Glycaemic stability of the diabetic patient and therapeutic ajustments
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Abstract— In previous papers, we provided a modeling of the
behavior “insulin delivery/glycaemia” of the diabetic patient un-
der continuous insulin infusion, continuous glucose monitoring
and we provided a method of regulation of his glycaemia.
This behavioral model is bilinear, predicting the behavior on
an interval of 15 minutes, with an average error of 15%. And
consequently, the model is adjusted for every 15 minutes.
The aim of this paper is to study the Bounded-Input-Bounded-
Output (BIBO) stability of the bilinear model in order to point
out that the patient is entering in a period of stable/unstable
equilibrium. In case of stable equilibrium, the prediction will
be valid for a longer time interval, when in case of unstable
equilibrium, it will leads one to reduce the time intervals and
to pilot closely the variations of insulin delivery.

The BIBO stability is studied by computing the generating

seriesG of the model. This series, generalization of the transfer
fuction, presents an usefull tool for analyzing the stability of

bilinear systems. It is a rational power series in noncommutative
variables and by evaluating it, a formal expression of the output
in form of iterated integrals is provided. Three cases arise:
firstly, the output can be explicitly computed; secondly, the
output can be bounded/unbounded if the input is bounded;
thirdly, no conclusion seems available about the BIBO stability
by using G. In this case, we propose a stabilizing constant input
n by studying the univariate seriesG,,.

. INTRODUCTION

There exist many medical possibilities to administer in
sulin: sub-cutaneous, intravenous and intraperitonebe T

sub-cutaneous route is most secure and easy to imple-
ment, but it lacks reliability. The intravenous route is the

methods, none of them was unanimously accepted by the
medical community. This is partly due to the lack of the
precision of the available data and, especially, to ingefiic
frequency of glycaemic sampling and the difficulty to vary
rapidly the insulin infusion rates.

Recent technical progress made it possible to overcome
these difficulties. In 2000 appeared the first holter glydaem
device: the CGMS (Continuous Glucose Monitoring System)
of Medtronic Minimed, which allows one to measure the
glycaemia every 3 minutes. Many other similar devices
followed suit. This engineering breakthrough gave a new
momentum to the research in the field of diabetes regulation.
A first regulation system based on the CGMS was developed
in 2001 by E. Renard of CHU of Montpellier in collaboration
with Medtronic Minimed [15]. But in spite of the encourag-
ing results of this work, the model used during the regutatio
does not seem to be precise enough to be clinically used on
a wider scale.

Then we proposed a bilinear modeling giving a good ap-
proximation of the behavior “insulin delivery/glycaemiah

an interval of 15 minutes, in standard conditions [12].
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most rapidly responding method, but it may cause vascular
complications. The intraperitoneal route seems to the most
physiological one. Moreover, it has almost to delay in the
insulin action. Even though there is no consensus on the best
way to deliver insulin, there seems to be a certain tendency
to prefer the intraperitoneal route. Once the model (Fig.1) is known, the regulation consists in
In order to carry out a glycaemic regulation by an intraperiinverting the input/output behavior of the system [7], [BI.
tonal infusion of insulin, it is necessary to be able to peedi other words, one has to calculate the input (command) in
the glycaemia as a function of the insulin infusion rate, foterms of the output function one wishes to obtain (Fig.2).

a given patient and a given insulin type. There exist many
open-loop, partially closed-loop and closed-loop techeg]
The very first closed-loop regulation method was developed
by A. Albisser et al. back in 1974 [1]. Among other methods,
we can mention [17].

Unfortunately, in spite of many positive aspects of these

Fig. 1. Model

insulin

delivery glycaemiz

patient

Manuscript received June 7, 2008

F. Benmakrouha and C. Hespel are with the Department of
Computer Science, INSA of Rennes, 35043 Rennes cedex, France
benma@ nsa-rennes. fr, hespel @nsa-rennes. fr

M.V. Foursov is with the University of Rennes-1, 35042 Renpedex,
Francef our sov@ri sa. fr

J.P. Hespel is with the Centre Hospitalier Universitaird&Rehnes, 35000

> Fig. 2.
Rennes, Francdean- Pi err e. Hespel @hu-rennes. fr

Regulation



This regulation is said to be partially closed-loop becahse systems. A bilinear system is quite similar to a linear ohe: i
glycaemic values are only used every 15 minutes in ordés simply additionally linear as a function of the input. One
to compute the insulin delivery. More precisely, on constarhas thus more leeway to approximate the real system with
intervals of timelt;, t;11];, we compute some modél; and a better precision. In our method, we choose to model the
some function insulin delivery;;(¢) allowing us to follow dynamical systems by bilinear systems whose dimension is
an ideal trajectoryy;(t) for the glycaemia. On every time not fixed in advance.
interval, the trajectory is recalculed because of the tiana Since a diabetic does not respond in the same way to equal
between the ideal trajectory;(t) and the true trajectory doses of insulin at different times of the day, it is reasdmab
(Fig.3). to suppose that she is described by different dynamical
systems at different time instants. The goal of our modeling
method is to construct a collection of models that describe
. the behavior of the glycaemia under certain conditionss€he
trajectory to follow o : . .
real glycaemic values conditions can be either defined in advance (for example,
during the inter-prandial period, during meals or during
physical effort), or determined by a learning process. Each
model is thus valid only for a certain period of time. In
practice, we can show that our model is valid for at least
fifteen minutes. Moreover, this duration is likely to incsea
with the increase of the precision of the glucose sensors.
Mathematically speaking, the problem is to identify logall
(near a time instanty) up to a given order k, a dynamical
system(X) considered as a black box, when only a sample
t of the input/output data is known. The considered dynamical
0 1 2 3 systems involve one input and the drift. The input is the
insulin infusion rate and the drift corresponds to the fact
that the system undergoes some changes even in the absence
of any input.
The crucial point consists in determining the size of theetimOur method involves the identification up to order k of
intervals, that means the frequency of the changes of th@e generating series G of the unknown system and the
insulin delivery. The study of the stability leads us to reglu construction of a bilinear systeri3.) approximating the

the size of the interval when the system is unstable. unknown system up to order k. The generating series of
a nonlinear system can be seen as a generalization of the

Il. MODELING “INSULIN/GLYCAEMIA”™ AND REGULATION  transfer function. It is used to represent the input/output
OF THE GLYCAEMIA behavior of the system.

There are two general categories of techniques used Thhe main advantage of this method is the possibility to
achieve this goal: phenomenological modeling and behaprovide, in terms of the chosen order k, a systéB).)
ioral modeling. approximating the unknown systerf¥3;,) is chosen so that
Phenomenological modeling requires a prior knowledge dfs output and the output of the unknown system coincide up
the equations governing the evolution of the considered prto order k.
cess. Numerous phenomenological models of the glycaeniitie problem of identification of dynamical systems in a
behavior of diabetics were still developed, for example seseighborhood ot is stated in the following way: to explic-
[2]. itly determine the generating series of the unknown system,
In the behavioral modeling, one does not need any priap to a given order k, given the Taylor series of the input
knowledge of the phenomenon. The system is regarded asd corresponding output functions.

a black box [19]. The goal is to construct a model that The main tool used during the identification is the gen-
approximates the unknown system with a desired precisi@rating series of the system. A generating series can be
[5]. The parameters involved in the obtained system afonsidered as an infinite (noncommutative) polynomial that
equations have no practical significance, but their numbendes the relationship between the inputs and the output.
usually depends on the required precision. The identification involves the following three steps. Dur-
A commonly-used class of models is formed by lineaing the first step, one obtains a system of linear equatiaats th
dynamical systems. Such models were extensively considxpress the relationship between the derivatives of thetinp
ered by the control theory specialists. Linear-model-Baseand the output. The unknown parameters are certain linear
regulation is rather simple to implement and it gives quiteombinations of the coefficients of the generating series. O
satisfactory results in many different cases. Howeverjdt d the next step, these linear combinations of the coefficigmrs
not seem to be sufficient for regulating the glycaemia odentified from the available data, by choosing appropriate
diabetics. input/output sets. Finally, the coefficients themselves ar
Another class of models consists of bilinear dynamicaldentified by solving another system of linear equations.

odified trajectories to compensa
deviations

»mic level

normal glycag

\j

Fig. 3. Trajectory



This algorithm is programmed in MAPLE and presented. The regulation method

in [13]. A polynomial generating serigs is thus identified,  once the model is known, the regulation consists in
and it is equal to the generating series G of the systBIN  nyerting the input/output behavior of the system. In other
truncated at degree k. words, one has to calculate the input (command) in terms
Once a truncated generating ser(@s is identified, it re-  of the output function one wishes to obtain. The regulation
mains to construct a model therefrom. We construct a bitinegsed in this case is called partially closed-loop, since the
system, approximating the dynamical systél), by pro- glycaemic values are used to recalculate the insulin iofusi
longing G to a rational seried?, whose generating series rates every fifteen minutes. These rates change continuousl
is of minimal rank among all the series coinciding with.  in a purely closed-loop scenario.
up to order k (see [10]). Rational series are generalizatiofn a previous paper [9] we have shown that we are capable of
of rational functions and the dynamical systems represegnti finding the Taylor series expansion of the command from the
them are bilinear. A bilinear system Corresponding to thi$ay|0r series expansion of the desired output traject(gimgj
rational series of minimal rank?,; is finally constructed. generating series techniques similar to those used during

This system provides a local model of the black box. the identification and the modeling. The algorithm consists
in sequential solving a system of polynomial equations. If
A. The bilinear model the model of a diabetic were an exact one, this would be

. ) , , . largely sufficient to regulate the glycaemia. But since our
A bilinear system(B) with a single inputu, (t) and a drift  pijinear model is only an approximation of the actual one,

uo(t) =1 is given by its state equations the glycaemic behavior will eventually deviate from the
hosen trajectory. As a consequence, from time to time the
M) = ene .
(B) { * . (t) B &Mo;r ur(t) M)z (t) (1) trajectory has to be recalculated in order to compensate for
y) = Aa(t) these deviations and the insulin infusion device has to be

reprogrammed accordingly.

An important point is to determine the frequency of change
f the insulin infusion rates. The first tests of our modeling
ethod [12] showed that we can predict the glycaemia over

15-minute intervals with an error of about 10% or 15%.

Therefore, we need to provide a new data to the pump

approximately every fifteen minutes. As we have already

wherex(t) € Q, R—vector spaceMy, My, A are R—linear.
We consider the alphabet = {2z, 1 }, wherez, codes the
drift and z; codes the input. The expansion of the generatin
seriesG built on the alphabeZ, by notingw a worde Z*,

is the following:

G= Z (Glw)w remarked above, this duration is likely to increase with the
wezr increase of the precision of the glucose sensors.
G is a rational series defined from (1) by: IIl. THE BIBO STABILITY

1 A dynamical system is Bounded-Input-Bounded-Output
G = Xz(0) + Z Z XM, - M, x(0)zj, - - - zj, (BIBO) stable if its outputy(t) is defined and bounded for
v>0 o, +,ju=0 every bounded input(t).
(2)  The output of a bilinear dynamical system can be computed
Firstly, we compute the rational expression associatetl witn evaluating its generating series. More precisely, tha-ev

(2), which is a digest of the expansionGf by generalizing yation of the series consists in integrating every term isf th
the Schutzenberger's method [16] for computing the rationgeries and in summing.

expression describing a rational series. This rationdeser e use the theorem of Hoang Minh [14] :
can be represented by a finite weighed automaton [11]. Theorem 1:
By “evaluating” the expression @, we can obtain a formal v, let us suppose that, is exchangeable and let us denote

expression of the output [6] e(Gy) by gr(£(1))
it t t)) = gi(t, t), - &mlt
O <G|w>/ () — / 5@ —<(@) (3) .gk(ﬁ( ))_ -?k( &i1(t) | &m(?)) |
wez 0 Jo where¢; (t) is the primitive of the input:;(¢) cancelling for

t = 0. Then,Vk, the series
Sk = GOZilGl ce Zika

where the iterated integrals are recursively defined by:

t ’Lf w = lZ . H .
/0 d(w) = { fo f SVus(F)dr if w = vz € Z, has the following evaluation:

t £(SK) = y(t) =
Secondly, we compute directly the iterated inte%’;\B(G
where G is the rational expression that we computed / / / 90(&(11))g1(&(12) — &(T1)) - -

previously.
gr(E(t) — E(m))dEs,, (1) - - dEs, (m3)

(4) wherez,,, -, z;,



The generating series is
Three cases occur: In some cases, this process is easy
and y(t) can be explicitly computed. In other cases, if we Gs3 = (21 + azp)(bzo + (21 + azg)eczo)” + 1.5
assume that(t) is bounded by 2 valued/in, Mazx, then
we can know if so isy(t), without computing explicitly Its automaton is presented in the Fig.4.
y(t). Lastly, in some difficult cases, we only try to find
some stabilizant constant inputgt) = 7 such that the
output remains bounded, if it is possible. We prove that the
output of the bilinear system for the inputt) = n consists
in evaluating some univariate seri€,. This series being
rational, can be written as a quotient of 2 polynomials. We bz
can then use 2 propositions [3], [4] dealing with the poles
of G,, in order to decide that a stability exists fo(t) =7

Proposition 1 \

A necessary condition for the BIBO stability @), is that, 1
for everyn € R, the real part of the poles af,, is < 0 and az 7

the imaginary poles of, are single. 1
Proposition 2 @

If there existsy such that every pole aff, has a negative

real part and if every imaginary pole is single, thefr) = / \ 15

is a stabilizing input
1) Example 1:The state equations of the systémy) are example 1 example 2

the following, for an insulin deliveryu(t) and a glycaemia Fig. 4. Automata of ex 1, ex2

y(t)
20w = (0 ) (Y Pew w tut in Gy G,y —
= a b 10 e computeGs ,, by substitutingnzy to 2z, in Gs: Gz, =
y(t) = (15 1) alt) L5+ s
If n = —a thenys,(t) = 2(0) else we decompos€’s ,, in
The generating series is : partial fractions for studying the constant stabilizingtits
G = (1 + az0)(bz0)" + 1.5 u(t) = n depending on the parameters, c.
Its automaton is presented in the Fig.4 IV. CONCLUSIONS AND FUTURE WORKS
We split this series in 2 parts The BIBO stability of a bilinear system cannot be gen-
Ga21 = 21(b20)*, Gao = azg(bzg)* erally studied by considering its state equation. In this
with G2 = Ga1 + G2 + 1.5. paper, we use the “evaluation” of its generating sefies
We can compute the evaluation @b, et G5, and we obtain If the rational expression ofr is simple or obtained by
an explicit expression of the outpytt). concatenating some simple rational expressions, thensie u
e(Gyy) = e fot e 'md¢(r) and of the generating series of the system provides an answer
£(Gag) = ae fote""ldn about the stability and a bound for the_output. Otherwise,
For u(t) = 1 then&, (1) = nr1, we get : we can Iook_ for_ a stab_lllzant constant inputt) = n by
Yo (t) = TGP — 1) 4 2(0) using thg univariate series,,. N o
This system is not BIBO fob > 0 and is BIBO forb < 0 BY applylng th|§ met_hod to the bilinear model approximating
(if My < u(t) < M, theny(t) is bounded) Fhe behgwor “insulin dellve_ry/glycaemla", we expect an
For instance, form > 0, b < 0, 0 < u(t) < M, then information about the stability of the (unknown) system
y(t) < x(0) + Mzta descnb_mg really_ this behaV|0r._ _
2) Example 2:The state equations of the bilinear systemA‘ specific survelll.ance depending on whether the sys:tem is
(B;) are stable/unstable will be set. Rather thgn take c_onstamvmite
of 15 minutes for recalculate the ideal trajectory of the
0 0 O 0 0 0 glycaemia, we propose that the time intervals depend on
W@ = (| a b ¢ | +u®)| 1 0 0 |)z(t) this information about the stability. In case of unstapijlit
0 a O 010 the varying size of the intervals of time would be defined in
y(t) = (151 0) z(¢) order to keep the glycaemia between some moderate bounds.
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