
  

  

 

Abstract— The potential of cancer multilevel modeling has 

been particularly emphasized over the past years. Integration of 

multiscale experimental and clinical information pertaining to 

cancer via advanced computer models seems to considerably 

accelerate optimization of cancer treatment in the patient 

individualized context. However, a sine qua non prerequisite 

for such models to reach clinical practice is to be thoroughly 

tested through clinical trials for validation and optimization 

purposes. This is one of the major goals of the European 

Commission funded “Advancing Clinico-Genomic Trials on 

Cancer” (ACGT) project. This paper presents a discrete state 

based, four dimensional, multiscale tumor dynamics model that 

has been specially developed by the Ιn Silico Oncology Group in 

order to mimick the Trial Of Principle (TOP) clinical trial 

concerning breast cancer treated with epirubicin. The TOP 

trial constitutes one of the ACGT clinical trials. A substantial 

part of the model can address other tumor types as well. The 

actual pseudoanonymized imaging, histopathological, molecular 

and clinical data of the patient are exploited. Special emphasis 

is put on the effect of cancer stem/clonogenic, progenitor, 

differentiated and dead cells, the cell category transition rates 

and the cell category relative populations within the tumor from 

the treatment baseline onwards. The importance of adaptation 
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of the cell category relative populations to the cell category 

transition rates for free tumor growth is revealed and the 

concept of a pertinent nomogram is introduced. A method 

which ensures adaptation of these two sets of entities at the 

beginning of the simulation execution is proposed and 

subsequently successfully applied. Convergence and code 

checking issues are addressed. Indicative parametric/sensitivity 

studies are presented along with specific numerical findings. 

The model’s behavior substantiates its potential to serve as the 

basis of a treatment optimization system following an eventually 

succesful completion of the clinical validation and optimization 

process. 

I. INTRODUCTION 

OLDWIDE, breast cancer is the second most commonly 

diagnosed cancer (both sexes counted) and the fifth 

most common cause of cancer death [1]. The current trend in 

the treatment of localized breast carcinoma is the 

combination of neoadjuvant chemotherapy (preoperative 

therapy given as initial treatment) and surgery with adjuvant 

therapy. The preoperative systematic therapy contributes to 

the shrinkage of the tumor and the surgery required area, 

even the avoidance of mastectomy in some cases [2]. The 

chemotherapy agent and the therapeutic scheme chosen are 

based on the experience from clinical practice. However, due 

to the heterogeneity of the disease, the effectiveness and the 

benefits of the adopted therapy vary from individual to 

individual.  Computer modeling and simulation are expected 

to considerably support treatment optimization in the 

patient’s individualized context. 

In this context a number of computational models of solid 

tumor response to chemotherapy that might in principle be 

applicable to breast cancer have been developed. The 

following represent only a few examples. Chuang [3] 

presented a theoretical study concerning the applicability of 

certain early pharmacokinetic and cell kinetic models for 

cancer chemotherapeutic systems. Ozawa et al.[4] presented 

a pharmacodynamic model for the cell cycle phase-specific 

antitumor agents as well as for the cell cycle phase-

nonspecific agents. Gardner [5] developed a computer 

model, the kinetically tailored treatment or KITT model, to 

predict drug combinations, doses, and schedules likely to be 

effective in reducing tumor size and prolonging patient’s life. 

In this paper a novel spatiotemporal, patient specific, 

discrete state simulation model of solid tumor response to 

chemotherapeutic treatment in vivo is delineated. Monte 

Carlo and continuous mathematics are also used although to 
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a lesser extent. Even though the case of breast cancer is 

addressed, parts of the model can be easily adapted to other 

types of solid tumor.  Several numerical aspects of the model 

reflecting actual biological mechanisms are revealed and 

appropriately treated.  

II.  THE TOP TRIAL  

The chemotherapeutically treated breast cancer tumor, 

considered in the present work is mimicking a branch of the 

clinical study known as Trial of Principle (TOP) [6]. This 

study aims to evaluate the topoisomerase II alpha gene 

amplification and protein overexpression as markers 

predicting the efficacy of epirubicin in the primary treatment 

of breast cancer patients. The trial addresses non-metastatic, 

early breast cancer patients with ER-negative tumors of size 

>2cm as defined by ultrasound. The patients are treated with 

four cycles of single-agent epirubicin (100mg/m
2
, q3weeks) 

as neoadjuvant treatment, followed by surgery and adjuvant 

chemotherapy [6]. 

III. A BRIEF OUTLINE OF THE MODEL 

A. The Model Basics 

A number of core algorithms of the model originate from 

work previously published by the In Silico Oncology Group 

(www.in-silico-oncology.iccs.ntua.gr) such as [7-10] 

although considerable extensions and improvements have 

been made. Novel algorithms concerning several further 

aspects of the natural phenomenon under consideration such 

as the simulation of the cancer progenitor or limited mitotic 

potential (limp) cell dynamics, the achievement of adaptation 

of the cell category relative populations to the transition rates 

among the various cell categories for free tumor growth (in 

this more complex setting), model compatible epirubicin 

pharmacokinetics modeling etc. have been developed, 

implemented, checked and numerically studied.  

In this paper a spatially homogeneous tumor of spherical 

shape is considered. This is a first approximation based on 

accumulated clinical experience regarding the shape of 

breast cancer tumors and on the fact that the tumor size as 

reported in the Case Report Forms (CRFs) of the TOP trial is 

defined as the maximum diameter measured by ultrasound 

imaging. More general shapes and non metabolically 

homogeneous tumor structures will be addressed in a 

subsequent version. Approaches such as the ones already 

developed by our group and presented in [7-10] will be 

recruited to tackle this aspect. in the following a brief 

aoutline of the model will be attempted. 

A cubic discretizing mesh is superimposed upon the 

anatomic region of interest and is scanned every hour in 

order to allow the local application of basic biological rules 

and subsequently lead to the spatiotemporal simulation of the 

evolution of the tumor system. The elementary cube of the 

mesh is called geometrical cell (GC) and in this paper 

corresponds to a volume of 1mm
3
. Each geometrical cell 

belonging to the tumor is considered to initially accomodate 

10
6
 biological cells. This corrseponds to the typical cell 

density of 10
6 

cells/mm
3
 being the standard assumption 

particularly in radiobiological models [11]). Conservation of 

this (mean) cell density throughout the simulation is one of 

the tasks of the code. An hourly scan consists of four 

constituent scans. The first one primarily deals with the  

simulation of the cell cycle. The second one deals with the 

eventual unloading of each overloaded geometrical cell due 

to the occurence of cell mitoses.  It also handles the eventual 

creation of one or more new GCs that will be occupied by 

the tumor thus leading to a differential tumor expansion. The 

third one deals with the re-establishment  of the normal cell 

density by freeing geometrical cells containing too few 

biological cells and therefore leading to a differential tumor 

shrinkage. The fourth one deals with the restauration of 

tumor contiguity in case that tumor fragmentation has taken 

place. Random directions covering the entire angular space 

for differential tumor expansion and shrinkage are used.  

 
TABLE I 

 INPUT  PARAMETERS AND THEIR ASSIGNED VALUES CORRESPONDING TO 

THE RESULTS PRESENTED  IN THIS  PAPER UNLESS OTHERWISE STATED 

 

Symbol Description  Value 

Tc
 Cell cycle duration 60h * 

TG1 Duration of Gap 1 phase 0.41(Tc - TM) 

TS Duration of DNA synthesis phase 0.41(Tc - TM) 

TG2 Duration of Gap 2 phase 0.18(Tc - TM) 

TM Duration of mitosis phase 1h 

TG0 Duration of dormant phase 96h 

TN Time period needed for necrosis’ products 

to disappear from the tumour 

20h 

TA Time duration needed for apoptosis 

products to be removed from the tumour 

6h 

NLIMP Number of mitosis performed by progenitor 

cells before they become differentiated 

3 

RA Apoptosis rate of cancer cells 0.001 

RNDiff Necrotic rate of differentiated cells 0.001 

RADiff Apoptosis rate of differentiated cells 0.001 

PG0toG1 Fraction of dormant cells that re-enter cell 

cycle 

0.01 

PMtoG0 Fraction of cells that enter G0 phase 

following mitosis  

0.1 

Psym Fraction of stem cells that perform 

symmetric division 

0.18 

*Based on literature, breast cancer cell cycle duration can vary from 23h 

to 90h. An intermediate value of 60h is considered here. Cell cycle phase 

relative durations are based in [12] and further related literature. Rates and 

fraction values have been assumed based on both qualitative or 

semiquantitative information and logic. Extensive use of series of TOP 

clinical trial data are expected to  allow more quantitatively refined 

assumptions. 

 

One of the central features of the model is the distinction 

of proliferating cells in stem and progenitor (limp) cells as 

well as the consideration of differentiated cells. This 

approach provides the flexibility to simulate tumors of 

differing differentiation degree (grade) and address the 

chemotherapeutic drug effect on the various cell categories 

(stem-limp) separately. Such a modeling approach is in 

accordance with the concept that breast cancer originates 



  

from mammary stem cells, a theory that is gaining more and 

more ground. 

Fig. 1 depicts the cytokinetic model proposed and adopted 

for the case of free tumor growth. An extension of this 

diagram is used in order to model the chemothepy treated 

tumor cytokinetics. The following types (categories) of cells  

can be identified : stem/clonogenic cells i.e. cells assumed to 

possess unlimited proliferative potential, limp (limited 

mitotic potential) or progenitor cells i.e. cells with limited 

mitotic potential (three divisions are assumed before terminal 

differentiation occurs), differentiated (diff) cells i.e. 

terminally differentiated cells, necrotic cells  i.e cells that 

have already died through necrosis and apoptotic cells i.e. 

cells that have already died through apoptosis. 

 

Fig 1. A generic cytokinetic model for free tumor growth. STEM: stem 

cells. LIMP: Limited proliferative potential cells. DIFF: terminally 

differentiated cells 

A proliferating tumor cell (stem or limp) passes through 

the phases gap 1 (G1), DNA synthesis (S), gap 2 (G2) and 

mitosis (M). After completion of mitosis the “daughter” cells 

may enter the resting (dormant) G0 phase with a fraction 

(percentage)  PMtoG0 or (re-) enter the G1 phase depending on 

the nutrient supply and oxygenation at their current spatial 

position. A dormant or proliferating cell residing in any 

phase of the cycle may die due to ageing and spontaneous 

apoptosis with a rate RA (probability/hour). A dormant cell is 

assumed to be able to survive for an interval TG0 unless the 

metabolic conditions (oxygenation, nutrition) in its region 

are inproved before expiration of TG0. If the local metabolic 

conditions become adequate it re-enters the G1 phase. 

Otherwise it enters the necrotic phase after TG0. The 

differentiated cells may die due to apoptosis or necrosis each 

one expressed by a different rate. 

Each stem cell can undergo either a symmetric or an 

asymmetric division. The occurence of a symmetric division 

(giving birth to two stem cells) is quantified by the rate 

(percentage) parameter Psym. Asymmetic division gives birth 

to one stem and one progenitor cell. Table I summarizes the 

input parameters of the code and the values corresponding to 

the results presented in the present work unless otherwise 

stated.    

B. Epirubicin Pharmakokinetics 

Epirubicin pharmacokinetics has been described in various 

studies by an open three-compartment model with 

elimination from the central compartment [13]. The 

pharmacokinetics module of the model [see Appendix A] 

enables the calculation of the area under curve (AUC) from 

the inter-compartmental rate constants for any given drug 

dose and volume of distribution. Typical values for the 

volume of distribution (Vd) and clearance (CL) have been 

derived from [13]. Based on these values the elimination 

constant can be calculated from (1) and substituted into the 

tri-phasic model equations.  

d

el
V

CL
k =   (1) 

For the determination of the transfer rate constants the 

SAAM II software tool developed at the University of 

Washington has been used [14].  The specific values of Vd, 

CL and dose in conjunction with the experimental data of 

plasma concentration versus time have been exploited in 

order to determine the three compartment model parameter 

values through a fitting process. This has led to the 

estimation of the transfer rate constants (Table II). 

Subsequently the AUC can be estimated  for several doses.  

 
TABLE II 

 TYPICAL PARAMETER VALUES ASSIGNED TO THE MODEL MODULE DEALING 

WITH  EPIRUBICIN PHARMACOKINETICS AND PHARMACODYNAMICS 

 

 

C. Epirbicin Pharmacodynamics 

Epirubicin is an anthracycline chemotherapeutic agent, 

derivative of doxorubicin. It exerts its cytotoxic action 

through various mechanisms; the most established one is 

intercalation between bases of double stranded DNA thereby 

inhibiting DNA synthesis and function. It interferes with 

DNA transcription and inhibits topoisomerase II by forming 

a complex with DNA and topoisomerase II, which leads to 

DNA strand breaks. It also acts to form toxic oxygen-free 

radicals, causing DNA strand breaks, and inhibiting DNA 

synthesis and function [15]. Epirubicin is considered a cell 

cycle non-specific drug [12]. 

In the simulation model tumor cells are assumed to absorb 

Symbol Parameter Value 

D Dose  100 mg/m2   

Vd Volume of distribution  480.1L/m2 

k12 Inter-compartmental  

transfer rate constant 

0.1498 

 

k21 Inter-compartmental  

transfer rate constant 

0.7231 

k13 Inter-compartmental  

transfer rate constant 

0.1498 

k31 Inter-compartmental  

transfer rate constant 

0.7231 

kel Elimination rate constant 0.155h-1 

AUC Area Under Curve  2/3*0.8877mg*h/L≈ 

0.592mg*h/L 

SF Survival fraction ≈ 0.65 



  

     

 

Week        1 2 3 4 5 6 7 8 9 10 11 

Day          1 8 15 22 29 36 43 50 57 64 71 

the drug at all cycling phases and apoptotic death occurs at 

the end of the S phase. In specific cases epirubicin is favored 

over other anthracycline drugs (doxorubicin) as it appears to 

cause fewer side-effects due to its less toxic nature at 

equivalent therapeutic doses.  
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Fig. 2.  Experimental data for HeLa cells survival as a function of 

epirubicin AUC. 

 

As a first approximation, the survival fraction of 

epirubicin treated tumor cells is calculated using 

experimental data concerning the pharmacodynamics of 

epirubicin. More specifically the in vitro cytotoxicity of 

epirubicin on HeLa cells which is available through the Food 

and Drug Administration [16] as depicted in Fig. 2 has been 

considered. The survival fraction for any realistic dose for 

which no experimental data are available is approximately 

calculated through linear interpolation. Since drug 

penetration into the tumor is limited due to the imperfections 

of neovascularization, the previously calculated AUC is 

multiplied by a factor of 2/3.   This is also in agreement with 

the observation that for human breast cancer tumors steep 

doxorubicin concentration gradients may appear. [17]. At a 

subsequent stage the individual patient’s gene expression 

data will be used to perturb the population based mean cell 

survival fraction. In this way an appropriate molecular 

signature of the patient will be exploited and therefore 

further individualizion of the treatment plan will be 

achieved. 

D.  The Simulated Chemotherapeutic Scheme  

The case of primary chemotherapy (“neo-adjuvant” 

chemotherapy) with single-agent epirubicin (100 mg/m
2
 i.v. 

once every 3 weeks for 4 consecutive cycles) for early breast 

cancer patients, in accordance to the TOP trial is addressed. 

The simulated tumor is left to grow for 2 weeks before the 

first drug dose administration takes place. This is assumed to 

reflect a typical time interval between the point at which 

diagnostic imaging data are obtained  and the initiation of 

chemotherapy.  Any other time interval can be considered as 

well. 

 

 
Fig. 3.  The dose fractionation considered. Each drug administration 

session is denoted by a dot. 

IV. A PRELIMINARY CHECK OF THE MODEL 

If at the beginning of a simulation execution initialization 

of the population fractions (percentages or relative 

populations) of the various cell categories (e.g. dormant stem 

cells, proliferating stem cells, dormant progenitor cells etc) 

within each geometrical cell of the discretization mesh is 

arbitrarily made it is very likely to end up with a peculiar and 

unrealistic free tumor growth behavior. For example there 

may appear an unexpected (abnormal) decrease of the tumor 

volume followed by a volume increase. This is due to the 

lack of adaptation of the cell category transition rates to the 

initial cell category relative populations. In order to avoid 

such an unrealistic behavior the concept of the nomogram 

correlating cell category transition rates with cell category 

relative populations for free tumor growth has been 

introduced. Fig. 4 shows the number of proliferating and 

total tumor cells as a function of time for the case of a 

correct adaptation of the transition rates to the relative 

populations and the same numbers when there is lack of such 

adapation (arbitrary selection of initial relative populations 

in relation to transition rates). In both cases the same 

transition rates but different initial relative polulation of each 

cell category (stem, limp, diff and dead cells) have been 

assumed.  It is pointed out that cell category transition rates 

are considered approximately constant for the relatively 

small real time interval addressed by a typical simulation. 

Obviously cell category transition rates are expected to 

change considerably with time on a much larger time scale 

(e.g. from the appearance of the first tumor cell to the 

formation of a clinically detectable tumor).  
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Fig. 4.  The effect of arbitrary initialization of the cell category relative 

populations on tumor growth. Execution A corresponds to a correct 

populations initialization compatible with the cell category transition rates. 

Cell numbers increase smoothly and monotonically from the beginning of 

the simulation onwards. Execution B corresponds to an arbitrary population 

initialization. Cell numbers behave unrealistically (lack of monotonicity). 

All transition parameters and the cell cycle duration are the same in both 

cases (Table I). The initial tumor has a diameter of 14 mm. 

 

Subsequently, a number of exploratory simulation 

executions have been performed in order to match the initial 

relative populations of the various cell categories with 



  

appropriate cell category transition rates for various cell 

cycle durations. An example is given in Table III where 

indicative cell category relative populations (fractions) have 

been defined for specific values of the symmetric division 

probability (rate or percentage)  and the cell cycle duration. 

The rest of the transition probabilities are the same for all 

executions (see Table I). Each GC has been initialized with 

100 proliferating stem cells. All other cell category 

populations have been set to zero. The code has been 

executed until 3000 virtual hours. This time has proved 

sufficient for the initial hypothetical tumor to produce all cell 

categories and for the relative populations (percentages) of 

the cell categories to practically reach an equilibrium. It is 

noted that in real tumors all cell category populations extant 

at a given (initial) time point except for the stem/clonogenic 

cells die and subsequently disappear. The latter are the only 

ones capable of regenerating the tumor on a large time scale. 

This is depicted in Fig. 5, where three indicative executions 

characterized by the same cell category transition 

probabilities and variable cell cycle duration (TC=30 h, 60 h, 

90 h) have been performed. 

Table III shows that an increase of the Psym value leads to 

an increase of the fraction of stem cells in the tumor. This is  

fairly reasonable since more and more stem cells are 

produced following consecutive stem cell mitoses. A 

decrease in the differentiated cell fraction is also evident.  

This is also expected since less (progenitor) cells can now 

embark on differentiation. The fraction of limp (progenitor)  

cells on the other hand exhibits an initial increase,  reaches a 

maximum and then decreases with a relatively small 

difference  between the minimum and maximum values. 

Limp cells derive from the asymmetric division of stem cells 

and their population depends on the product of the following 

two competitive factors: the number of stem cells and the 

asymmetric division percentage.  The combination of these 

factors leads to the observed behavior of the limp cell 

fraction in the tumor as a function of the symmetric division 

percentage. An increase of TC leads to an increase of stem 

and limp cell fractions as both cell categories live for a 

longer interval and a complementary decrease of the 

differentiated and dead cells.  Finally the grey rows of Table 

III correspond to combinations of the model parameters that 

lead to non self-conservative tumors i.e. tumors that shrink 

by themselves  and therefore cannot exist [see APPENDIX 

B].   

V. RESULTS 

In the following a small number of parametric studies are 

presented as indicative checks and/or applications of the 

model. Our primary aim is to deepen and advance 

quantification of our understanding of tumor response to 

chemotherapeutic treatment particularly in the breast cancer 

and more specifically in the TOP trial context.  

A homogeneous breast cancer spherical tumor of diameter 

14 mm has been considered. The values assigned to the 

various input model parameters are included in Table II and 

III. The various cell category relative populations have been 

properly initialized using the concept of the nomogram. 
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Fig. 5.  Fluctuation of stem and progenitor cell population percentages, as  

functions of time, for three indicative values of the cell cycle duration: 30h, 

60h and 90h. The cell category transition probabilities are the same in all 

three cases. Psym=0.22.  The rest of the transition probabilities have been 

assigned the values included in Table I. The tumor space was initially 

occupied only by stem cells with a hypothetical (fully artificial) density of 

100 cells/mm3. Each execution corresponds to a tumor with different 

growth rate. TC=90h corresponds to the most slowly evolving tumor. It is 

evident that by 3000 h the population percentages (relative populations) 

have been stabilized in all cases. The same holds true for the differentiated 

and dead cell populations (not shown here). 

 
TABLE III 

 PART OF THE NOMOGRAM OF CELL CATEGORY TRANSITION RATES  

(PERCENTAGES) AND  CELL CATEGORY RELATIVE POPULATIONS 

(FRACTIONS)  

Cell  

cycle  

duration  

(h) 

Symmetric  

division 

percentage 

Stem  

cell 

fraction 

Limp  

cell 

fraction 

Diff  

cell 

fraction 

Dead  

cell 

fraction 

10%         

20% 0.032 0.118 0.828 0.022 

30% 0.072 0.190 0.718 0.020 

40% 0.126 0.242 0.612 0.019 

50% 0.199 0.274 0.508 0.019 

60% 0.295 0.281 0.405 0.019 

70% 0.416 0.262 0.303 0.020 

80% 0.567 0.211 0.201 0.021 

30 

90% 0.751 0.125 0.100 0.024 

10%         

20% 0.037 0.133 0.810 0.021 

30% 0.075 0.199 0.706 0.020 

40% 0.130 0.248 0.603 0.019 

50% 0.203 0.278 0.501 0.018 

60% 0.298 0.284 0.400 0.018 

70% 0.419 0.263 0.299 0.019 

80% 0.570 0.212 0.199 0.020 

60 

90% 0.754 0.126 0.099 0.021 

10%         

20%         

30% 0.080 0.212 0.688 0.020 

40% 0.135 0.258 0.589 0.019 

50% 0.208 0.285 0.490 0.018 

60% 0.303 0.289 0.391 0.018 

70% 0.423 0.266 0.293 0.018 

80% 0.574 0.213 0.195 0.018 

90 

90% 0.757 0.126 0.097 0.020 
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The following three values of the symmetric division 

fractions (corresponding to the respective percentages) have 

been considered: 0.19, 0.20 and 0.21. For each case two 

kinds of executions have been performed; one simulating 

free tumor growth and another one simulating its response to 

chemotherapy. Bolus administration of epirubicin is assumed 

according to the fragmentation scheme shown in Fig. 3. Fig. 

6 shows the number of total cells as well as the number of 

stem and limp cells (both proliferating  and dormant). In the 

case of treatment (therapy) these populations include both 

surviving cells and cells affected by the drug (and therefore 

destined to die) but not yet dead. 

Although a quantitative validation of the results using 

actual pseudonymized TOP trial data is in progress, the 

following observations can already be made based on Fig. 6. 

In the case of free tumor growth, monotonic growth (actually 

part of the corresponding Gompertzian curve) has been 

successfully demonstrated. Depending on the numerical 

value assigned to the symmetric division fraction both 

aggressive or slowly progressing tumors can be simulated. 

More specifically an increase in Psym leads to a tumor with a 

higher growth rate. 

The model also successfully simulates the shrinkage of the 

tumor after a chemotherapeutic session. The drug 

administration time points are evident in the corresponding 

curves as they are accompanied by a rapid decrease in all 

cell category populations shown. By assigning different 

values to the various model parameters different clinical 

cases corresponding e.g. to responding or non responding 

patients can be simulated. Increasing the value of Psym leads 

to less pronounced tumor shrinkage following 

chemotherapeutic treatment as expected.   

Νumerical findings also indicate that the most appropriate 

time for tumor removal surgery i.e.  the time at which tumor 

size reaches a minimum depends on the tumor 

characteristics. More specifically the tumor size seems to be 

minimum around 38, 30 and 23 days after last drug 

administration for Psym= 0.19, 0.20 and 0.21 respectively. 

Until this time the therapeutic effect is still ongoing. Later on 

the therapeutic benefits may be eliminated due to tumor 

repopulation. Fig. 7 demonstrates the three dimensional 

expansion and shrinkage of the tumor. A tumor with 

Psym=0.19 is depicted 126 days after the beginning of the 

simulation.  Both free growth and response to chemotherapy 

are considered. The spherical shape of the tumor is 

practically preserved in both cases. A typical execution time 

for the simulation of the treatment course on a standard 

laptop machine is about 2 min. However there is a 

tremendous increase in the computational power needed with 

increasing spatial discrimination. 

VI. DISCUSSION 

Novel approaches to the integrated simulation of a number 

of crucial aspects of tumour growth and response to therapy 

have been presented. The first approach is related to the 

division of potentially proliferating tumor cells to 

stem/clonogenic cells with theoretically limitless mitotic 

capacity and progenitor cells with limited mitotic capacity. 

Such an approach can also implement  the theory of stem cell 

origin of cancer. 

According to this theory only a small population of 

immature (stem) cells is responsible for the generation of a 

tumor showing resistance to current therapies. These cells 

are responsible for the regrowth of the tumor even though no 

tumor is detectable after completion of treatment. A research 

trend is to produce agents that will target stem cells and 

eradicate cancer form its root. 

 

 

 

 

 

 

 
Fig. 6.  Number of total tumor cells (Upper Panel) and number of stem and 

limp (both proliferating and dormant) tumor cells (Lower Panel) as a 

function of time for the following values of symmetric division fraction 

Psym: 0.19, 0.20 and 0.21. A homogeneous spherical tumor of diameter 

equal to 14 mm is considered. Free growth and response to therapy are 

simulated. Epirubicin is administrated according to the fractionation 

scheme of Fig. 3.  The dose of each fraction is 100mg/m2. The values of 

code input parameters except Psym are included in Table I.  

 

Fig. 7.  Three dimensional visualization of a tumor for Psym=0.19. The rest 

of the values of the model parameters are included in Tables I and II.  (a) 

Initial homogeneous spherical tumor of diameter 14 mm. (b) Tumor at the 

end of the simulation execution in the case of treatment (126 days after the 

beginning of chemotherapy and 9 weeks after the last drug administration). 

The fractionation scheme of Fig. 3 for a fraction dose of  100mg/m2 has 

been considered.  (c) Final tumor at the end of the simulation execution in 

the case of free growth (126 days after the time point corresponding to the 

start of chemotherapy in panel (b)). 

          (a) (b) (c) 



  

Cancer progenitor cells play an important role in the 

definition of the tumor grade. In the present version of the 

model cancer progenitor cells have been considered 

undergoing three mitoses before they become differentiated. 

However more progenitor mitotic stages can be supported by 

the model and this will be demonstrated in future versions. 

By varying the number of progenitor mitotic stages tumors 

with different differentiation degrees can be simulated.  

Another novel aspect of the model is the concept of the 

nomogram matching cell category transition rates with cell 

category relative populations for free tumor growth at the 

starting point of free tumour growth simulation. Ideally 

relative populations should be defined for all possible 

combinations of code parameters values but this is 

impractical. Subsequent versions of the model will have 

incorporated the estimation of the cell category relative 

populations in the main code module and therefore they will  

substantially increase usability of the code.  

The model developed aims to intensively exploit the 

individual patient’s medical data such as imaging data (e.g., 

CT, MRI, PET slices, possibly fused), histopathological data 

(e.g., tumor subtype, differentiation degree etc.), molecular 

data (e.g. critical gene expressions) and clinical data (age, 

previous treatments etc.). Extensive demonstrations of these 

processes, already implemented within the framework of 

ACGT, will be presented shortly. 

A small number of parametric studies have also been 

presented. Similar studies are to be performed for all code 

parameters in order to thoroughly analyse the sensitivity of 

the model’s behavior to its parameters variations. An 

extensive use of the clinical trial data is expected to crucially 

support the model’s optimization and clinical adaptation. 

Pertinent optimization techniques such as artificial neural 

networks, genetic algorithms etc. have been planned to be 

used in this context.  

Based on the results obtained so far as well as on their 

critical analysis the simulation model appears to be capable 

to satisfactorily simulate, at least qualitatively, many 

clinically important features of tumor behavior such as tumor 

repopulation, expansion and shrinkage.  

VII. CONCLUSIONS 

A top-down four-dimensional multilevel Monte Carlo 

discrete state simulation model of the response of solid 

tumors such as breast cancer tumors to epirubicin-based 

chemotherapeutic treatment in vivo has been presented. 

Special emphasis has been put on the effect of the 

stem/clonogenic, progenitor, differentiated and dead cells on 

the overall tumor behavior. The importance of adaptation of 

the cell category relative populations to the cell category 

transition rates for free cell growth has been revealed and the 

concept of a pertinent nomogram has been introduced. A 

method which ensures adaptation of these two sets of entities 

at the beginning of the simulation execution has been 

proposed and applied. A preliminary parametric study has 

been performed and a number of interdependences have been 

revealed. Although a thorough numerical analysis of the 

model in order to accurately determine its sensitivity and 

parameter interdependences is under way, results obtained so 

far are in agreement with clinical reality. A thorough clinical 

validation and optimization by exploiting pseudoanonymized 

real data from the TOP trial within the framework of the 

ACGT project is in process. Our goal is to end up with a 

reliable simulation system able to assist clinicians with 

personalized optimization of cancer treatment. Optimization 

is expected to be achieved through performing in silico (on 

the computer) patient individualized treatment experiments.  

The clinically validated model might also serve as a valuable 

tool for researchers, professionals or patients. 

APPENDIX A 

For a three-compartment first order pharmacokinetic 

model the plasma drug concentration can be given by: 

γtβtat ΓBAC −−− ++= eee             (2) 

The Area Under Curve is 

γ
Γ

β

B

a

A
AUC ++=               (3) 

 
Fig. 8.  Three compartment model. Ci, Vi are the concentration and volume 

of each compartment, kel is the elimination rate constant from the central 

compartment, and k12, k21, k13, k31 are the rate constants describing drug 

transfer between the compartments. 
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APPENDIX  B 

Let us consider N stem cells residing in the G1 cell cycle 

phase. After each execution step (every hour) a fraction of 

stem cells will die due to apoptosis. This procedure is 

quantified by the parameter apoptosis rate (RA). More 

specifically after the first hour a number of N(1- RA) cells  

will remain alive, after the second the stem population will 

be N(1- RA)
2
 etc. The number of stem cells that will 

eventually reach the mitosis phase and subsequently divide 

will be CT

AR1N )( − . From this population a fraction equal 

to Psym will divide symmetrically giving rise to 2 stem cells, 

whereas the rest of the stem cells will give birth to 1 stem 

cell and 1 progentitor cell. By performing the necessary 

computations the number of stem cells after mitosis will be 

)()( sym

T

A P1R1N C +− . The stem cells that will re-enter the 

cell cycle and will not enter the dormant (G0)  phase will be 

)P)(()( MtoG0−+− 1P1R1N sym

T

A
C . In order to have a 

growing tumor the number of stem cells after mitosis must be 

larger than the number of the initial stem cells i.e the 

following inequality must hold true 

⇒≥−+− N1P1R1N sym

T

A
C )P)(()( MtoG0  

11P1R1 sym

T

A
C ≥−+− )P)(()( MtoG0       (4) 

Equation (4) enables computation of the allowed value 

range of any one of the parameters, for example Psym, 

provided that  specific values have been assigned to the trest 

of the parameters. In the above analysis the fraction of 

dormant cells that re-enter the cell cycle (expressed by 

PG0toG1 ) has not been taken into account. Nevertheless for 

low values of PG0toG1 as is the case of free tumor growth (4) 

is a good approximation. 
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