
Porting PHYLIP phylogenetic package
on the Desktop GRID platform

XtremWeb-CH

Nabil ABDENNADHERa, Regis BOESCHa
aUniversity of Applied Sciences, Western Switzerland

Abstract. This paper describes the parallelization (gridification) of the
phylogenetic package PHYLIP on a desktop GRID platform termed XtremWeb-
CH.
PHYLIP is a package of programs for inferring phylogenies (evolutionary trees). It
is the most widely-distributed phylogeny package. PHYLIP has been used to build
the largest number of published trees. It’s known that some modules of PHYLIP
are CPU time consuming; their sequential version can not be applied to a large
number of sequences.
XtremWeb-CH (XWCH) is a software system that makes it easier for scientists and
industrials to deploy and execute their parallel and distributed applications on a
public-resource computing infrastructure. Universities, research centres and private
companies can create their own XWCH platform while anonymous PC owners can
participate to these platforms. They can specify how and when their resources
could be used. The objective of XWCH is to develop a real High Performance
Peer-To-Peer platform with a distributed scheduling and communication system.
The main idea is to build a completely symmetric model where nodes can be
providers and consumers at the same time.
In this paper we describe the porting, deployment, and execution of some PHYLIP
modules on the XWCH platform. The parallelized version of PHYLIP is used to
generate evolutionary tree related to HIV viruses.

Keywords. Phylogeny, PHYLIP, Grid, XtremWeb-CH.

Introduction

It is commonly accepted that contemporary genes, genomes, and organisms evolved
from ancestors under the influence of natural selection. Consequently, the knowledge
of the evolutionary tree behind their origin is crucial for understanding these entities.
Knowledge about the relationships within gene families plays an important role in
understanding, for example, the origins of biochemical pathways, regulatory
mechanisms in cells as well as the development of complex systems. For example,
knowing relationships between viruses is central for understanding their ways of
infection and pathogenicity.

In a medical context, the generation of a life tree for a family of microbes is
particularly useful to trace the changes accumulated in their genomes. These changes
are due, inter-alia, to the "reaction" of viral strains to medical treatments.

In this context, computer applications dealing with the reconstruction of
evolutionary relationships of organisms, genes, or gene families have become basic

tools in many fields of research [1, 2, 3, 4]. These applications “reconstruct” the
pattern of events that have led to “the distribution and diversity of life”. These
relationships are extracted from comparing Desoxyribo Nucleic Acid (DNA)
sequences of species. An evolutionary tree, termed life tree, is then built to show
relationship among species. This tree shows the chronological succession of new
species (and/or new characters) appearances. The majority of reconstruction methods
of evolutionary trees optimize a predefined objective function. Thus, a given tree can
easily be evaluated. The “optimal” tree is the one which is supposed to be the most
“realistic” one.

The problem of finding an optimal evolutionary tree has been shown to be NP-
complete for a quite number of reconstruction methods. In order to reduce the
computational burden and to limit the vast number of trees to be examined, heuristics
have been suggested: stepwise insertion with local and global optimizations [5], the
Quartet Puzzling algorithm [6], star decomposition [7], etc. Recently, Bayesian
approaches [8], genetic algorithms [9], and simulated annealing [10] have entered the
field. However, approximate and heuristic methods do not solve the problem since
their complexity remains polynomial with an order greater than 5: O(nm) with m > 5.
Parallelization of these methods could be useful in order to reduce the response time of
these applications.

The most widely-distributed phylogeny packages are PHYLIP [11] and PAUP [12].
These packages have been used to build the largest number of published trees. This
paper deals with the parallelization of a sub-set of modules implemented by the
PHYLIP package. It particularly describes the parallelization of the heuristic
reconstruction method Fitch (proposed as a module in the PHYLIP tool).

The targeted machine is a network of computers equipped with the XtremWeb-CH
(www.xtremwebch.net) middleware. The XtremWeb-CH (XWCH) project aims to build
an effective Peer-To-Peer (P2P) System for CPU time consuming applications.
Initially, XWCH is an upgraded version of a Global Computing environment called
XtremWeb (XW) [13]. Major improvements have been brought in order to obtain a
reliable and efficient system. The software’s architecture was completely re-designed.
The communication routines based initially on Remote Procedure Calls (Java RMI)
were replaced by socket communications. New modules were added in order to enrich
the system by new functionalities.

A typical XWCH platform is composed of one coordinator and several workers
(remote resources). The coordinator is a three-tier layer allowing “connection” between
the users and the workers.

XWCH supports three new features which, from our knowledge, do not exist in
similar “prototypes”: support of communicating tasks, direct communication between
workers and granularity and load balancing management. These features are described
in [25, 26] and will not be detailed in this paper.

This document is organized in 5 sections. After the introductory section, section 1
presents the sub-set of the PHYLIP modules that was ported on XWCH. Section 2
describes the different components of the XWCH middleware. Section 3 presents the
gridification of PHYLIP on XWCH. Section 4 presents some experiments carried out in
order to evaluate the proposed gridification. Finally, section 5 gives some perspectives
of this research.

1. PHYLIP

PHYLIP (the PHYLogeny Inference Package) is a package of programs for inferring
phylogenies (evolutionary trees). Developed during 1980s, PHYLIP is one of the most
widely-distributed phylogeny packages. It has been used to build the largest number of
published trees. PHYLIP has over 15,000 registered users. The package is available
free over the Internet, and written to work on as many different kinds of computer
systems as possible. The binary and source code (in C) are distributed. In particular,
already-compiled executables are available for Windows, MacOS and Linux systems.

Methods that are available in the package include parsimony, distance matrix, and
likelihood methods, including bootstrapping and consensus trees. Data types that can
be handled include molecular sequences, gene frequencies, restriction sites and
fragments, distance matrices, and discrete characters.

Five modules were ported on XWCH: Seqboot, Dnadist, Fitch-Margoliash,
Neighbor-Joining and Consensus. Input data of these modules are nucleotide sequence
data (DNA and RNA) coded with an alphabet of the four nucleotides Adenine,
Guanine, Cytosine, and Thymine. Each nucleotide is denoted by its first letters: A, G, C
and T. Every nucleotide sequence belonging to the input data is a leaf node of the
evolutionary tree to be constructed.

The evolutionary tree is composed of several branches. Each branch is composed of
sub-branches and/or leaf nodes (sequences). Two sequences belonging to the same
branch are supposed to have the same ancestors. To construct the tree, the application
defines a “distance” between all pairs of sequences. Evolutionary tree is then gradually
built by sticking to the same branch, the pairs of sequences having the smallest
distance between them. Even if the concept is simple, the algorithm is a CPU time
consuming. This complexity is due to two factors:
1. Methods used to group sequences into branches are complex. As an example, the

Fitch program, one of the most used methods, takes two hours to execute on a
Pentium 4 (3 GHz) with 120 sequences.

2. The application constructs not only one tree from the origin data set, but a set of
trees generated from a large number of bootstrapped data sets (somewhere between
100 and 1000 is usually adequate). These data are randomly generated from origin
data. The final (or consensus) tree is obtained by retaining groups that occur as
often as possible. If a group occurs in more than a given fraction of all the input
trees, it will definitely appear in the consensus tree.
Seqboot is a general bootstrapping and data set translation tool. It is intended to

generate multiple data sets that are re-sampled versions of the input data set. It involves
creating a new data set by sampling N characters randomly with replacement, so that
the resulting data set has the same size as the original, but some characters have been
left out and others are duplicated.

Dnadist uses sequences to compute a distance matrix. It generates a table of
similarity between the sequences. The distance, for each pair of sequences, estimates
the total branch length between the two sequences, it represents the divergence time
between those two sequences.

Fitch-Margoliash (Fitch) and Neighbor-Joining (NJ): These two programs generate
the evolutionary tree for a given data set. Fitch method is a time consuming method. Its
sequential version can not be applied to a large number of sequences.

Consensus: This program constructs the consensus tree from the collection of
intermediate trees generated from bootstrapped data sets.

The application, as developed, has two parameters (fed by the user): the set of
nucleotide sequences from species under investigation and the number of replications.
The higher is the replication, the finest is the result.

2. XtremWeb-CH

The majority of Global Computing (GC) projects adopted a centralized structure based
on a Master/Slave Architecture: BOINC [14], Entropia [15], United Devices [16],
Parabon [17], XtremWeb [13], etc. A natural extension of the GC consists on
distributing the "decisional degree" of the master in order to avoid any form of
centralization. Thus, architectures such as Clients/Servers and Master/Slaves would be
withdrawn. This concept, known as Peer-To-Peer, was successfully used to share and
exchange files between computers connected to Internet and broadcast micro-news
among internet users. The most known projects are BitTorrent [18], eDonkey [19],
Kazaa [20], Gnutella [21], Freenet [22] and FeedTree [23].

XtremWeb-CH (XWCH) is composed of four modules: coordinator, worker,
warehouse and broker. The coordinator module is the main component of XWCH. It is
considered as the master of the XWCH system; it has the responsibility of managing
communication between the clients (users) and the workers (resource providers).

The worker module is installed on each provider node. It manages execution of
tasks and the transfer of data from/to the worker. Workers are considered as the slaves
of the XWCH system.

A broker module is a “compiler” which transforms the user request (application
submission) into a set of tasks compliant to the “format” recognized by XWCH. Every
family of applications has its own broker. The XWCH broker module can be compared
to the Globus broker which is responsible of transforming a high level RSL (Request
Specification Language) request into a low level RSL request [24].

2.1. The coordinator

It is a three-tier architecture which adds a middle tier between client and workers. The
coordinator accepts execution requests coming from clients, assigns the tasks to the
workers according to a scheduling policy and the availability of data, transfers binary
codes to workers (if necessary), supervises task execution on workers, detects worker
crash/disconnection and re-launches tasks on any other available worker. The
coordinator is composed of three services: the workers’ manager, the tasks’ manager
and the scheduler.

2.1.1. The Workers’ Manager

The workers’ manager maintains a list of connected workers. It receives four types of
common requests/signals from the workers: Register Request (RR), Work Request
(WR), Life Signal (LS) and Work Result Signal (WRS). The Register Request allows a
worker to subscribe nearby the coordinator. When the Workers’ Manager receives a
Work Request, it searches for the most appropriate task [25] to be assigned to the

concerned worker. During the execution of the task, workers send Life Signals to the
coordinator to inform about their status. When a worker finishes its execution, it sends
a Work Result Signal to inform the coordinator about the location of the data it has
produced.

2.1.2. The Tasks’ Manager

A parallel and distributed application is composed of a set of communicating tasks
whose structure is described in [25] and [26]. A task is considered to be “ready” for
execution if its input data are available. It is in “blocked” status if its input data are not
yet available. Two lists are maintained by the Tasks’ Manager: blocked tasks and ready
tasks. When receiving a Work Result Signal, the Tasks’ Manager checks whether the
new available data correspond to input data awaited by one or several blocked tasks; it
updates the lists of blocked and ready tasks accordingly.

2.1.3. The scheduler

A Work Request transmits, as input parameter, the performance that can be delivered
by the concerned worker. When receiving this request, the coordinator launches a
scheduler module which selects the “most appropriate” ready task to be allocated to
that worker. The concept of “most appropriate” is detailed in [26].

2.2. The workers

The worker module includes two components: the activity monitor and the execution
thread. The activity monitor controls whether some computations are taking place in
the hosting machine regarding parameters such as CPU idle time. The execution thread
extracts the assigned task, starts computation and waits for the task to complete.

2.3. The warehouses

XWCH supports direct communication between workers executing two communicating
tasks. Direct communication can only take place when the workers can “see” each
other. Otherwise (one of the two workers is protected by a firewall or by a NAT
address), this kind of communication is impossible. In this case, it is necessary to pass
by an intermediary: XWCH coordinator for example. However, to avoid overloading
the coordinator, one possible solution consists of installing “warehouse” nodes which
acts as an intermediary. These nodes are used by workers to download input data
needed to execute their allocated task and/or upload output data produced by the task.
A warehouse node acts as a repository or file server. It must be reachable by all
workers contributing to the execution of a given application.
The protocol is the following:

• The list of available warehouses is received by a worker when it registers nearby
a coordinator (Register Request)

• When a worker finishes the execution of a task it uploads its result in a one of the
known warehouses (selected randomly). Thus, the result is stored in the worker
and in the warehouse,

• The worker sends a work result signal to the coordinator with the two locations
(IP address and path) of the result produced by the given task,

• When a worker sends a Work Request to execute a new task, it receives as a
reply, the binary code of the allocated task and the two locations of its input data.

3. PHYLIP Gridification

The “gridification” is the process of parallelizing and/or porting a High Performance
application on a Grid platform. The gridification should take into account several
constraints linked to the targeted Grid platform: volatility and heterogeneity of nodes,
limited bandwidth of the network, etc.

This section describes the gridification of five modules of PHYLIP: seqboot, dnadist,
Fitch, NJ and consensus on the XWCH middleware. Communications between tasks
are based on file transfers.

As stated in section 1, the application, as developed, has two parameters (fed by the
user):
1. set of nucleotide sequences from species (or viruses) under investigation. In the

reminder of this paper, the number of sequences is noted by s.
2. Number of replications (r): used to produce multiple data sets from original DNA

sequences by bootstrap re-sampling. The higher is this number, the finest is the
result.

The structure of the obtained parallel/distributed application is shown in Figure 1.

Figure 1. Data flow graph of the modules SeqBoot, DnaDist, Fitch/NJ and Consensus

The Seqboot task generates a multiple data sets. Each of these data is used by a

DnaDist task to generate one distance matrix. This matrix is then used by a Fitch (or
NJ) task to generate an intermediate evolutionary tree. Finally, the consensus task
constructs the evolutionary tree from the intermediate trees. As explained in section 2,
the Fitch module is time consuming (O(n5)). This is not the case of modules Seqboot,
DnaDist, NJ and Consensus modules.

In order to apply the Fitch module to a large number of sequences, a parallel version
of this package was designed and ported on XWCH. The data flow graph of the parallel
implementation of the Fitch module is given in Figure 2. Each Fitch node in Figure 1
is thus replaced by the graph of Figure 2.

The evolutionary tree is a non-root tree represented by two sets of nodes:
External (or leaf) nodes (square nodes in Figure 2): They represent the sequences

under investigation. An external node is always linked to one internal node. When the
evolutionary tree is completely constructed, the number of external nodes is equal to s.

Internal nodes (circle nodes in Figure 3) are virtuals, they don’t represent
sequences. Each internal node is linked to exactly three other nodes (internal or

Seqboot

DnaDist
Fitch

(or NJ)
Consensus

: :

external). When the evolutionary tree is completely constructed, the number of internal
nodes is equal to s-2.

The evolutionary tree is generated progressively. The Fitch algorithm starts by
creating a tree with one internal and three external nodes. In each step, the method
inserts one sequence (external node) in every possible branch of the already
constructed tree, and evaluates an objective function (Test_Branch tasks in Figure 2).
The selected branch is the one that minimizes a pre-defined criterion F (Best_Topology
tasks in Figure 2). In addition to the external node inserted in each step, an internal
node is also created and inserted in the same step. This process is repeated until the
insertion of all the sequences. The last step contains 2s – 5 “Test_Branch” tasks.

Thus, the number of “Test_Branch” tasks for one parallel Fitch is O(s2), s being the
number of sequences. Since there are a maximum of r (r = number of replications)
Fitch tasks, the maximum number of Test_Branch tasks is O(r*s2). The maximum
number of parallel Test_Branch tasks that could be executed at the same time is equal
to: r*(2s-5). The execution time of a “Test_Branch” task increases with the size of the
evolutionary tree.

4. Experiments

This section presents some performance analysis regarding the gridification of the
package PHYLIP. Our results demonstrate the performance of the system and highlight
promising areas for further research. The objective of these experiments is to validate
our approach. They are not carried out to prove that the system delivers a maximum
power for a given execution: the project’s challenge is to extract, at low cost, a
reasonable computing power from a widely distributed platform rather than extracting
the maximum power from a local supercomputer or a dedicated GRID platform.

Figure 2. Data flow graph of a parallel Fitch task

The parallelized version of PHYLIP is used to generate evolutionary tree related to

HIV sequences. The application is used by the virology laboratory of Geneva Hospital.

F0

F1

F2

.
.
.

Test_Branch tasks

Best_Topology
task

Sequence to be
inserted

In this context, one needs to keep in mind that the number of sequences s can vary
from 100 to 300 while the number of replications r varies from 100 to 1000.

A specific broker (web service) was developed in order to allow a dynamic
configuration of the application regarding the current state (number and performance
of the workers) of the platform: number of “Fitch” tasks and number of trees generated
by each “Fitch” task, etc.

The experiments detailed in this section do not implement the parallel version of
Fitch (Figure 2). They corresponds to the application represented if Figure 1.
Executions were carried out on a platform with one coordinator (Linux OS), 250
heterogeneous windows workers ranging from Pentium I to Pentium IV, and 2
warehouse nodes. The workers are geographically located in two different places
(Engineering Schools of Geneva and Yverdon). During execution, the 250 workers are
used by students; they are often switched off or disconnected.

In order to evaluate the performance of the load balancing strategy implemented by
XWCH, two versions of PHYLIP were deployed on the platform: the first version
(Version 1 in Figure 3) is composed of r Fitch tasks. Each task processes one tree. In
the second version (Version 2 in Figure 3), the number of Fitch tasks and the number
of trees generated by each Fitch task are processed depending of the state of the
platform (number and performance of workers).

Execution times consumed by the two versions are shown in Figure 3. The
difference of execution times in Figure 3 is due to the synchronization between the
coordinator and workers.

50 sequences. 100 workers

0

5

10

15

20

25

0 200 400 600 800

Q : number of replications

Ti
m

e
(in

 m
in

)

Version 1
Version 2

Figure 3. Execution times of PHYLIP

Figure 4 illustrates the total number of parallel tasks during the execution of the
application. Since the “Fitchs” are the most time consuming tasks, this study focuses
on the number of these tasks.

Steps I correspond to the execution of the Fitch tasks which finish, in general, at the
same time. However, some Fitch tasks finish their execution later (step II in Figure 4).
This is due to at least to one of the following factors:

1. The workers disappear during the execution,

2. As it is implemented today, workers’ performance is only represented by the CPU
power (CPU frequency). This model is not realistic; the system should take into
account other criteria such as main memory, processes, applications and services
installed locally on the workers, etc.

(a) Number of

workers = 170
(b) Number of

workers = 78
(c) Number of

workers = 92

(d) Number of
workers = 117

(e) Number of
workers = 106

(f) Number of
workers = 217

Figure 4. X-coordinates: Time, Y-coordinates: Total number of parallel executing
Fitch tasks.

6. Conclusion

This paper presents the gridification of a sub-set of modules of the phylogeny package
PHYLIP on the Large Scale Distributed platform XtremWeb-CH (XWCH). XWCH is
a GC environment used for the execution of high performance applications on a highly
heterogeneous distributed environment. This middleware can support direct
communications between workers, without passing by the coordinator. A scheduling
policy is proposed in order to minimize synchronization between coordinator and
workers and optimize load balancing of workers.

The porting of PHYLIP on XWCH has demonstrated the feasibility of our solution.
The next step consists of adapting the granularity of the parallel version of Fitch. Two
parameters should be fixed according to the state of the targeted platform:
1. Number of parallel Test_Branch tasks executed during the insertion of one

sequence.
2. Merging of several Test_Branch and Best_Topology tasks into one task according

to the number of sequences.
The current version of XWCH allows the decentralization of communications between
workers. The next step consists of designing a distributed scheduler. This scheduler
shall avoid allocating communicating tasks to workers that can not reach each other
and/or not belonging to the same “domain” (Local Area Network for example). This
approach offers a strong basis for the development of distributed and dynamic
scheduler and could confirm and reinforce the tendency detailed in section 2.

I
I

I

I

I

I II II

II
II II

II

7. References

[1] http://biowulf.nih.gov/apps/tree-puzzle-doc.html
[2] http://www.tree-puzzle.de/
[3] http://www.dkfz.de/tbi/tree-puzzle/
[4] Heiko A. Schmidt, Phylogenetic Trees from Large Datasets, 'Ph.D.' in Computer Science,

Düsseldorf, Germany, 2003.
[5] Felsenstein, J. (1981) Evolutionary trees from DNA sequences: a maximum likelihood

approach. J. Mol. Evol., 17, 368–376.
[6] Strimmer, K. and von Haeseler, A. Quartet puzzling: A quartet maximum–likelihood

method for reconstructing tree topologies. Mol. Biol. Evol., 13, 964–969, 1996.
[7] Adachi, J. and Hasegawa, M. MOLPHY Version 2.3 – Programs for Molecular

Phylogenetics Based on Maximum Likelihood, vol. 28 of Computer Science Monographs.
Institute of Statistical Mathematics, Minato-ku, Tokyo, 1996.

[8] Huelsenbeck, J. P. and Ronquist, F. MRBAYES: Bayesian inference of phylogenetic trees.
Bioinformatics, 17, 754–755, 2001.

[9] P. O. A genetic algorithm for maximum-likelihood phylogeny inference using nucleotide
sequence data. Mol. Biol. Evol., 15, 277–283. 1998.

[10] Salter, L. A. and Pearl, D. K. Stochastic search strategy for estimation of maximum
likelihood phylogenetic trees. Syst. Biol., 50, 7–17, 2001.

[11] http://www.phylip.com/12. http://paup.csit.fsu.edu/
[12] http://paup.csit.fsu.edu/
[13] Gilles Fedak et al. XtremWeb : A Generic Global Computing System. CCGRID2001,

workshop on Global Computing on Personal Devices. Brisbane, Australia, May 2001.
http://xtremweb.net

[14] http://boinc.berkeley.edu/
[15] http://www.entropia.com/
[16] http://www.ud.com/home.htm
[17] Parabon Computation, Inc: The Frontier Application. Programming Interface, Version

1.5.2. 2004.
[18] http://www.bittorrent.com/
[19] http://www.edonkey2000.com/
[20] http://www.kazaa.com/us/index.htm
[21] KAN G., Peer-to-Peer: harnessing the power of disruptive technologies, Chapter Gnutella,

O’Reilly, Mars 2001.
[22] Ian Clarke. A Distributed Decentralised Information Storage and Retrieval System.

Division of Informatics. Univ. of Edinburgh. 1999. http://freenet.sourceforge.net/
[23] http://feedtree.net/
[24] http://www.globus.org/
[25] N. Abdennadher, R. Boesch, A Large Scale Distributed System for High Performance

needs. HP-ASIA 2005, Biejing, China, December 2005.
[26] N. Abdennadher, R. Boesch, A Scheduling algorithm for High Performance Peer-To-Peer

Platform. CoreGrid workshop, EuroPar 06, Dresden, Germany, 2006

