
 

 

 

Abstract—Wearable Health-Monitoring Systems (WHMS) 
promise to revolutionize health care by providing real-time 
unobtrusive monitoring of patients’ physiological parameters 
through the deployment of several on-body and even intra-body 
biosensors. Although several technological issues regarding 
WHMS still need to be resolved, in order for them to become 
more applicable in real-life scenarios, it is expected that 
continuous ambulatory monitoring of vital signs will enable pro-
active personal health management and better treatment of 
patients suffering from chronic diseases, of the elderly population 
and of emergency situations. 

In this paper a novel formal language based model for multi-
sensor data fusion and early-detection of various conditions is 
presented. Patterns or even signal states indicating pathological 
symptoms that are presented in the signals, which can be 
collected from on-body distributed biosensors, are modeled as 
symbols of the Prognosis context-free formal language, whose 
grammar and production rules define the prognosis-words. The 
proposed approach is based on a described generic WHMS 
model and on a simple but at the same time efficient method for 
characterizing body-signal’s patterns and/or states. Finally, we 
provide several illustrative examples for better comprehension of 
the proposed model. 
 

Index Terms—Biosensors, Wearable Health Monitoring 
Systems, ECG, vital signs, Formal Language  

I. INTRODUCTION 
MBULATORY monitoring of physiological parameters 
through the use of wearable or even implantable 

biosensors has been a research area of high interest during the 
past years [1], [2], [25]. Mainly driven by increasing 
healthcare costs and the need to provide medical care to the 
increasing population of elderly [3], Wearable Health-
Monitoring Systems (WHMS) have the potential to realize 
consumer operated personal prevention and early risk 
detection  [1,21]. Moreover, by enabling long-term 
unobtrusive monitoring of a patient’s physiological parameters 
through his daily activities and thus providing real-time 
feedback information about his health condition, WHMS can 
lead to better treatment of chronic diseases, postoperative 
rehabilitation patients [4] and high risk patients. 

In order for health monitoring via wearable systems to 
become more applicable to real-life scenarios and also 
accepted by the potential users, WHMS need to satisfy certain 
requirements [1]-[3]. These include low-power consumption, 
small weight and size, security and privacy of medical data, 
ease of use, unobtrusiveness and possible aesthetic issues of 
system design, low cost and robust and reliable operation. 
Current and future research advances in nanotechnology, 
sensor miniaturization, low energy IC design, energy 
scavenging techniques, wireless sensor networks and signal 

processing promise to provide the means to efficiently address 
these issues. 

In addition to the previously described requirements, an 
important and possibly required feature of WHMS is the 
ability to provide embedded decision support. This is enabled 
through implementing intelligent information processing of 
the physiological data measured from the system’s biosensors. 
A great number of academia research efforts and industry 
initiated projects have resulted in the development of WHMS 
that support decision mechanisms for prognosis and detection 
of various health or even mental states/conditions. 

AMON [5], a project financed by the EU FP5 IST program, 
developed a wrist-worn device, which is capable of measuring 
blood pressure, skin temperature, oxygen saturation in blood, 
one lead ECG and activity level via embedded accelerometers. 
The system aimed at high risk/respiratory patients and could 
derive a classification of the estimated health condition of the 
user as being normal, deviant, in risk or in high risk by using 
specific limit values for every measured vital sign. MyHeart 
[6], another project supported by the European Commission 
and which also included industrial partners such as Nokia, 
Vodafone and Philips, targeted the treatment of patients 
suffering from cardiovascular diseases by enabling prevention 
and early diagnosis. It adopted the use of sensing fabrics as 
wearable biosensors, resulting in a smart-clothing system that 
is comfortable for the user and capable of measuring and 
classifying bio-signals such as ECG, activity and respiration 
rate. WEALTHY (Wearable Health Care System) [7] and 
MERMOTH (Medical Remote Monitoring of clothes) [8] are 
additional examples of EU supported projects, which employ 
smart fabrics and interactive textiles to enable wearable multi-
parameter health monitoring of various categories of high-risk 
patients. 

Another example of multi-parameter WHMS is LiveNet [9], 
developed in the Media Laboratory of MIT. It is a flexible 
distributed mobile platform, which is capable of real-time data 
processing and streaming and context classification. The 
system targets several scenarios, such as automated Parkinson 
symptom detection, epilepsy seizure detection and long-term 
behavior modeling. AUDABE [10], designed from researchers 
in the University of Ioannina in Greece, is a novel wearable 
system that performs evaluation of an individual’s emotional 
state. A prototype including sensors for facial EMG, ECG and 
respiration rate has been developed, which is capable of 
recognizing and estimating basic emotional states such as high 
stress, euphoria or disappointment. Other examples of portable 
systems with decision support, include the works described in 
[11] and [12] where researchers have managed to classify 
ECG beats in mobile platforms such as PDAs and cell phones. 
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Finally, the LifeShirt from Vivometrics [13] and the 
SmartShirt from Sensatex [14] constitute examples of 
commercially available products, which are based on sensing 
fabrics and conductive materials to incorporate bio-sensing 
capabilities on some type of comfortable garment. 

In this paper we present our effort to describe signal 
patterns and/or states, which may be presented in the various 
types of physiological parameters and vital signs measured by 
wearable biosensors, as symbols of a formal language. The 
grammar and the production rules of the Prognosis context-
free formal language define the prognosis-words, which are 
combinations of the language’s symbols and indicate the 
detection of a certain health condition. Our approach is based 
on the availability of wearable biosensors discussed in Section 
II and on a generic WHMS model described in Section III. 
Furthermore, Section IV describes our approach for extracting 
pathological symptoms from body-signals and defines the 
structure, the grammar and the rules of the Prognosis 
language. Section V provides some illustrative examples for 
better understanding of the proposed approach and finally the 
paper is concluded in the last section, which provides also a 
brief discussion on future work. 

II. PHYSIOLOGICAL PARAMETERS, COMMON SYMPTOMS AND 
AVAILABLE BIOSENSORS 

A wearable biosensor is a miniature sensing device, usually 
a surface electrode or a skin patch, which is capable of 
measuring a certain physiological parameter. A WHMS 
employing a variety of biosensors is thus capable of collecting 
real-time measurements of vital signs and other physiological 
signals. By applying proper signal processing on the measured 

data, important diagnostic features can be extracted from 
every individual signal and by combining and fusing these 
data together an estimate of the health condition of the 
patient/user can be deduced [2], [3]. 

However, for a more accurate estimation of one’s health 
condition and the diagnosis of many, if not the most, diseases, 
several other symptoms need to be taken into consideration 
[15], [16]. These symptoms, like cough or malaise, are either 
not measurable at all or they cannot be estimated without 
using invasive methods, e.g. as in the case of determining 
electrolyte levels in the body. Table I gives a comprehensive 
overview of most of the physiological parameters and the most 
common symptoms that need to taken into consideration and 
properly evaluated to derive a specific diagnosis. This list is 
not exhaustive and it does not include findings, which can 
only be obtained from thorough clinical examinations and 
tests like MRI, CT scan, chest radiology and other medical 
and laboratory examinations typically performed in a hospital. 

Table II provides a list of biosensor technologies, which 
enable the measurement of several of the parameters listed in 
Table1. Examples of such biosensors, which are commercially 
available, include ECG electrodes from Corscience (Erlangen, 
Germany), 3M (St. Paul, MN) and Foster-Miller (Waltham, 
MA). Moreover, several companies like Nellcor (Boulder, 
CO), Nonin (Plymouth, MN) and Smiths Medical OEM 
(Waukesha, WI) have developed small portable finger-tip 
pulse oximeters for measuring oxygen saturation in blood and 
pulse rate. Further examples include the portable blood 
pressure monitor by A&D Medical (Tokyo, Japan), the pH 
sensor by Vernier (Beaverton, OR) and the non-invasive 
glucose monitor by InLight Solutions (Albuquerque, NM). 

 TABLE I 
PHYSIOLOGICAL PARAMETERS AND 

PHYSICAL CONDITION 
1. Electrical activity of the heart + heart 
rate &  rhythm 
2. Blood pressure (systolic and diastolic) 

3. Temperature (body & skin) 

4. Respiration rate 

5. Oxygen saturation and blood volume 

6. Perspiration (e.g. sweating) 

7. Electrical activity of the brain 

8. Electrical activity of the muscles 

9. Heart sounds 

10. Glucose 

11. Body movements 
12. PCO2 (Partial Pressure of Carbon 
Dioxide) 
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13. Electrolytes (sodium, potassium) 

14. Possible pains 

15. Body and mind condition/feeling 

16. Consciousness level zN
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17. Respiration Problems 

 
Fig.1. Tables describing the extraction of symptoms from body signals by available biosensor technologies and human-system interaction. 

 

TABLE II 
AVAILABLE  WEARABLE BIOSENSOR 

TECHNOLOGIES 

1. ECG electrodes 

2. Blood pressure monitor 

3. Temperature sensor 

4. Respiration rate sensor 

5. Pulse oximeter 

6. Galvanic skin response 

7. EEG electrodes 

8. EMG electrodes 

9. Cardiac auscultation (stethoscope) 

10. Glucose sensor 

11. Accelerometer 

 TABLE III 
DETECTABLE  PHYSIOLOGICAL 

SYMPTOMS 
1. High / low heart rate & cardiac 
arrhythmias 
2. Hypotension / hypertension 

3. Fever / hypothermia 

4. High / low respiration rate 

5. Hypoxemia, hypovolemia 

6. Excessive / no sweating 

7. Abnormal el. activity of the brain 
8. Abnormal el. activity of the 
muscles 
9. Abnormal heart sounds 

10. Low / high blood glucose 

M
ea

su
ra

bl
e 

Sy
m

pt
om

s 

11. Falls, accidents 

12. Pain (back, chest or headache) 

13. Weakness, malaise or fatigue 

14. Nausea 

15. Numbness 

16. Cough 
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17. Sputum 

FEEDBACK 
FROM 

PATIENT 



 

 

 

Physiological parameters and vital signs from 1 to 11 listed 
in Table 1 constitute signals and data, which are measurable 
via the corresponding sensors and devices in Table II. The 
Table I entries from 12 to 19 are additional symptoms and 
physical signs, which are associated with a great variety of 
diseases. These symptoms, once detected or quantified, 
provide important information, which together with the 
measured vital signs provide a more comprehensive 
description of what is referred to as the clinical presentation, 
which under proper interpretation may lead to a specific 
diagnosis. However, in order to get feedback from the patient 
about the possible existence of these symptoms either the 
patient himself has to describe them or in case of some of 
these physical signs, they can only be measured in an invasive 
way using current sensor technologies. 

Taking the previous discussion into consideration, Table III 
lists several symptoms which are associated either with 
measurable parameters from Table I, e.g. 1-11, or with non-
measurable symptoms related to the physical condition of the 
patient and which can only be obtained through patient 
feedback. 

III. THE GENERIC WHMS MODEL 
Fig.1 depicts the architecture of a generic WHMS model. 

Physiological biosensors constitute the front-end components 
of the system and they can either be integrated as textile 
sensors on smart clothes [6]-[8], [13], [14] or as hardware 
modules on wireless sensor nodes in a Body Area Network 
(BAN) [17], [18]. In the latter case the collected 
measurements can be amplified, filtered and digitized on the 

sensor nodes and then transmitted to the BAN’s central node 
through embedded ISM Band transceivers. In the former case, 
physiological signals can be transmitted in analog form and 
then be digitally processed at the system’s central node. 

The WHMS central node is responsible for several possible 
tasks: 1) collecting of various types of physiological data from 
the biosensors, 2) applying further DSP on the signals (e.g. for 
feature extraction), 3) comparing the extracted features from 
the body signals with the “Healthy History Database”, which 
contains patient-specific normal vital-sign values and 
analyzing the extracted features using intelligent algorithms to 
provide embedded decision support, 4) generation of alarm 
signals for the user, 5) displaying the estimated health status of 
the user and/or the collected data on the node’s screen, 6) 
transmitting medical data to a remote base station (e.g. 
hospital or cell phone of a supervising physician) or even to a 
dispatched ambulance and finally 7) generating sensor’s 
control signals (e.g. for initializing measurements or setting up 
parameters such as sampling interval and A/D frequency). 

The presented functional description of the WHMS model 
encompasses the “concept” under which most of the 
developed wearable system prototypes or commercially 
available products for health-monitoring operate. However, 
we envision a system that is also able to get feedback from the 
patient in an additional manner, namely through voice (or 
through writing on the central node’s keypad). This 
functionality, once implemented could enable the user to 
provide feedback to the system concerning the presence of 
symptoms that cannot be measured through standard non-
invasive biosensors. These symptoms, as discussed in the 
previous section, could include the presence of coughing, 

 
Fig.2. A generic WHMS architecture [25] 



 

 

 

nausea, malaise, back or chest pains etc. Implementing this 
feature on a WHMS, which employs a wide variety of 
wearable and/or implantable biosensors, could enable the 
detection of a wide variety of health symptoms as the ones 
listed in Table III and possibly of several others we have not 
considered in the current study. 

Finally, alarm signals and measured physiological data 
along with the feedback from the patient can be transmitted 
through the cellular network or the Internet to the medical 
center and possibly also to a dispatched ambulance. As the 
healthcare center keeps a database with long-term detailed 
medical history of the patient, the received data and patient 
symptoms and the accompanying alarms can be further 
evaluated to derive a more accurate estimation or even verify 
the detected health risk level. 

IV. PROGNOSIS FORMAL LANGUAGE [24] 
The Prognosis language is the theoretical model, which the 

wearable monitoring, prognosis and prevention system model 
relies on (Prognosis is the Greek word for predicting a future 
condition from past knowledge/history and current pieces of 
information). It is based on the efficient detection and 
association of various signals produced by the human body 
expressing its current health status. These body signals 
themselves are composed by “symptoms of health”, where 
their presence under certain conditions may lead into a 
prognosis of the health status of a patient. 

The Prognosis formal language is applicable to multi-sensor 
wearable health-monitoring systems, whose model was 
described in the previous section, and which are capable of 
measuring most of the physiological signals listed in Table I 
and thus capable of detecting several of the symptoms listed in 
Table III. In the following the process of extracting healthy 
and pathological symptoms from measured body signals is 
described. This approach is based on discriminating two 
different categories of physiological signals: a) signals whose 
“diagnostic content” is simply provided in the value of each 
acquired sample and b) signals, whose structural morphology 
and timing are the actual features that convey important 
diagnostic information. 

A. Category of value-specific physiological symptoms 
The most typical physiological signals, which are included 

in this category, are systolic and diastolic blood pressure, 
respiration rate, body temperature, glucose level and heart 
rate. The following definitions describe how “symptoms” of 
interest, which contain diagnostic information, are determined 
and Fig. 3 depicts this categorization graphically. 

Definition 1: A body signal Ss is defined as Ss = x(nT), 
where xєR and x are values associated with healthy and 
pathological symptoms, n denotes the nth sample and T is the 
sampling interval. 

Definition 2: A symptom of a body signal Ss at time nT is 
defined as “healthy” and denoted Sh(nT) if and only if 
A<x(nT)<B, where A is a lower bound and B an upper bound, 
that define a healthy condition. 

Definition 3: A symptom of a body signal Ss at time nT is 

defined as “pathological or abnormal” and denoted Sp(nT) if 
and only if x(nT)≤A or x(nT)≥B. 

 
Fig.3. Representation of hypothetical sample values (white circles) of a body 
signal in various levels of importance. The red layers represent high-risk 
levels; yellow layers represent moderate/low risk levels; and the green layer 
represents the “healthy” range of values. 
 

B. Category of morphology-specific physiological 
symptoms 
This category includes body signals, which describe the 

electrical activity of various body parts, amongst which the 
most common ones are the electrocardiogram (ECG), the 
electroencephalogram (EEG) and the electromyogram (EMG). 
Detecting healthy and pathological symptoms in such kind of 
signals is a complicated process and it requires careful 
conditioning of the signal (e.g. filtering, amplifying etc) and 
intelligent signal processing for feature extraction. 

Our approach is based on a simple but efficient scheme 
called LG-Graph. In brief, the concept of this methodology is 
a) detecting significant maxima and minima in the signal and 
b) describing the patterns, waves or potentials presented in the 
signal as triangle-like shapes with individual geometrical and 
morphological characteristics (e.g. segment’s lengths and 
slopes, area, peak value etc). This approach provides an 
accurate and fast method for describing the patterns’ features. 
Based on this approach, signals like the ECG can be easily 
analyzed and searched for patterns of interest. 

Figure 4 illustrates how a part of an ECG waveform is 
converted using the LG-Graph methodology to a sequence of 
triangle-like-shapes (LGgt). Using this representation the 
abnormality or the symptom can be defined and expressed as a 
subsequence of these “triangles” (which do not need to be 
adjacent). The waveform depicted in Fig.4 is taken from the 
MIT-BIH Arrhythmia Database (record mitdb/233) available 
online at Physionet [19], [20]. Figures 5 and 6 provide further 
examples of how peaks can be detected and characterized in 
ECG waveforms. Fig.5 depicts a signal taken from the MIT-
BIH ST Change Database (record stdb/327) and the signal in 
Fig.6 is taken also from the MIT-BIH Arrhythmia Database 
(record mitdb/209). 



 

 

 

 
 
 

   
 

Fig.4. Top: An ECG waveform with one normal beat and an abnormal one 
indicating Premature Ventricular Contraction (purple dashed ellipse). 
Characteristics of this irregular beat are the wide and premature QRS complex 
and the fact that there is no preceding P wave. Bottom: Extraction of LGgt 
triangles and depiction of some of their geometrical features. 

 
As it can be seen form the provided figures, the LGgt 

methodology is strongly dependent on the signal baseline (e.g. 
the isoelectric line) [23]. For that reason, proper heart-rate-
dependent digital filtering must be applied to ECG signal to 
efficiently remove the baseline wander without introducing 
extra noise to the waveform. 

Using the described LGgt approach, the recognition and 
detection of abnormal patterns (e.g. symptoms) is done by 
sequentially searching the acquired signal for the 
corresponding LGgt patterns that define and/or describe the 
individual symptoms and which are stored in a LGgt database. 
Furthermore, the fact that ambulatory ECG recordings contain 
various types of noise is taken into consideration by our 
approach, by using several metrics (with corresponding 
acceptable deviation-margins) to do appropriate pattern 
matching, e.g. the shape’s height, width, area, steepness, as 
well as the distance between subsequent triangles’ centroids. 

 
Fig.5. An ECG waveform exhibiting ST-segment elevation and hyper-acute, 
symmetric and prominent T waves. 
 

 
Fig.6. An ECG waveform depicting the occurrence of several premature atrial 
beats and the initiation of paroxysmal supraventricular tachycardia (from the 
4th beat and on). Purple dashed ellipses indicate the absence of P-waves 
between QRS complexes. 
 

C. Theoretical Modeling of the Prognosis Language 
Definition 5:  A body signal is composed by the synthesis 

(@) of healthy symptoms and pathological symptoms (if any):  
Ss = [{Sh(niT)}@{ Sp(njT)}]i,jєZ 

We define Prognosis as a context-free formal language 
consisting of various types of letters (symbols). These special 
symbols represent pathological symptoms from body signals. 
Thus, the generic alphabet ∑ of the Prognosis language is the 
set of all the pathological or abnormal symptoms extracted 
from the body signals. 

∑ = {Spi, Spj, Spk,…, Spr}, 
where:  SpiєSs1, SpjєSs2, SpkєSs3,…, SprєSsn, are the pathological 
symptoms of every body signal.  

The Prognosis Grammar 

We define a grammar G = (VN, VT, ST, PR), where:      
• VN is the set of non-terminal symbols:  
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VN ={Ss, Sh, Sp, {Ti}iєZ, {Tj}jєZ, {Tk}kєZ, LGgt, 
Tsx{h,b,area,d,φ,θ}, dck, wi, t,  i,  j, k, r, ST }, where: 
o Ss is a body signal. 
o Sh is a healthy symptom. 
o Sp is a pathological symptom. 
o Ti is the set of terminal symbols that correspond to the 

various categories of Sp in category A. 
o Tj is the set of terminal symbols that correspond to the 

various categories of Sp with LGgt represenation (category 
B). 

o Tk is the set of terminal symbols that correspond to the 
various categories of Sp which are described by patient 
feedback. 

o LGgt is the representation of a Sp using a sequence of 
triangle-like-shapes. 

o Tsx is the triangle-like-shape representation of a single 
pattern or wave or peak in LGgt. 

o h is the height of Tsx.  
o b is the width (duration) of Tsx. 
o area is the area of Tsx. 
o d is the set of slope/derivative values of the Tsx segments. 
o φ is the set of φ-slope angles of the Tsx segments. 
o θ is the set of θ-connection angles between Tsx segments. 
o dck is the distance between the centroid of kth Tsx in the 

LGgt and the temporal center of the corresponding LGgt. 
o Φkr is the angle between the centroids of the kth and rth 

Tsx. 
o wi is a word belonging to language L. 
o t is the time stamp of a symptom. 
o i,j,k,r є Z  are indexes. 
o ST is the start symbol of grammar G. 

• VT is the set of terminal symbols:  
VT = {Σsp, Ai, Bi, Ωjk, Π, @, #}, where: 
o Σsp is a system- or application-specific alphabet. 
o Ai and Bi are the lower and upper bounds (in 

corresponding signal units, e.g. oF for temperature etc) for 
determining pathological symptoms in body signal i. 

o Ωjk is the set of values for the kth parameter (e.g. height, 
angles, width etc) of the LGgt -representation of the jth 
signal in category B. 

o Π is the set of non-measurable symptoms (patient-
feedback). 

o The symbols # and @ represent operators of the language. 
• PR is the set of production rules: 

PR = {ST  Ti ; ST  Tj ; ST  ST # Tj (or Ti)} 
 

The Prognosis Formal Model 

The Prognosis words that can be produced have the form: 
                              wi = Spi(t)#Spj(t)#...#Spk(t), 

where the common time stamp t in all detected pathological 
symptoms forming wi indicates the fact that the production of 
a Prognosis word is time-dependent (e.g. the symptoms 
forming wi have been detected in the same time window 
[t1,t2]). 

Finally the generative definition of the Prognosis Language 

can be written as: 
L(G) = {wi є VT* | ST →G* wi} 

V. ILLUSTRATIVE EXAMPLES 
In this section we provide two illustrative examples for 

understanding of how the Prognosis language works to 
combine detected pathological symptoms and thus to derive an 
estimation of the individual’s underlying pathological health 
condition. It is important to note that the signals (except from 
the ECG waveforms) presented in this section as well as the 
corresponding co-occurrence of these pathological symptoms 
are hypothetical.  

 
(a) Onset of ventricular tachycardia. 

 
             (b)            (c)                          (d) 
 

Fig.7. Symptoms (a)-(d) describe a hypothetical patient’s profile at time t. 
 

The symptoms depicted in Fig.7 belong to the specific 
alphabet Σsp = {a, b, c, d} and the detected pathologies 
according to the Prognosis language form the corresponding 
word:  w1=a#b#c#d. According to the language’s grammar, w1 
is an indication of acute cardiogenic shock. (The waveform in 
Fig.7(a) is taken from record cu02 of the CU Ventricular 
Tachyarrhythmia Database at Physionet [20].) 

In Fig.8 another hypothetical case is presented. We assume 
that a patient is having the following symptoms: severe drop 
in body temperature, hypotension, reduced respiration rate, 
dizziness and weakness as well as a specific atrial dysrhythmia 
(e.g. atrial fibrillation). The combination of these symptoms 
according to the Prognosis grammar indicates the occurrence 
of severe hypothermia. (The waveform in Fig.8(a) is taken 
from record afdb/08219 of the MIT-BIH Atrial Fibrillation 
Database at Physionet [20].) 
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(a) Onset of atrial fibrillation. 

 
   (b)              (c)         (d)  (e) 
 

Fig.8. Symptoms (a)-(e) describe a hypothetical patient’s profile at time t. 

VI. CONCLUSION 
In this paper we have presented a novel approach to 

characterize and represent pathological symptoms, detected in 
various types of physiological signals, as symbols of a formal 
language model called Prognosis. Specific combinations of the 
Prognosis symbols may produce a word that is defined in the 
language and thus give rise to the prognosis of a specific 
medical health condition. In addition to that we have presented 
our own approach to describe and represent pathological 
patterns found in body signals, whose morphology conveys 
important diagnostic information. 

Furthermore, Prognosis is targeting applications in 
Wearable Health-Monitoring systems. For this reason we have 
also presented a generic WHMS model and also based our 
definition of the language’s grammar upon the current 
availability of wearable biosensors. 

Future work includes modeling of the WHMS – Prognosis 
system using Stochastic Petri Nets and studying the use of 
Neural Networks to derive a system that is capable of 
adjusting to the individual user. 
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