
  

  

Abstract—We present and discuss how the so called 

Equation-free approach for multi-scale computations can be 

used to systematically study certain aspects of the dynamics of 

detailed individual-based epidemic simulators. In particular we 

address the development of a computational protocol that 

enables detailed epidemic simulators to converge to their 

coarse-grained critical points which mark the onset of 

instabilities including the emergence of time-dependent 

solutions. As our illustrative example, we choose a simple 

individual-based stochastic epidemic model deploying in a fixed 

random regular network. We show how control policies based 

on the isolation of the infected population can dramatically 

influence the dynamics of the disease resulting to big-amplitude 

oscillations. We also construct the approximate coarse-grained 

bifurcation diagrams illustrating the dependence of the 

solutions on the disease characteristics. 

I. INTRODUCTION 

HE quest for the efficient modeling, analysis, long-term 

prediction and control of infectious disease spread is one 

of the most significant and tough research pursuits of our 

time. 

Towards this aim, a variety of public- health measures and 

policies have been proposed in order to control the outbreak 

of a disease in an efficient way. The ultimate goal is the 

design and the development of prevention policies to help 

control or even extinguish a possible epidemic or even 

pandemic threat.  

One of the most common strategies is vaccination of 

targeted population [1], [2]. Another health measure which 

has been historically used in the control epidemics concerns 

the special treatment -quarantine or isolation- of the infected 

part of the population [3]. In the study of [3]-[5] it has been 

shown that such a strategy may result to the eradication of 

the epidemic. The public intervention of isolation and 

quarantine has also been used in [6], [7] along with clinical 

data to express the efficiency of those measures in diseases 

such as SARS, Smallpox, Pandemic Influenza and HIV. 

There is no doubt that mathematical models and systems 

theory are playing a most valuable role in shedding light on 
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the problem and helping make decisions. A large and 

intensive research effort is evolving for the development of 

better and more detailed models including expertise from 

inter-disciplinary fields ranging from molecular biology and 

epidemiology to sociology and applied mathematics. The 

studies have proceeded mainly on two main directions On 

the one hand, there are the “continuum models” in the form 

ordinary or partial-integral-differential equations [8], [9]. 

However, due to the complexity of the phenomena, available 

continuum models are often qualitative caricatures of the 

reality. On the other hand, there are the so-called object-

based models where the problem is modeled as a network of 

interacting discrete entities (or as otherwise called 

individuals, components or objects). These models include 

detailed information of the spreading mechanisms such as 

the structure of the social network, the mobility and the 

everyday interactions of each individual, demographics of 

age and income as well as knowledge in the molecular/virus 

level [10]-[12].  

However a fundamental prerequisite for the systematic 

analysis of the dynamics and the design of control processes 

is the availability of reasonably accurate closed-form 

dynamical models. Yet, for object-based epidemic models, 

due to their inherent complexity, the closures required to 

formulate representative continuum models are not usually 

available. When this is the case, conventional continuum 

algorithms cannot be used directly for systematic systems 

level analysis and control-intervention policies design. 

In current practice, what is done with these detailed 

individual-scaled epidemic simulators is simple time-

integration: set-up many initial conditions to span the phase 

space, for each initial condition create a large enough 

number of ensemble realizations, probably change some of 

the rules and then run the detailed dynamics for a long time 

to investigate how things such as different vaccination 

policies and malignancy of the virus may influence the 

spread of an outbreak.  

However, this “simple” simulation is inadequate for 

systematic analysis of the emergent coarse-grained dynamics 

and consequently for control design purposes. For example 

important tasks such as the efficient exact location of the 

critical points that mark the onset of outbreaks and other 

phenomena such as undesirable big-amplitude epidemic 

oscillations cannot be easily obtained through just temporal 

simulations. 

In this work we show how the so-called Equation-free 

approach for multi-scale computations [13]-[18] can enable 

detailed epidemiological simulators to converge to their 

coarse-grained criticalities. In particular we address a 
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computational framework under which one can detect 

coarse-grained bifurcations such as Neimark-Sacker 

criticalities that mark the onset of periodic solutions. This is 

achieved by treating the epidemic simulator as a black-box 

input-output map of the coarse-grained variables, by-passing 

the derivation of closed-form continuum models.  

For our illustrations we develop and use an individual-

based epidemic model with nonlinear incidence rates where 

individuals interact in a caricature of a social network 

approximated by a random regular graph. We describe the 

rules governing the evolution of the individuals health- state 

dynamics and investigate how the control policy, that is the 

way that infected individuals are held isolated until they 

recover, can affect drastically the dynamics of the spreading 

leading to coarse-grained nonlinear phenomena such as the 

emergence of sustained oscillations, i.e., boom and bust 

disease outbreaks. 

The paper is organized as follows: in section two we 

present the individual-based epidemic model. In section 

three we present the multi-scale computational protocol 

which can be used to efficiently detect coarse-grained 

bifurcations, while in section four we illustrate and discuss 

the results of our simulations; we detect the criticalities and 

we construct the coarse-grained bifurcation diagrams 

corresponding to two control policies as well as the one 

corresponding to the control-free dynamics. We conclude 

with the main outcomes of our work in section five. 

II. THE MODEL 

The epidemic evolves on a random regular graph [19], 

[20] which is characterized by a constant connectivity degree 

d between individuals. The graph is a caricature of the social 

structure of our artificial world involving N individuals. The 

states of the individuals change over discrete time in a 

probabilistic manner according to simple rules involving 

their own states and the states of their links. Each susceptible 

individual gets infected in a stochastic way with a probability 

depending on the number of its infected neighbors while the 

recovery probability varies nonlinearly with the number of 

the infected neighbors. Infected individuals can become 

isolated depending on the density of the infected population 

in the network.  

More specifically each individual interacts with its links 

and changes its state, at every discrete time step t, according 

to the following rules: 

Rule #1: An infected individual i infects a susceptible (S) 

neighbor j with a probability ISp → = λ, if an active link 

exists between them. This probability [ ]1 ,0∈→ISp  

expresses the infectivity degree of the disease. 

Rule #2: An infected (I) individual withdraws him/herself 

with a probability I Q
p → = ρ and gets isolated (Q) from its 

links. Each isolated individual recovers with a probability 

Q R
p → = δ at each time step. At each time step the transition 

from the state of infected to the state of isolation is 

determined by a function of the density of the infected 

individuals in the network, say [ ]QI , where 

[ ] [ ] [ ]QIQI += .  This function reflects the control policy of 

the spreading. Here we use two different types of control-

isolation policies, namely a linear and a sigmoid one given 

by [ ]QIp QI =→  and 
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respectively. Plots of these functions are given in Fig. 1. 

 
Fig. 1.  Probability of an infected to become isolated.  Two functions 

determine different control policies of isolation, i.e.  the probability that an 

infected individual inactivates its links. 

Rule #3: An infected individual recovers (R) with a 

probability I R
p → =µ. The probability of recovery depends 

nonlinearly on the number of infected links at time t, 

according to the function: 
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µ , where n(i) denotes the 

number of infected links of the infected individual i at time t, 

(y+w) denotes the recovery probability of an infected 

individual with no infected links and w denotes the 

probability that an infected will recover even if all its links 

are also infected. Fig. 2 depicts RIp →  as a function of the 

infected links, for y = 0.2 and w = 0.05 At this point we 

should note that nonlinear incident rates have been proposed 

in the literature to approximate in a better way the 

transmission mechanism of a disease spread. For example 

the authors in [4], [12] are using nonlinear incidence rates in 

the form of [ ] [ ]qp
SIk  in a system of ordinary differential 

equations, trying to approximate the way the encounters 

among infected and susceptible individuals affect the 

transmission of the disease. Likewise, in [2], [6] nonlinear 

incidence rates were applied to networks of interacting 

individuals resulting to stable equilibrium solutions as well 

as periodic oscillations. Our relation depicts the fact that 

when the environment of an infected individual is 

“contaminated” it makes it more difficult to recover and thus 

the infection persists for a longer time. The nonlinearity may 

be accounted to different factors such as a drift of the 



  

disease-virus over short time periods and heterogeneity in 

recovery [21].  

 
Fig. 2. The function defining the probability that an infected individual 

recovers as a function of the infected links.  

 

Rule #4: A recovered individual becomes susceptible with 

a probability ε=→SRp . The condition of recovery is a state 

of temporal immunity: an individual who has suffered in the 

past acquires immunity for some time until it becomes 

vulnerable to the disease again.   

 

Fig. 3 summarizes in a flow chart the rules governing the 

state transitions in our model.  
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Fig. 3.  Flow chart representing the transitions from one state to the others 

(z = number of infected neighbours with active links). 

III. THE EQUATION-FREE PROTOCOL FOR 

DETECTING COARSE-GRAINED BIFURCATIONS 

Our goal here is to develop a computational protocol that can 

enable detailed individual-based simulators to detect their 

coarse-grained bifurcation points. The method uses the 

Equation-Free computational concept which allows the 

systematic analysis of the dynamics of microscopic 

simulators circumventing the derivation of continuum 

closed-form equations [13]-[18]. The main assumption of the 

method is that a coarse-grained model for the individual-

scale dynamics in principle exists and closes in terms of 

(relatively few) coarse-grained variables, but is 

overwhelming difficult or even impossible to derive. The 

dynamic detailed simulator is treated as a black-box input-

output timestepper of the coarse-grained observables. In a 

nutshell, the black-box coarse timestepper is obtained 

through the following steps: 

(1) Choose the coarse-grained statistics of interest for 

describing the long-term behavior of the system and an 

appropriate representation for them (for example the 

densities of the susceptible and infected individuals in the 

population). 

 (2) Choose an appropriate lifting operator µ from the 

continuum description u  to the individual-based description 

U on the network. For example, µ could make random 

susceptible and infection assignments over the network 

consistent with the respective observed densities. 

(3) Prescribe a continuum initial condition at a time kt : 
kt

u . 

(4) Transform this initial condition through lifting to one (or 

more) consistent individual-based realization(s) 
kt

U =µ
kt

u . 

(5) Evolve thi(e)s(e) realization(s) using the individual-based 

simulator for a desired time T, generating the 
1+kt

U , where tk 

= kT .  

(6) Obtain the restrictions 
1+kt

u = M 
kt

U ; lifting from the 

microscopic to the macroscopic and then restricting again 

should have theoretically no effect, that is, Μµ = I .  

The above steps constitute the black-box coarse 

timestepper, that, given an initial coare-grained state of the 

system (
kt

u , p ) at time kt  reports the result of the 

integration of the individual-based rules after a given time-

horizon T (at time 1+kt = kt +T), i.e.  

) ,(
1

puΦu
kk tTt =

+
               (1) 

where TΦ : 
nmn RxRR →  having ku as initial condition; 

p denotes the vector of the system parameters.  

 

(7) Augment the fixed-point map equations 

0pu,Φu =− )(Τ  by the appropriate condition with regard 

to the type of criticality sought and wrap around the 

augmented coarse map a computational superstructure such 

as simple Newton-Raphson or matrix-free iterative methods 

(quasi-Newton methods such as the Broyden, Fletcher, 

Goldfarb, Shanno (BFGS), direct methods such as the 

Nelder-Mead algorithm or  Newton-GMRES) [22].  

For a fold (or as otherwise called saddle-node) bifurcation 

and for m=1, the augmented system reads: 
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where p)(p)( u,Φu,J x Τ∇≡  is the Jacobian matrix. The 

second equation in (2) implies that we seek critical points 

where the Jacobian is singular, a necessary condition for  



  

fold bifurcations. Note that in the above formulation the 

explicit evaluation of the Jacobian is not required. Instead 

what is needed is the action of the Jacobian p)(u,J on 

vectors, which can be obtained by calling the coarse black-

box timestepper from appropriate nearby initial conditions 

and for the given time-horizon T.  

For a Neimark-Sacker (a nondegenrate, two-dimensional) 

bifurcation the criticality condition reads [23]: 

 

( ) [ ] 01p)(p =−≡ u,Jdetu,ϑ          (3) 

 

In this case the detection problem can be stated as a 

constrained minimization problem of the form 
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subject to the constraints 

 

0u,Φu =− p)(Τ              (4b) 

IV. SIMULATION RESULTS 

For our illustrations we used the following values for the 

parameters: N=20000, d = 4, 4.0=→SRp , y=0.2, w=0.05. 

The two different control-policies are compared with the no-

control (control-free) action where there is no isolation. We 

analysed the coarse-grained behaviour of the epidemic 

simulator by terms of the ISp →  which served as the 

bifurcation parameter. For our computations we used a 

cluster of 12 nodes running at 2.8 Ghz. All of our coarse-

grained quantities have been extracted by averaging the 

temporal simulations after the transient, over 100 ensembles 

starting from the same coarse-grained initial conditions. 

In the case where there is no isolation, i.e. no control 

action is deployed, the model is reduced to a Susceptible – 

Infected – Recovered – Susceptible (SIRS) one with a 

nonlinear recovery rate. Fig. 4 depicts the evolution of the 

infected population density for different values of the 

infectivity rate. Here the population density of infected 

individuals increases rapidly until it reaches a steady state for 

each value of the infectivity rate. Fig. 5 shows the 

corresponding coarse-grained bifurcation diagram with 

respect to the ISp → . As it can be easily seen, the disease 

dominates in the population even for small values of the 

infectivity rate and only for values less than ISp → ~0.1 the 

infected population is the minority. Around this value there 

is a dramatic change in the state of the network: for a small 

increment in ISp →  there is a big increase in the number of 

infected individuals reaching ~60% of the total population at 

ISp → = 0.2.  

Fig. 6 shows a representative temporal simulation of one 

ensemble for the linear control policy at ISp → = 0.7. The 

density of infected individuals approaches fast a stationary 

state. A similar behaviour is observed  for all the values of 

the probability ISp → . 

  
Fig. 4.  Temporal coarse-grained simulations for the control-free case for 

ISp → = 0.1, 0.15, 0.35 and 0.5. 

 
Fig. 5.  Coarse-grained bifurcation diagram of the density of the infected 

population with respect to ISp →  for the control-free case. 

 
Fig. 6.  Density of infected individuals in time. The probability of infection 

is 0.7 and the removal/isolation rate is the linear one. 

 

Fig. 7 shows the corresponding coarse-grained bifurcation 

diagram depicting the density of the infected population with 

respect to ISp → . For very small values of the infection 

probability the only stable solution is the disease-free one. At 

a critical value around ISp → = 0.09 the disease-free state 



  

looses stability through a transcritical bifurcation giving birth 

to a branch of endemic states, where the susceptible, infected 

and recovered individuals co-exist. 

 
Fig. 7.  Coarse-grained bifurcation diagram of the density of the infected 

population with respect to ISp →  using the linear control policy. Error 

estimates of the coarse-grained equilibria are depicted with bars. 

 

Compared to the control-free case the linear control policy 

succeeds to remarkably reduce (or even extinguish for very 

small values of the ISp → ) the percentage of the infected 

individuals into the population.  

Some interesting nonlinear dynamics emerge when the 

sigmoid control policy is deployed: for relatively small 

values of the ISp →  the epidemic network follows a similar 

qualitative behaviour as in the linear control case leading to 

stationary states (Fig. 8). However as the ISp →  gets bigger 

the network gives rise to sustained periodic-oscillating 

solutions leading to periodic boom and bust outbreaks of the 

infection (Fig. 9a and 9c). The amplitudes increase 

with ISp → . Fig. 9 b and 9d depict the approximation of the 

power spectrum as obtained by applying a discrete fast 

fourier (FFT) transform algorithm on the corresponding time 

series. This reveals that the signal is periodic at a frequency 

around 0.08 Hz (an equivalent of 12 time steps). 

This behavior indicates the existence of a Neimark-

Sacker bifurcation whose exact location was derived using 

the proposed computational protocol. The time horizon was 

set to T = 7 time steps, while the number of ensembles was 

set to 4000. The algorithm used to solve the optimization 

problem was a quasi-Newton procedure [23]. The approach 

converged to the “correct” coarse-grained bifurcation point 

at ISp → ~ 0.57 as it also validated by the coarse-grained 

bifurcation diagram obtained by extensive temporal 

simulations (Fig. 10). 

As expected, the branch of stable stationary solutions 

looses its stability at the critical point giving birth to a 

branch of stable coarse-grained limit cycles. As it is clearly 

seen the sigmoid control policy leads to epidemic 

oscillations of big-amplitudes, an undesirable phenomenon 

which can potentially drive the system to an-all-infected 

state. 

 
Fig. 8.  Temporal simulations with the sigmoid control policy when the rate 

of infectivity is ISp →  = 0.3. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 9.  (a) Phase diagram of the susceptible vs. the infected population 

density using the sigmoid control policy at ISp → = 0.7, (b) the 

corresponding power spectrum of the time series at ISp → = 0.7, (c) Phase 

diagram of the susceptible vs. the infected population density using the 

sigmoid control policy at ISp → = 0.9. (d) the power spectrum of the time 

series at ISp → = 0.9. 

 
Fig. 10.  The coarse-grained bifurcation diagram of the density of the 

infected population with respect to ISp →  using the sigmoid control 

policy. The circles depict the maximum and the minimum values of the 

oscillations. 



  

V. CONCLUSION 

The systematic investigation of the dynamics of fine-

scaled epidemic simulators is of outmost importance in 

practical crisis management and control-intervention design 

policies. However for such detailed models, the closures 

required to formulate the problem in the continuum are 

usually not available and thus traditional numerical analysis 

and control design algorithms cannot be used.  What is 

currently done with these state-of-the-art simulators is simple 

temporal simulation. Yet, simulation in time is but the first of 

systems level tasks one wants to do while analyzing the 

behaviour of a model. Important tasks such as the efficient 

exact location of criticalities which mark the onset of 

instabilities and undesirable phenomena such as big-

amplitude sustained endemic oscillations cannot be easily 

obtained through just temporal simulations. 

We presented a computational protocol based on the 

Equation-free framework for multi-scale computations to 

systematically study certain aspects of the dynamics of 

individual-based epidemic simulators. In particular we 

showed how the framework can be used to effectively detect 

critical points such as Neimark-Sacker bifurcations. This 

numerically motivated protocol may be much more practical 

and computationally efficient than simple simulation runs. 

The approach does not rely on the availability of closed- 

form continuum equations. Rather it treats the fine-scale 

simulator as a coarse timestepper to identify “on demand” 

the quantities that a numerical analysis algorithm would need 

evaluated from a macroscopic model, had such a model been 

available, to perform its task.   

For our illustrations we developed an individual-based 

epidemic model with interactions deploying in a random 

regular network with nonlinear incidence rates. We 

considered isolation of the infected population as a control 

strategy against the transmission of the disease and we 

evaluated the impacts of two different approaches. A 

comparison of the infection dynamics with the control-free 

case is also illustrated. The proposed model, and depending 

on the chosen policy, exhibits some interesting nonlinear 

behavior such as sustained periodic oscillations. 

Using the proposed multi-scale computational algorithm 

we effectively detected a Neimark-Sacker bifurcation which 

pinpoints the origin of the phenomena. To get a better 

understanding of the consequences related with the design of 

the control-policies we also constructed the coarse-grained 

bifurcation diagrams with respect to the parameter 

representing the transmission probability of the disease.  

The analysis revealed that simpler strategies such as a 

linear dependence between the isolation rate and the 

percentage of the infected population, meaning action in the 

early stage of the epidemic can result in a better control of 

the spread. Delayed actions-which may be due to insufficient 

surveillance and response mechanisms-and a vast control 

effort at the late stages of the epidemic, as this is represented 

by the sigmoid dependence between the isolation rate and the 

density of the infected population can give rise to 

undesirable phenomena such as big-amplitude sustained 

oscillations. 
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