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Abstract

We compared the time evolution of a parametric system

identification model of cardiotocography (CTG) during the

last three hours of labour and delivery. The models are the

impulse response functions (IRFs) of the system relating

the uterine pressure (UP) and fetal heart rate (FHR). We

used surrogate data to assess the likelihood that the model

successfully identified system dynamics. We then investi-

gated the ability of the models to indicate fetal distress by

comparing normal and hypoxic cases.

For pathological and normal fetuses, model output stan-

dard deviation σŷ , first IRF minimum time Tmin and vari-

ance accounted for (VAF) were discriminating in the first

two hours. In the final hour however, only Tmin remained

discriminating. For intermediate and normal cases, σŷ

was always discriminating while Tmin discriminated in the

final hour only. These results suggest that detecting some

pathological and intermediate cases before injury occurs

may be possible; this would be very useful clinically.

1. Introduction

The difficulties of visual cardiotocography (CTG) inter-

pretation have been discussed in many previous clinical

and technical studies: the sensitivity is clinically useful but

the low specificity can increase cesarean section rates[1].

We would like to use automated methods to model the

maternal-fetal interaction available via CTG and eventu-

ally use these models to improve the assessment of fetal

tolerance to labour.

We examine the interactions between the CTG signal

pair of uterine pressure (UP) and FHR, which can be

viewed from the perspective of maternal stimulus and fetal

response. In a previous study [2] we have done this system

identification using a low-order parametric model.

In this study, we examined the use of surrogate data to

discriminate spurious models from those identifying true

system dynamics. We then assessed the ability of the mod-

els classified as ‘significant’ to discriminate hypoxic and

normal fetuses over the last three hours of labour.

2. Methods

2.1. Data

The database consisted of 717 intrapartum CTG trac-

ings for pregnancies having a birth gestational age greater

than 36 weeks and having no known genetic malforma-

tions. The FHR was acquired at fS = 4Hz while the UP

was acquired at 1Hz and up-sampled to 4Hz. Only records

with at least 3 hours of recording were considered. The ex-

amples were labelled by outcome according to their arterial

umbilical-cord base deficit (BD) and neonatal indications

of severe neurological impairment. Base deficit is con-

sidered an important marker for hypoxia leading to intra-

partum asphyxia with metabolic acidosis [3]. A minority

of the cases were severely pathological (58 ‘A’: BD ≥ 12

mmol/L, compromised neurological function), while the

other were either intermediate (425 ‘C’: BD ≥ 8 mmol/L)

or normal (234 ‘D’: BD < 8 mmol/L). The letter labels ‘A’,

‘C’, and ‘D’ are our own internal labelling scheme.

2.2. System identification

As described previously [2], we perform UP-FHR sys-

tem identification by fitting a delayed second-order dy-

namic model to the singular value decomposition (SVD)

of the the nonparametric impulse response function (IRF).

We generate models over 20-minute epochs having 50%

overlap.
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2.3. Model significance using surrogates

Safeguards are employed during system identification to

reduce overfitting over the short 20-min epoch. Maintain-

ing the epoch-to-lag ratio N:M as high as possible (10:1)

using the shortest possible input lag M promotes better

signal-to-noise ratio (SNR) in the non-parametric IRF lin-

ear regression. The problem of narrow-bandwidth input

UP is mitigated by the SVD step. Finally, the order search

of the parametric modelling reduces the order below that

overestimated by MDL [2].

Nevertheless, whether true system dynamics have been

identified by the modelling remains questionable. Often

the model output VAF is quite low (i.e. <20%, see figure

2), which can be interpreted in one of two ways. The model

could include true dynamics but system non-linearities or

large disturbances in the output from other sources (e.g. in-

trinsic heart-rate variability) remain unaccounted for. Al-

ternatively, there is no fetal sensitivity to uterine activity

and the model should be discarded.

To overcome this ambiguity, we compared the system

identification at the linear regression step for the mea-

sured FHR with that from multiple FHR surrogates. The

surrogates were generated using the amplitude adjusted

Fourier transform (AAFT) algorithm [4], which preserves

the power spectrum (or equivalently, autocorrelation) and

the amplitude probability distribution of the original FHR.

While we could have alternatively generated UP surro-

gates, we processed FHR due to its richer spectral content.

Equivalent synthesis of such surrogates is linearly filtered

Gaussian noise followed by a static nonlinearity.

Comparing the VAF metric with the original FHR to the

ensemble of VAFs associated with the surrogates allows

us to assess the significance of the model. For arbitrary

metric distributions, [4, 5] suggest a rank-order test where

α =
K

M+1
is the probability that by chance, the VAF of the

original FHR has the K-th largest VAF when compared to

M surrogate VAFs. Using this test, we assigned the level

of significance γ = 1−α to our models. To reduce compu-

tational requirements we generated M=20 surrogates, suf-

ficient to determine a significance level of 95%.

3. Results

Figure 1 plots the percentage of models retained using

two different filtering criteria: γ (top) and VAF (bottom).

At the 95% significance level, the γ filter retained 43.9% of

the models. At an equivalent acceptance rate, the simpler

VAF filter had a 23% threshold (dot-dashed lines).

Figure 2 confirms a trend towards greater γ with increas-

ing VAF, but models with low VAF and high γ were not

uncommon. Using the γ=95% threshold rejected 89.0%

of models with low VAF (<20, green region), 30% of in-

termediate VAF (orange region), and 3.0% of models with

high VAF (>40, red region). Example models from the

most extreme regions are shown in figures 4 and 5. In fig-

ure 4 both sensor disturbance and response nonlinearity

likely contributed to low VAF, yet the model with high γ

apparently identified the FHR response. This model would

be rejected using the VAF filtering scheme with equivalent

model retention. In figure 5, the FHR response to UP is

clear (note the IRF minimum at 60s, an estimate of time to

deceleration nadir), yet γ was low. Inspection of the surro-

gates FHRs indicated that the very dominating contraction

frequency permitted surrogates to be modelled well despite

their phase randomization. As indicated above, rejection

of these high VAF models was relatively infrequent.

The ability of select model parameters to distinguish

model classes are assessed by the hypothesis tests shown

in tables 1 and 2. We display only those parameters that

demonstrated the most discrimination, namely, σŷ (model

output standard deviation), Tmin (time to first IRF min-

imum) and the VAF. Asterisks indicate that the null hy-

pothesis can be rejected at the p <0.01 significance level.

For A-D comparison, in hours -3 and -2, all parameters

showed statistically significant differences from the null

hypothesis for all three tests. In hour -1, however, only

Tmin remained discriminating. For C-D comparison, the

σŷ was discriminating across all three hours while Tmin

was discriminating in the final hour only.

These model parameter differences are reflected in the

time plots of figure 3 over the last three hours (18 epochs).

The measured FHR standard deviation σy is also shown as

a reference for σŷ . The effect of the γ filter on these fea-

tures is shown in 3(a) and 3(b). It is most noteworthy that

the filtering enhanced the difference between the C and D

Tmin values in the final hour. C-D σŷ differences reduced

in the final hour as a result of the filter, likely indicating

that fewer Ds with low VAF were retained.
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Figure 1. Comparison of percentage of models retained

by thresholding γ (top) or VAF (bottom).

694



Hour t-Test RankSum K-S

-1 Tmin 9.42e-06* 9.38e-06* 6.34e-06*

-1 VAF 7.37e-02 1.43e-01 2.56e-02

-1 σŷ 3.29e-02 2.20e-01 3.26e-01

-2 Tmin 7.80e-04* 4.03e-04* 6.28e-06*

-2 VAF 5.12e-10* 5.13e-09* 1.58e-08*

-2 σŷ 5.18e-13* 7.04e-05* 1.34e-06*

-3 Tmin 1.58e-04* 4.29e-03* 3.30e-05*

-3 VAF 4.26e-06* 4.88e-05* 6.54e-05*

-3 σŷ 3.26e-06* 5.72e-04* 2.89e-04*

Table 1. Hypothesis tests: A vs. D.

Figure 2. γ vs. VAF. The mean (solid), 2 standard devia-

tions below the mean (dot-dashed) and minimum (dashed)

values are shown. Relative rejection rates indicated by

green (89.0%), orange (30.0%) and red (3.0%) areas.

4. Discussion and conclusions

While it would be possible to address model significance

with a fixed VAF threshold, our method is arguably prefer-

able because in each epoch it adapts to the input-output

interaction noise floor which is subject to varying distur-

bance energies from sensor artifact, system nonlinearities

and intrinsic heart rate variability.

In [5] a method is proposed to reduce periodicity arti-

facts in surrogates (responsible for the false rejection of

figure 5). We will investigate better surrogate algorithms.

The γ filter removed epochs that are likely to be uninfor-

mative for discrimination purposes. This accentuated Tmin

differences between intermediate ‘C’s and ‘D’s in the last

hour. We suspect that the A-D discrimination reduction in

last hour was due to reducing the already small numbers

of accepted ‘A’ epochs. Other features remained discrimi-
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Figure 3. Model parameters over last 3 hours before (a)

and after (b) γ filter. Time measured in epochs before de-

livery. Pathological ‘A’ (red), intermediate ‘C’ (blue) and

normal ‘D’ (black) cases plotted individually. Units are

seconds (Tmin) and beats per minute (σy and σŷ).

Hour t-Test RankSum K-S

-1 Tmin 3.08e-03* 2.17e-03* 1.91e-04*

-1 VAF 2.39e-01 3.05e-01 5.78e-01

-1 σŷ 5.24e-05* 4.43e-04* 8.07e-03*

-2 Tmin 3.43e-01 9.65e-01 2.00e-01

-2 VAF 1.72e-01 2.07e-01 1.75e-02

-2 σŷ 7.24e-08* 4.31e-05* 5.08e-06*

-3 Tmin 1.61e-01 4.03e-01 1.60e-01

-3 VAF 3.92e-03* 5.60e-03* 4.58e-02

-3 σŷ 1.63e-04* 5.03e-04* 5.05e-04*

Table 2. Hypothesis tests: C vs. D
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Figure 4. Histogram of surrogate (blue) and original (red)

VAFs for an accepted CTG with low VAF (19.7%). Epoch

residual, FHR, UP and IRF signals shown above.

nating for ‘A’s after γ filtering. We anticipate that the filter

will improve overall classification; it may also highlight

near-hypoxic ‘D’s with strong responses.
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