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Abstract— In this paper methodological and design issues
about the development of a personal platform for the control
and processing of data acquired from intelligent biomedical
sensors are presented. This platform is designed in the context
of a telehealthcare system for the elderly with chronic diseases,
and one of its objectives is to monitor and detect fall events.
The main feature of the device is its on-line personalization
to the patient through adaptive knowledge generation in real-
time, which will result in special time execution requirements.
As a result a fall detection algorithm proposal is described and
analyzed.

I. INTRODUCTION

THE patient-doctor interaction model classically repre-

sented by the teleconsultation process and considered

the telemedicine paradigm is being overtaken by the needs

of new medical care context. Advances in diagnostic and

therapeutic techniques and better health-social conditions of

the population are serving to sustain the increasing incidence

of chronic diseases due to the progressive ageing of popula-

tion. The benefits that telemedicine and in general the Health

Information Technologies (HIT) can provide to the attention

of these patients pretend to overcome the classical centralized

model [1] by considering heterogenous health information

besides Electronic Health Record (EHR).

The authors have recently shown the advantages of a

methodology bound to the teleassistance domain based on the

knowledge generation concept. By means of this paradigm,

HIT are capable of providing personalized and adaptive

biomedical knowledge for a patient in such a way that

cannot be carried out by current telehealthcare models, which

results in an increase of his/her quality of life. The idea

and principal innovation of this paradigm is its capacity

of creating real-time personalized knowledge in opposition

to other monitorization devices that make an off-line data

process. This methodology shows advantages, for example,

in fall detection [2]. We employ a multilayer process archi-

tecture, whose first layer is defined by a platform of several

intelligent sensors that send captured and processed data

to a second layer, which creates a computational image of

patient’s state, centered in the desired biomedical domain

and processed by a set of distributed subsystems.
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It is important to highlight the multimodal nature of the

intelligent platform because it is able to manage and process

heterogenous signals from various devices, ranging from

those given by classical biomedical sensors (ECG, EEG, etc.)

to vocal sounds, which is the case of a therapeutic-prosthesis

for stuttering based on adaptive auditive feedback [3].

From the point of view of movement monitoring and

falling detection, the ability to measure the movement in an

objective manner at low cost is a fundamental requirement.

For this purpose different types of sensors fixed to the

body have been used [4]-[5], like accelerometers, gyroscopes

or goniometers. Accelerometers are the most advantageous:

they respond to frequency and intensity movement, some

types can be used to measure the tilt and movement of the

body, and technical advances in the field of MEMS systems

have made possible the existence of commercial miniature

accelerometers, cheap and reliable.

Other monitoring systems based on acceleration measure-

ments are constrained in their application domain to the sub-

ject’s home, leaving him/her unprotected when he/she leaves

home or in case of being undressed [6]. The last situation is

more dangerous because it usually occurs in moments when

the subject is in the bathroom or in the bedroom, with a

high probability of suffering a fall [7]. In addition to this,

the importance of an appropriate emplacement of the device

in the body must be taken in account. This location is near

the center of gravity of the subject, that is, in the back, in

the median plane at the height of the sacrum [5]-[6], which

is a requirement not fulfilled by all monitoring systems [8].

The above limitations are overtaken by the movement

monitor that the Biomedical Engineering Group has patented

[9]-[10]. In this work we present a first approach to the

design and functional aspects of a falling detection algorithm

integrated in what we refer to as Multidevice Personal

Intelligent Platform.

II. SYSTEM DESCRIPTION

The design of our portable monitor pursues a 24/7 su-

pervision of the user in- and outdoors. It permits patient’s

monitoring in high risk situations and eliminates acceleration

components due to the relative movement in the human body-

sensor interface. The monitor architecture does not restrict

the emplacement of the sensor on the body so as to permit

an easy access to its interface by the user. The monitor is

embedded in a wireless personal network (WPAN) and it

is composed by a Multidevice Personal Intelligent Platform

(PIP) and a set of sensors as shown in Fig. 1.



Fig. 1. Scheme of the proposed Multidevice Personal Intelligent Platform.

The PIP takes the master role in the WPAN and processes

in real-time data captured by the biosensors, which take

the role of slave in this topology. The PIP manages the

communications between the portable monitor and the Multi-

person Intelligent Platform based on standards (MIP), which

is an access point to the Telehealthcare Center. The monitor

interface is integrated into the PIP and thus is separated from

the Intelligent Accelerometer Unit (IAU), which is the main

sensor in the case of patient movement monitoring, and has

been designed to be worn as an adhesive patch on the back of

the patient at the height of the sacrum. Wireless technologies

used in the IAU-PIP and PIP-PIM links are Zigbee ant

Bluetooth respectively, which selection is motivated in [11].

Acceleration signals are analyzed in a distributed manner

between the IAU and the PIP. The IAU realizes a preprocess-

ing of the sampled signals at a frequency higher than needed

in order to estimate the kinetic and postural parameters.

This previous analysis is performed so as to detect signal

properties which suggest falling event occurrences and pos-

tural transitions. Detected events and properties together with

accelerometer signals are sent to the PIP. The latter realizes

the real-time process of the acceleration signal. With this

distributed methodology we are able to decrease the process

load in the PIP and consequently the data flow between

devices, which reduces power consumption.

A. PIP Functions

The main functions to be met by the PIP operating system

embedded in a DSP are:

• Managing the communications with peripherals: it must

be able to meet the demands from different peripherals,

mainly in terms of inter-device communications stan-

dards like I2C, SPI, etc.

• Managing the internal PIP operation: it should be

responsible for tasks such as device re-programming

and updating the mathematical model; reviewing and

diagnosing device status; managing the admission of

new sensors in the WPAN or the revision of the state

of both PIP and sensors.

• Processing bio-signals from sensors in real time and

operating accordingly. As an example, and for our

particular case of detecting falls functionality, this pro-

cessing should allow to adapt the parameters of the

implemented algorithm in the IAU to user and context.

A modular design has been followed for the PIP software

development, in which the different applications are inte-

grated into a set of threads that correspond to the main

functionalities of the PIP as explained below.

III. MATERIAL AND METHODS

A. Methodology

A concurrent application design has been implemented

through threads, in a way that maximizes its robustness and

can reduce the DSP processing load as much as we can,

which should be available as long as possible to execute

the real-time thread processing during normal operation.

Three main threads are executed that correspond to the

previously described functionality: Peripherals Management

Thread, PIP Management Thread, and Signal Processing

Thread. When none of the threads is running or if processing

thread terminates, the energy saving module runs, resulting

in a decrease in the switching frequency of the state logic

in the DSP CMOS circuitry and a state of inactivity in the

CPU, pending on an interruption that removes from this state

[12]. More details of the hardware of the PIP and IAU are

contained in [13]-[14].

The 24/7 system availability is crucial, which requires us

to oversee the battery state. For this reason a specific module

has been developed that, in conditions of low power battery,

makes a safeguard of the instant, event, last captured data and

other state data together with system identifiers, with the aim

of returning the PIP to the same state after it recovers the

power.

B. Development Tools

In order to meet the mentioned functions, some software

modules have been implemented by using a set of develop-

ment tools [15]. On the one hand, Code Composer Studio

v3.1 together with a TI Development Kit (TMS320C6713

DSK) allow us to program the DSP both with assembly

and high-level programming languages. They also provide

several management utilities for the internal processor and

Kit’s embedded peripherals using the DSP / BIOS tool. On

the other hand, we are using Matlab and more particularly

the Embedded Tools for TI C6000 DSP and Real Time

Workshop packages, that make possible to compile and

run optimized C code in the DSP for the development of

the thread of accelerometric signals processing. In addition,

the Link for Code Composer Studio package allows us to

communicate with the DSP development board as well as to

perform a parallel processing of the data between the board

and Matlab.

C. Fall Detection

In order to comply with the real time requirements, we

propose an algorithm for accelerometric data processing

based both on frequency and time analysis separately. This

kind of analysis pursues a double objective detailed in

relevance order:

• First, to make a precise detection in terms of sensivity

and specifity [16] and in a short time. This way we can
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Fig. 2. Magnitude Threshold (horizontal axis in hertz, vertical axis in dB).

avoid the latency time common in algorithms based on

a lack of movement basis.

• Second, and directly related to the foregoing, to im-

plement a light computational algorithm in order not

to overload the PIP, which has to manage, control and

process data from several biosensors. As a consequence,

code size and execution time are parameters to be

minimized in our algorithm.

We employ a frequency technique for impact detection based

on Linear AR-Burg spectrum estimate of small temporal

segments. We have chosen AR modeling because of its

simplicity to obtain the spectrum and also because this

model provides the maximum spectral estimate [17]. In fact,

AR-Burg modeling has been successfully applied in similar

contexts of application, like tremor detection in Parkinson

patients [18].

The time analysis is based on the outcomes of [2] to find

the posture of the patient employing a triaxial accelerometer.

They classified the posture of the patient by means of

calculating the vertical angle variation in segments of time.

By this way we can estimate almost instantly the posture

without delaying the algorithm process.

IV. RESULTS

A. Fall Detection Algorithm

In terms of filtering, it must be said that acceleration data

provided by the IAU are filtered by means of the filters

detailed in [2] so as to estimate the vertical angle of the

patient in step number 3. Data used to find the thresholds as

well as to validate the algorithm have been taken from the

set of laboratory experiments carried out by our group [10].

The steps followed by the algorithm to estimate the possible

falls can be divided into two parts:

• In the first part our goal is to find the most general

possible thresholds to be used in our algorithm. For this

reason we calculate the sixth order AR-Burg model of

the entire acceleration signal for each axis and each

activity, and then we obtain the frequency spectrum of
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Fig. 3. Angle Threshold (horizontal axis in number of samples, vertical
axis in degrees).

these models. We have observed that the majority of

risky fall activities signals have frequency components

over a threshold of 21 dB in the frequency range of

2.25 − 2.5 Hz, as depicted in Fig. 2.

• The second part of the algorithm covers the following,

for each accelerometer axis:

1) Segmentation of the signal in 90-sa segments,

what implies a temporal window of 7.425 s.

2) Calculation of the sixth order AR-Burg model for

each segment and corresponding spectrum.

3) Obtain the mean angle Ma for each segment.

4) Calculation of the number of samples that exceed

21 in each segment, together with the percentage

of axis that goes above the cited threshold.

5) If this percentage is greater than 2 per cent, we fill

a binary vector Vb with a one. Otherwise we put

a 0 in the vector component of the axis.

6) If Vb has one or more components with value 1,

i.e. one or more axis exceed the previous threshold,

and the mean angle for this segment is greater than

60
o, which corresponds to a lieying posture (see

Fig. 3), we determine that a fall has occurred in

this segment.

B. Size and Execution Time Estimates

Our DSP has a memory ROM that starts the main ap-

plication and hosts the basic not modifiable management

modules, which are primarily responsible for activation and

initial configuration of peripherals and launch of threads. The

current size of the configuration code is 35% of 384 KB of

ROM memory size.

Moreover, the PIP’s Flash memory will store the code

amount associated with the algorithm as well as captured

data and other system state indicators so as to recover itself

if the battery wears out. The algorithm code, yet at the

stage of debugging and optimizing, is less than half of the

configuration code, which represents less than 7% the size



of the Flash Memory. This code can be executed in the 2100

MFLOPS DSP in just a few tens of microseconds.

V. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

In this paper we have presented the functional and design

characteristics of a falling detection algorithm proposal inte-

grated into a multidevice Intelligent Personal Platform for the

monitorization of intelligent biosensors, whose principal fea-

ture is its capacity of processing and real-time personalized

knowledge generation by using a distributed architecture.

Owing to this reason, execution time and size code have

been fundamental implementation aspects.

The design and preliminary results obtained until now sug-

gest that the platform can meet the functional specifications

defined above, and therefore its feasibility within the layer

of intelligent sensors cited.

B. Future Works

Future advances in the platform will take into account the

optimization of the presented algorithm and the improvement

of its personalization according to the monitorized patient

and the influence of the variation of the thresholds, as

well as the incorporation of new wireless communication

technologies [3].

Besides, there are several outcomes [19]-[20] in the es-

timate of energy expenditure related to the activity of the

monitored patient by means of accelerometters. To the best of

our knowledge and owing to the fact that our accelerometer

biosensor is attached at the back, we consider to follow

Bouten results [5], who states a proportional relation between

this consumption and the signal magnitude area of triaxial

accelerometer data.

On the other hand, the estimation of the kind of activity

performed by the patient will determine the threshold values

to be sent to the IAU for its processing. A first approach

of this determination has been made in our group by means

of ROC curve analysis taken from a set of laboratory ex-

periments involving different subjects and contexts of study

(hard floor and soft floor). In addition to this line of research,

we are considering other approaches like the study of the

Fourier Transform of the vertical accelerometer signal [21],

or wavelet transforms [22].
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