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Abstract— Human-robot control interfaces have received in-
creased attention during the last decades. With the introduction
of robots in every-day life, especially in developing services for
people with special needs (i.e. elderly or impaired persons),
there is a strong necessity of simple and natural control
interfaces. In this paper, electromyographic (EMG) signals from
muscles of the human upper limb are used as the control
interface between the user and a robot arm. EMG signals are
recorded using surface EMG electrodes placed on the user’s
skin, letting the user’s upper limb free of bulky interface sensors
or machinery usually found in conventional human-controlled
systems. The proposed interface allows the user to control in
real-time an anthropomorphic robot arm in three dimensional
(3D) space, by decoding EMG signals to motion. However,
since EMG changes due to muscle fatigue are present in this
kind of control interface, a probabilistic framework has been
developed, which can detect in real-time the muscle fatigue
level. By complying to those fatigue-related signal changes, the
proposed method can provide accurate decoding of motion
through long periods of time. The system is used for the
continuous control of a robot arm in 3D space, using only
EMG signals from the upper limb. The method is tested for
a long period of operation, proving that muscle fatigue does
not affect the decoder accuracy. The efficiency of the method is
assessed through real-time experiments including random arm
motions in 3D space.

I. INTRODUCTION

Although, robots came to light approximately 50 years

ago, the way humans can interface with them and finally

control them is still an important issue. The human-robot

interface plays a role of the utmost significance, especially

since the use of robots is increasingly widening to everyday

life tasks (e.g. service robots, robots for clinical applications).

A large number of interfaces have been proposed in previous

works. However, most of the previous works propose com-

plex mechanisms or systems of sensors, while in most cases

the user should be trained to map his/her action (i.e. three

dimensional (3D) motion of a joystick or a haptic device)

to the desired motion for the robot. In this paper a new

mean of control interface is proposed, according to which,

the user performs natural motions with his/her upper limb.

Surface electrodes recording the electromyographic (EMG)

activity of the muscles of the upper limb are placed on the

user’s skin. The recorded muscle activity is transformed to

kinematic variables that are used to control the robot arm.

EMG signals have often been used as control interfaces

for robotic devices. However, in most cases, only discrete
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control has been realized, focusing only for example at the

directional control of robotic wrists [1], or at the control of

multi-fingered robot hands to a limited number of discrete

postures [2]. Quite recently Thakor et al. [3] achieved to

identify 12 individuated flexion and extension movements of

the fingers using EMG signals from muscles of the forearm

of an able-bodied subject. However, controlling a robot by

using only finite postures can cause many problems regarding

smoothness of motion, especially in the cases where the

robot performs every-day life tasks. Therefore, effectively

interfacing a robot arm with a human entails the necessity

of continuous and smooth control.

An important factor that is present in the EMG-based

controlled systems, though never been investigated until now,

is the muscle fatigue, and how it affects the EMG signal

decoding. Muscle fatigue is reflected by certain changes in its

electromyogram signal [4]. All the algorithms that have been

proposed in the past use stationary models for translating

EMG signals to motion. Therefore, EMG changes due to

fatigue are not incorporated in the previously used models,

making the aforementioned methods applicable only for short

time periods.

In this paper, a muscle fatigue-dependent methodology for

controlling an anthropomorphic robot arm using EMG sig-

nals from the muscles of the upper limb, is proposed. Surface

EMG electrodes are used to record from 11 muscles of the

shoulder and the elbow. The system architecture is divided

into two phases: the training and the real-time operation.

During the training phase, the user is instructed to move

his/her arm in random patterns with variable speed in the 3D

space. A position tracking system is used to record the arm

motion during reaching. The procedure lasts for 4 minutes,

with no resting periods, in order to investigate muscle fatigue

and EMG changes due to fatigue. Four DoFs are analyzed

(i.e. two for the shoulder and two for the elbow). To tackle

the dimensionality problem, the activation of the 11 muscles

recorded and the 4 joint angle profiles are represented into

two low-dimensional spaces via the appropriate technique.

The mapping between those two low-dimensional spaces

is realized through a linear model whose parameters are

identified using the previously collected data. Changes in

EMG signals due to muscle fatigue are monitored for all

the recorded muscles. Then, through the appropriate multi-

variate modeling and a Bayesian classifier, the condition

of the muscles (with respect to their fatigue) is identified.

Having represented the muscles condition in discrete phases

of fatigue, a set of models are trained instead of one

stationary model. In this way, the changes in EMG signals



Fig. 1. The controlled robot arm is equipped with two rotational DoFs at
the shoulder, and two at the elbow.

due to fatigue are incorporated into the decoding model,

since a set of fatigue-dependent models is trained instead of

one. Therefore, the accuracy of the decoding method is not

affected by muscle fatigue, and the methodology can be used

for long periods of time without any efficiency deterioration.

As soon as the training phase has finished, the real-time

operation phase commences. A control law that utilizes these

motion estimates is applied to the robot arm actuators. In this

phase, the user can teleoperate the robot arm in real-time.

The efficacy of the proposed method is assessed through a

large number of experiments, during which the user controls

the robot arm in performing random movements in the 3D

space.

The rest of the paper is organized as follows: the proposed

system architecture is analyzed in Section II, the experiments

are reported in Section III, while Section IV concludes the

paper.

II. MATERIALS AND METHODS

A. Background and Problem Definition

The motion of the upper limb in the 3D space will be

analyzed, not including though the wrist joint for simplicity.

Therefore the shoulder and the elbow joints are of interest.

Since the method proposed here will be used for the con-

trol of a robot arm (PA-10, Mitsubishi Heavy Industries),

equipped with 2 rotational DoFs at each of the shoulder and

the elbow joints as shown in Fig. 1, we will model the human

shoulder and the elbow as having two DoFs too, without any

loss of generality. In fact, it can be proved from the kinematic

equations of a simplified model of the upper limb, that the

motion of the human shoulder can be addressed by using

two rotational DoFs, with perpendicularly intersecting axes

of rotation. The elbow is modeled with a similar pair of

DoFs corresponding to the flexion-extension and pronation-

supination of this joint. Hence, 4 DoFs will be analyzed from

a kinematic point of view. It must be noted that a detailed

kinematic model of the upper limb is out of the scope of

this paper, since the robot to be controlled is equipped with

a limited number of DoFs for the joints analyzed.

For the training of the proposed system, the motion of the

upper limb should be recorded and joint trajectories should

be extracted. For this scope, a magnetic position tracking

system was used, equipped with two position trackers and

a reference system, with respect to which the 3D position

Fig. 2. The user moves his arm in the 3D space. Two position tracker
measurements are used for computing the four joint angles. The tracker
base reference system is placed on the shoulder.

of the trackers is provided. In order to compute the 4 joint

angles, one position tracker is placed at the user’s elbow

joint and the other one at the wrist joint. The reference

system is placed on the user’s shoulder. The set-up as well

as the 4 modeled DoFs are shown is Fig. 2. Let T1 =
[

x1 y1 z1

]T
, T2 =

[

x2 y2 z2

]T
the position of

the trackers with respect to the tracker reference system. Let

q1, q2, q3, q4 the four joint angles modeled as shown in Fig.

2. Finally, by solving the inverse kinematic equations the

joint angles are given by:

q1 = arctan2 (±y1, x1)

q2 = arctan2
(

±
√

x2
1 + y2

1 , z1

)

q3 = arctan2 (±B3, B1)

q4 = arctan2
(

±
√

B2
1 + B2

3 ,−B2 − L1

)

(1)

where

B1 = x2 cos (q1) cos (q2) + y2 sin (q1) cos (q2) − z2 sin (q2)
B2 = −x2 cos (q1) sin (q2) − y2 sin (q1) sin (q2) − z2 cos (q2)
B3 = −x2 sin (q1) + y2 cos (q1)

(2)

where L1 the length of the upper arm. The length of the

upper arm can be computed from the distance of the first

position tracker from the base reference system, while the

length of the forearm L2 can be computed from the distance

between the two position trackers. It must be noted that since

the position trackers are placed on the skin and not in the

center of the modeled joints, the lengths L1, L2 may vary

as the user moves the arm. However, it was found that the

variance during a 4 minute experiment was less than 1cm

(i.e. approximately 3% of the mean values for the lengths

L1, L2). Therefore, the mean values of L1, L2 for a 4 minute

experiment were used for the following analysis.

Regarding muscle recordings, a group of 11 muscles,

mainly responsible for the analyzed motion, is recorded:

deltoid (anterior), deltoid (posterior), deltoid (middle), pec-

toralis major, teres major, pectoralis major (clavicular head),

trapezius, biceps brachii, brachialis, brachioradialis and tri-

ceps brachii.



B. Muscle Fatigue Related EMG Changes

It is widely reported in the biomechanics and physiology

literature that prolonged or repeated contractions of skeletal

muscles lead to impaired muscle function, i.e. development

of fatigue [4]. It has been also reported that EMG signal

changes with muscle fatigue [4]. In this work, the way

these changes are illustrated in the EMG recordings will

be investigated in order to build a method able to identify

muscle condition with respect to fatigue in real-time. The

quantification of muscle fatigue will then lead us to build a

set of models for decoding EMG signals to motion, in such a

way that EMG changes will not affect the decoding accuracy.

As noted before, the system requires a training period

of 4 minutes, without resting periods. During this period,

EMG signals from 11 muscles are recorded. After signal

preprocessing, a set of signal features are computed. These

are listed below:

• Integral of absolute value (IAV)

• Zero crossing (ZC)

• Variance (VAR)

For details about these signal characteristics the reader

should refer to literature [5].

The calculation of the previously defined signal features

for the training period of 4 minutes, showed that there is

an increase in their values with respect to the experiment

time that is related to muscle fatigue. Similar behavior was

noticed for all the recorded muscles.

C. Muscle Fatigue Assessment

From the above analysis, a feature vector S can be defined,

including the three aforementioned signal characteristics that

can be computed at each time bin for each muscle. The

feature vector S
(i)
m for each muscle i, i = 1, . . . , 11, for

the time bin m = 1, 2, . . ., is defined by:

S(i)
m =

[

IAV
(i)
m ZC

(i)
m V AR

(i)
m

]T

(3)

The time bin m spans from time (m − 1)NT to mNT ,

where T the sampling period, i.e. T = 1 msec. and N = 100
the width of the time bin.

The purpose of the work, as described above, is to quantify

in a sense the muscle fatigue, in order to be able to decide

about the muscle condition and switch between different

models for EMG-based motion decoding. In other words, a

measure of fatigue f (i) for each muscle i should be defined.

Then, a set f (i) of possible fatigue states can be defined as

shown below

f (i) =
{

f
(i)
1 , f

(i)
2 , . . . , f (i)

n

}

(4)

where n the number of fatigue states for the muscle i.

Muscle fatigue is mainly caused by the repetitive force

exertion of the muscle. Muscle force, as reported in the

literature with the form of the well-known Hill muscle model,

is related to muscle length and muscle contraction velocity

(i.e. rate of change of the length) [6]. These muscle character-

istics are directly related to the angular position and velocity

of the actuated joint through a simplified musculoskeletal

model of the arm. From the above, it is evident that the joint

angle and the angular velocity should be incorporated in our

analysis of muscle fatigue. This is because an increase at a

signal characteristic (e.g. the IAV (i)) of the muscle i can

be caused by large force exertion and not necessarily muscle

fatigue. Muscle force can not be easily measured though.

Therefore, its result, i.e. the angle and the angular velocity

of the actuated joint, will be incorporated to the muscle

fatigue analysis, a practice that is consistent to the concept of

the aforementioned models. Moreover, since muscle actuate

usually in more than one DoFs, with the latter defined as in

Fig. 2, the fatigue analysis of the 7 muscles of the shoulder

(i.e. deltoid (anterior), deltoid (posterior), deltoid (middle),

pectoralis major, teres major, pectoralis major (clavicular

head) and trapezius) will incorporate the two DoFs of the

shoulder, and respectively for the 4 muscles of the elbow

(i.e. biceps brachii, brachialis, brachioradialis and triceps

brachii). Therefore, we can define a fatigue-related feature

vector for each of the two muscle groups, i.e. F
(i)
m =

[

IAV
(i)
m ZC

(i)
m V AR

(i)
m q1m q̇1m q2m q̇2m

]T

,

i = 1, . . . , 7, m = 1, . . ., the feature vector

for the 7 muscles of the shoulder, and F
(i)
m =

[

IAV
(i)
m ZC

(i)
m V AR

(i)
m q3m q̇3m q4m q̇4m

]T

,

i = 8, . . . , 11, m = 1, . . ., the feature vector for the

4 muscles of the elbow, computed at each time bin m,

while q1m, q2m, q3m, q4m the joint angles at time bin m

computed by (1), and q̇1m, q̇2m, q̇3m, q̇4m the respective

angular velocities computed through time differentiation of

the joint angles.

In order to define the level of fatigue for the muscle i

at each time instance m, according to the measured feature

vector F
(i)
m , we need to compute the conditional probability

of the muscle being at the fatigue state f
(i)
(j) , j = 1, . . . , n,

n the possible fatigue states, given the feature vector F
(i)
m ,

i.e. P
(

f
(i)
(j) |F

(i)
m

)

. This is done by using the Bayes theorem

[7], that in our case is described by the following equation.

P
(

f
(i)
(j) |F

(i)
m

)

=
p

(

F
(i)
m |f

(i)
(j)

)

P
(

f
(i)
(j)

)

p
(

F
(i)
m

) , j = 1, . . . , n

(5)

where p
(

F
(i)
m |f

(i)
(j)

)

the probability density function (PDF)

of the feature vector F
(i)
m given the fatigue state f

(i)
(j),

P
(

f
(i)
(j)

)

the prior probability of the fatigue state being f
(i)
(j)

and

p
(

F(i)
m

)

=

n
∑

j=1

p
(

F(i)
m |f

(i)
(j)

)

P
(

f
(i)
(j)

)

(6)

the evidence factor that can be considered as a scale factor

that guarantees the posterior probabilities sum to one. The

n fatigue states for each muscles i are considered equally

likely to happen, i.e.

P
(

f
(i)
(1)

)

= P
(

f
(i)
(2)

)

= . . . = P
(

f
(i)
(n)

)

=
1

n
(7)



However the PDF of the feature vector F
(i)
m given the

fatigue state f
(i)
(j), p

(

F
(i)
m |f

(i)
(j)

)

, the so-called likelihood

term, needs to be computed. This is going to be achieved

using the data collected through the training period. Since

there is no specific relation between the coefficients of the

feature vector, a flexible method of modeling will be used

called Finite Mixture Models.

Finite mixtures of distributions provide a mathematical-

based approach to the statistical modeling of a wide variety

of random phenomena [8]. In our case, where more than

one components (i.e. features) are to be modeled, that

are not independent, a multivariate mixture model will be

used. Moreover, a common assumption in practice is to

take the component densities to be Gaussian. Therefore, a

multivariate Gaussian Mixture Model (GMM) will be used

for modeling the multivariate density of the feature vector

F
(i)
m . Let F

(i)
m the observed feature vector of muscle i at

time instance m during the training procedure. The PDF of

this can be modeled using a GMM that is defined by

p
(

F(i)
m

)

=

g
∑

h=1

πhφh

(

F(i)
m , µh,Σh

)

(8)

where φh

(

F
(i)
m , µh,Σh

)

represents a multivariate Gaussian

density function with µh the mean vector, Σh the respective

covariance matrix, and π =
[

π1 . . . πg

]T
the vector of

mixing proportions of the mixture, which sum to one.

Using the training data collected, the parameters of the

GMM, i.e. π, µ, Σ, are fitted using the Expectation Mini-

mization (EM) algorithm [8]. The number of the Gaussian

components g is determined by using the Akaike criterion,

which is a widely-used measure of goodness of fit of an

estimated statistical model.

In our case, the mixture components can be used for

clustering the signal characteristics, into clusters that will

represent essentially the fatigue level. This can be done once

the mixture models has been fitted, using a probabilistic

clustering of the data into g clusters that can be obtained

in terms of the fitted posterior probabilities of component

membership for the data. An outright assignment of the data

into g clusters is achieved by assigning each data point to the

component to which it has the highest posterior probability

of belonging.

Relating the fatigue level to the g clusters is feasible,

since the multivariate data modeled are selected to vary with

the muscle fatigue level. Therefore, the set of fatigue levels

defined in (4) for muscle i, can be redefined having gi states,

i.e.

f (i) =
{

f
(i)
1 , f

(i)
2 , . . . , f (i)

gi

}

(9)

where gi the number of the components fitted to the data

collected from muscle i.

Therefore, from the aforementioned analysis and after the

training period, the muscle fatigue level can be assigned

to each muscle i at each time instance m using (5). For

each muscle i, the feature vector F
(i)
m is computed. Then for

each of the fatigue levels j, j = 1, . . . , gi, the conditional

probability of the muscle being at the fatigue level f
(i)
(j) can

be computed using (5), where

p
(

F
(i)
m |f

(i)
(j)

)

=
gi
∑

h=1

πhφh

(

F
(i)
m , µh,Σh

)

P
(

f
(i)
(1)

)

= P
(

f
(i)
(2)

)

= . . . = P
(

f
(i)
(gi)

)

= 1
gi

p
(

F
(i)
m

)

=
gi
∑

j=1

p
(

F
(i)
m |f

(i)
(j)

)

P
(

f
(i)
(j)

)

(10)

Having computed P
(

f
(i)
(j) |F

(i)
m

)

for each fatigue level f
(i)
(j),

j = 1, . . . , gi, a decision about the fatigue level assignment

to the muscle i can be made, according to the simple Bayes

decision rule, i.e.

decide f
(i)
s if P

(

f
(i)
s |F (i)

m

)

≥ P
(

f
(i)
h |F (i)

m

)

,

h = 1, . . . , gi

(11)

where f
(i)
s the final fatigue assignment for muscle i. The

above procedure is implemented for all the recorded muscles,

at each time instance in real time.

During the training period, it was noticed that the EMG

signal characteristics of each recorded muscle were varying

isotropic. Due to this fact, the components gi for each

muscle i were found to be equal in number among the

recorded muscles, while the switching among the fatigue

states, computed from (5), (10), (11), for each muscle was

noticed to happen almost at the same time instance. This can

be explained by the above reasons:

• Fatigue-related signal characteristics from all muscles

were varying isotropic during arm motion.

• Muscles usually act in synergies, therefore it’s more

likely that they suffer fatigue in an approximately syn-

chronous manner.

• Arm motion performed by the user covered most of the

arm kinematic workspace, in terms of joint configura-

tion, and dynamic workspace in terms of joint velocity,

activating all the recorded muscle isotropically and not

wearing out only a subset of them.

The decision for the global fatigue state fG is made using

the fatigue states of all the muscles, f
(i)
s , i = 1, . . . , 11,

by deciding which of the states is most popular among the

muscles. Let Ph be the sets that include the muscles whose

fatigue state is h, h = 1, . . . , g. Thus, if Π the union of the

sets Ph, h = 1, . . . , g,

Π = P1

⋃

P2 . . .
⋃

Pg (12)

we have,
=

Π = 11 the total number of the population

of the sets, which coincides with the number of muscles.

If we denote an allocation rule rB (fG) for assigning the

global fatigue state fG to one of the possible fatigue states,

where rB (fG) = fl implies that the global fatigue state

is assigned to the lth fatigue state (l = 1, . . . , gi), then

the optimal rule for the allocation of fG is defined by:

rB (fG) = arg max
h

=

Ph, where
=

Ph the population number of

the set Ph, h = 1, . . . , g. The above rule essentially means



that the global fatigue state fG is the one that describes the

fatigue state of the majority of the recorded muscles.

D. Fatigue-related Switching Decoder

Since the number of muscles recorded is quite large (i.e.

11), a low-dimensional (low-D) representation of muscle

activations will be used instead of individual activations. The

most widely used dimension reduction technique is principal

component analysis (PCA). During the training period, the

EMG recordings from each muscle are preprocessed, i.e.

full-wave rectified, low-pass filtered and normalized to their

maximum voluntary isometric contraction value [6]. Then

they are represented into a low-dimensional space, using

the PCA algorithm. It was found that a 2-dimensional (2D)

space could represent most the original high dimensional

data variance (more than %96). The authors have used the

dimensionality reduction for muscle activations in the past

for planar movements of the arm [9]. Therefore the details

of the method application are omitted. Furthermore, the

dimensionality reduction technique will also be used for

representing the arm motion in a low-dimensional space,

revealing motion primitives that are extensively discussed

in the literature. Therefore, by using the PCA algorithm the

analyzed 4-DoF motion, described in joint angles (i.e. q1, q2,

q3, q4), is represented into a 2-dimensional space. Indeed it

was found that most of the original data variance (%97) was

represented using a 2-dimensional space.

Having represented the muscle activations and the per-

formed joint kinematics into two low-dimensional spaces,

one can build a model that will use the EMG low-

dimensional embeddings to estimate performed motion. Let

Ut ∈ R
2 the 2-dimensional vector of the low-dimensional

representation of the 11 muscle recordings, at time t =
kT, k = 1, . . .. Let yt ∈ R2 be the low-dimensional

embedding of the arm joint angles at the same time instance.

The model that will be used for decoding the EMG activity

to performed motion is defined as

xt+1 = Axt + BUt + vt

yt = Cxt + υt
(13)

where xt ∈ R
d a hidden state vector, d the dimension of

this vector and vt, υt zero-mean Gaussian noise in process

and observation equations respectively, i.e vt ∼ N (0,W),
υt ∼ N (0,Q), where W ∈ R

d, Q ∈ R
2 are the covariance

matrices of vt, υt respectively. Details about the model

structure and the fitting procedure can be found in [9].

A distinct model of the form (13) is used for each of the

g possible global fatigue states. Therefore, during training,

data belonging to each one of the possible global fatigue

levels are only used for the corresponding decoding model.

I.e. the model h, h = 1, . . . , g, is trained using data only

when the global fatigue level is fh.

During real-time operation, the g trained models are used

to transform the low-dimensional embeddings of muscle ac-

tivations to low-dimensional embeddings of joint angles. The

switching among the models is discrete, however, smooth-

ness in the transitions and the output model estimations is

Fig. 3. The block diagram of the proposed methodology. q is the vector
of the four joint angles decoded from the EMG signals, while pd the pose
vector computed through the human arm kinematics given the four joint
angles.

guaranteed since the initial hidden-state vector of a model,

immediately after a switching, is calculated through the

observation equation of the model previously used1. In Fig. 3

the total architecture of the method for the real-time motion

decoding is depicted.

E. Robot Control

A 7 DoF anthropomorphic robot arm (PA-10, Mitsubishi

Heavy Industries) is used. In order to control the robot arm

using the desired joint angle vector qd
2, an inverse dynamic

controller is used, defined by:

τ = I (qr) (q̈d + Kvė + KPe)+G (qr)+C (qr, q̇r) q̇r+Ffr (q̇r)
(14)

where τ =
[

τ1 τ2 τ3 τ4

]T
is the vector of robot

joint torques, qr =
[

q1r q2r q3r q4r

]T
the robot joint

angles, Kv and Kp gain matrices and e the error vector

between the desired and the robot joint angles, i.e.

e =
[

q1d − q1r q2d − q2r q3d − q3r q4d − q4r

]T

(15)

I, G, C and Ffr are the inertia tensor, the gravity vector,

the Coriolis-centrifugal matrix and the joint friction vector

of the four actuated robot links and joints respectively,

identified in [10]. The vector q̈d corresponds to desired

angular acceleration vector that is computed through sim-

ple differentiation of the desired joint angle vector qd =
[

q1d q2d q3d q4d

]T
using a necessary low-pass filter

to cut off high frequencies. More details about the controller

can be found in [9].

III. RESULTS

The proposed architecture is assessed through remote

teleoperation of the robot arm using only EMG signals from

the 11 muscles as analyzed above. The robot arm used is

a 7 DoF anthropomorphic manipulator (PA-10, Mitsubishi

Heavy Industries). The details of the experimental setup can

be found in [11].

Real and estimated motion data were recorded for 3 min-

utes during the real-time operation phase. The real joint angle

1This is feasible since the C matrix of each model has been defined as
a full-rank matrix through the fitting procedure.

2The vector of joint angles decoded from EMG signals.



Fig. 4. Real and estimated hand trajectory along the x, y, z axes, for a
3 minute period. Estimates from the proposed switching method are quite
close to the ground truth during the whole 3 minute test, while the stationary
model accuracy decreases after a period of approximately 30 seconds.

profiles were computed from the position tracker sensors,

which were kept in place (i.e. on the user’s arm) for offline

validation reasons. The estimated user’s hand 3D trajectory

along with the ground truth are depicted in Fig. 4. As it can

be seen the method could estimate the hand trajectory with

high accuracy, compensating for EMG changes due to muscle

fatigue. The latter is shown in Fig. 4, where the estimates

based on a stationary decoding model of the same form of

(13), that didn’t compensate for muscle fatigue, are shown.

As it can be seen, using a stationary model, the accuracy of

the estimates decreases with time, due to muscle fatigue.

IV. CONCLUSIONS AND DISCUSSION

In this paper, a muscle fatigue-dependent methodology

for controlling an anthropomorphic robot arm using EMG

signals from the muscles of the upper limb, was proposed.

A probabilistic framework was designed in order to assign

to each of the muscles recorded, a fatigue state. Then, a

switching model was built in such way to compensate EMG

changes related to muscle fatigue. The proposed method was

tested in a real-time teleoperation task of a robot arm in the

3D space, lasted for about 3 minutes. It was shown from the

experimental results that the proposed method could estimate

the human arm motion using only EMG signals with high

accuracy.

The novelty of the method proposed here can be centered

around two main issues. First, the proposed method is not

affected by EMG changes due to muscle fatigue. Since EMG

is widely known as a non-stationary signal, the fact that

the proposed method can compensate for EMG changes

through time (mainly caused by muscle fatigue), is quite

important for the field. The second important issue presented

here is that, to the best of our knowledge, this is the first

time a continuous profile of 3D arm motion (including 4

DoFs) is extracted using only EMG signals. Most previous

works extract only discrete information about motion, while

there are some works that estimate continuous arm motion,

constrained though to isometric movements, single DoF, or

very smooth motions [12].
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