 

increasing power protocol. 
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Fig 4: The ROC curve plotted for the best 

performance architecture. 

 

The area under the ROC curve for alternate power is 

0.9851. The training, validation and test errors for the 

best architecture found in the training were 14.39 %, 0 % 

and 25.60%, respectively. The standard deviation for the 

sets of training, validation and test were 0.1959, 0 and 

0.2560 respectively. These low deviation values most 

likely indicate that the net has found the global minimum 

in weights space during training.  

 

4. Discussion and conclusions 

The anaerobic threshold can be measured directly, 

with invasive procedures but we have been looking for a 

non-invasive way of doing the task. A first trial was made 

using an Auto Regressive Integrated Moving Average 

Model (ARIMA) [7-9], followed by a second trial that 

used the Kolmogorov-Sinai entropy (K-S) [10, 12] and a 

third one that used the decorrelation time lag [13].   

Our results have shown a reasonable performance of 

the selected neural network for detecting anaerobic 

threshold during exercise for data coming obtained from 

gradual increasing power protocol. Since the area under 

curve ROC represents 98.51% of the total area, we can 

say that the Anaerobic Threshold can be identified using 

an Artificial Neural Network technique for this protocol, 

due to the little amount of involved volunteers in the tests 

the result can be considered a good one (future works 

should consider more individuals). The high accuracy 

level, represented by the area under the curve is 

encouraging. Compared to ARIMA method, which needs 

statistical specialist monitoring, this method has the 

advantage of being automated, implying a higher 

independence of the physician or another health 

professional. Another advantage for the use of Neural 

Nets is the reduced time of necessary computation 

compared to methods of nonlinear analysis. 
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