Flexible Data Integration and
Ontology-Based Data Access to Medical Records

Lucas Zamboulis and Alexandra Poulovassilis and George Roussos

Abstract— The ASSIST project aims to facilitate cervical
cancer research by integrating medical records containing
both phenotypic and genotypic data, and residing in different
medical centres or hospitals. The goal of ASSIST is to enable
the evaluation of medical hypotheses and the conduct of
association studies in an intuitive manner, thereby allowing
medical researchers to identify risk factors that can then be
used at the point of care to identify women who are at high
risk of developing cervical cancer.

This paper presents the current status of the ASSIST medical
knowledgebase. In particular, we discuss the challenges faced
in constructing the ASSIST integrated resource and in enabling
query processing through a domain ontology, and the solutions
provided using the AutoMed heterogeneous data integration
system. We focus on data cleansing issues, on data integration
issues related to integrating relational medical data sources into
an independent domain ontology and also on query processing.
Of particular interest is the challenge of providing an easily
maintainable integrated resource in a setting where the data
sources and the domain ontology are developed independently
and are therefore both highly likely to evolve over time.

I. INTRODUCTION

The rapid development of biomedical informatics has lead
to a wealth of information made available to researchers
and practitioners. However, the lack of standards [8] has
lead to an interoperability problem between many nodes
containing overlapping and/or complementary information.
For this reason, [19], [10] advocate the use of data integration
in the biomedical domain. First, data integration leads to
more reliable experiments, since it provides access to more
data. Second, it allows a wider range of studies due to the
increased breadth of information available. Third, in contrast
with approaches that merely provide common access to data
sources, it facilitates studies from a wide range of data
resources by providing a single schema to the user.

Data integration approaches often provide a structural in-
stead of a conceptual schema as the interface to the integrated
resource, e.g. as in [23]. Although accurate, this schema is
unfamiliar to users, and also the schema can capture only a
small portion of the knowledge provided by domain experts.

[18] advocates ontology-based data access, i.e. a setting
where an ontology provides access to one or more data
sources, as a means for describing a domain at a high-level of
abstraction, separating users’ knowledge of the domain from
the data layer. This setting also has the advantage of allowing
domain knowledge to be expressed as logical formalisms,

Manuscript received June 11, 2008. This research has been partly funded
by the ASSIST E.U. FP6 project. All authors are with the School of Com-
puter Science and Information Systems, Birkbeck, University of London,
WCIE 7HX, London, UK., {lucas, ap,gr}@dcs.bbk.ac.uk.
L. Zamboulis is also with Benchmark Performance Ltd., CO16 9PT, U.K.

allowing inference mechanisms and ultimately converting a
(possibly integrated) data source to a knowledgebase.

One of the systems that pioneered the interoperation of
schema-based data sources with ontologies is TAMBIS [20].
This idea has been recently extended by [16], which also
discusses the multiple roles of an ontology in such systems,
i.e. a data source, a mediated schema and a system ontology.

In terms of ontology-based data access for relational
data sources, OntoGrate [6] performs relational database
integration and provides ontology-based data access with
reasonable performance using query answering [15] by trans-
lating database schemas to ontologies and providing first
order logic mappings between these ontologies and a global
ontology. [18] follows a different integration strategy, by
first federating all relational databases, then providing GLAV
mappings between the federated schema and the global
ontology. Given a query posed on the ontology, the GLAV
mappings are used to generate SQL sub-queries that can be
submitted to and evaluated by the relational data sources.

We provide an approach that combines schema- and
ontology-based data integration. In particular, we use the
AutoMed heterogeneous data integration system to integrate
the medical data sources into a virtual relational integrated
schema, and then semi-automatically transform that schema
to a given domain ontology. Compared with [18], our ap-
proach leverages the existing schema-based data integration
and query processing capabilities of AutoMed, while still
allowing medical knowledge to be expressed within our
system and be used to enrich user queries using query
rewriting techniques such as those of [18], which will then
be evaluated using AutoMed.

In this paper, we focus on the construction of the integrated
resource using AutoMed as a first step in producing the AS-
SIST medical knowledgebase. Section II gives an overview
of AutoMed to the level of detail necessary for this paper.
Section III describes a number of aspects of integrating the
relational data sources and exposing the integrated resource
via an ontology, including the integration strategy followed,
data cleansing issues and solutions, exposing the integrated
resource using a domain ontology, and query processing.
Section IV gives our conclusions and plans for future work.

II. OVERVIEW OF THE AUTOMED SYSTEM

AutoMed (www.doc.ic.ac.uk/automed) is a het-
erogeneous data transformation and integration system which
offers the capability to handle virtual, materialised, and
indeed hybrid data integration across multiple data models.
It supports a low-level hypergraph-based data model (HDM)

and provides facilities for specifying higher-level modelling
languages in terms of this HDM. An HDM schema consists
of a set of nodes, edges and constraints, and each modelling
construct of a higher-level modelling language is specified
as some combination of HDM nodes, edges and constraints
(see [11]). For any modelling language, M, specified in this
way (via the API of AutoMed’s Model Definitions Reposi-
tory — MDR), AutoMed provides a set of primitive schema
transformations that can be applied to schema constructs
expressed in M. In particular, for every construct of M there
is an add and a delete primitive transformation which
add to/delete from a schema an instance of that construct.
For those constructs of M which have textual names, there
is also a rename primitive transformation.

Instances of modelling constructs within a particular
schema are identified by means of their scheme enclosed
within double chevrons (...)) AutoMed schemas can be
incrementally transformed by applying to them a sequence
of primitive transformations, each adding, deleting or renam-
ing just one schema construct (thus, in general, AutoMed
schemas may contain constructs of more than one modelling
language). A sequence of primitive transformations from one
schema S, to another schema S5 is termed a pathway from
S1 to S3. All source, intermediate, and integrated schemas,
and the pathways between them, are stored in AutoMed’s
Schemas & Transformations Repository (STR).

Each add and delete transformation is accompanied
by a query specifying the extent of the added or deleted
construct in terms of the rest of the constructs in the
schema. This query is expressed in a comprehensions-based
functional query language, IQL!. Also available are extend
and contract primitive transformations which behave in
the same way as add and delete except that they state
that the extent of the new/removed construct cannot be
precisely derived from the other constructs present in the
schema. More specifically, each extend and contract
transformation takes a pair of queries that specify a lower
and an upper bound on the extent of the construct. The lower
bound may be Void and the upper bound may be Any,
which respectively indicate no known information about the
lower or upper bound of the extent of the new construct.

The queries supplied with primitive transformations can
be used to generate GAV, LAV or GLAV mappings, and to
translate queries and data along a transformation pathway
(see [12], [13], [14]). The queries supplied with primi-
tive transformations also provide the necessary information
for these transformations to be automatically reversible, in
that each add/extend transformation is reversed by a
delete/contract transformation with the same argu-
ments, while each rename is reversed by a rename with
the two arguments swapped.

'Such languages subsume query languages such as SQL-92 and OQL
in expressiveness [3]. IQL also provides a common query language that
queries written in various high level query languages, such as SQL, can be
translated into and out of. Further details are given in [24].

Wab hiertaen AutoMed Metadata Repository
user resuft
query (SeRQL) ¢

(SeRQL)

I

|

|

|

|
Medical Rules |
({domain knowledge) |
expanded I
|

|

|

|

[

1

Virtual Integrated
OWL Schema IS_02

Virtual Integrated
OWL Schema IS_O1

i

Virtual Integrated
Rel. Schema IS_R2

Virtual Integrated
Rel. Schema IS_R1

(SeRAL)
sl AUTh Charite Ghent
Query Processor | Relational Schema || Relational Schema | Relational Schema ||

|

|

|

|

|

|

|

|

|

user query [3 1
AutoMed tran ation pathways]

: S)

AutoMed 1
|

i

Fig. 1.

The ASSIST Architecture.

ITII. THE ASSIST INTEGRATED RESOURCE

ASSIST (assist.iti.gr) aims to facilitate cervical
cancer research through a system that integrates medical
records residing in different medical centres or hospitals and
containing various phenotypic and genotypic data. The de-
rived integrated resource is enriched with medical knowledge
encoded within an ontology produced by domain experts.
The resulting medical knowledgebase allows researchers and
physicians to evaluate hypotheses and conduct association
studies in an intuitive way. The goal of ASSIST is to identify
risk factors that can then be used at the point of care to
identify women in high risk of developing cervical cancer.

Figure 1 shows the architecture of the medical knowl-
edgebase. AutoMed is used to integrate three relational
databases into the virtual? integrated relational schema [.Sgo,
and then transform this schema into the domain ontology
IS502. Users query ASSIST through a web interface that
helps them formulate queries using the ontology. The user
query, internally expressed in SeRQL, is first expanded using
medical rules expressed in the £L + + description logics
language [1], and is then submitted to the AutoMed query
processor for evaluation.

The next sections focus on deriving the ASSIST integrated
resource using AutoMed, and on query processing in our
setting. In particular, Section III-A presents the ASSIST data
sources, while Section III-B discusses the strategy followed
to integrate them into the domain ontology. Section III-
C focuses on the integration of the data sources into the
virtual integrated relational schema ISgko and Section III-
D focuses on data cleansing. Section III-E describes the
transformation of ISgo into the domain ontology ISos.
Section III-F discusses query processing in our setting.

A. Exposing Medical Records in ASSIST

ASSIST currently contains three relational data sources us-
ing different DBMSs. AutoMed can access these via JDBC,
or, to circumvent security and firewall issues associated

2Both materialised and virtual integration are being explored in the
ASSIST project and this paper is concerned with the latter scenario.

with JDBC access, using OGSA-DAI 3 which requires the
installation of a thin Grid service layer at each data source.

As illustrated in Figure 1, each data source schema is im-
ported in AutoMed via an AutoMed wrapper. These schemas
are then incrementally transformed and integrated into one or
more integrated schemas, using the API of AutoMed’s STR
to issue transformations and to create intermediate and final
virtual schemas within this repository. AutoMed wrappers
are also responsible for translating between IQL and the data
source query language, in this case SQL.

Prior to exposing the data sources with JDBC or OGSA-
DALI, sensitive data that could lead to patient identification
was removed and/or anonymised. In particular, directly iden-
tifying data such as name and address was removed, while
other data that could indirectly identify patients such as birth
and visit dates were anonymised.

B. Integration Strategy

The ASSIST ontology aims to be a domain ontology,
rather just an ontology interface to the current data sources,
since these may be extended and their number may increase.
As a result, the ontology and the data sources are assumed
to be independent, and therefore differ not only in their data
model, but also in the information they contain. For example,
the current data sources model patients’ visits only, while
the ontology also contains the concept of cases, i.e. a case
is defined to contain all visits made by a patient within a
certain timeframe. Further, the data sources contain data that
are not to be included in the integrated resource, and so the
ontology does not represent the whole of the data stored in
the data sources.

To accommodate these requirements, we created two vir-
tual relational schemas (see Figure 1). ISgr; is used to
integrate the whole of the information of the data sources,
while I.Sro contains all information present in the domain
ontology ISp2, but not information from I.Sg; that is not
to be used in the ontology. As a result, [Spo and ISgs
contain the same information, but are structurally quite
different. We then defined transformation pathways between
the data sources and ISk, between ISk, and ISgo, and
finally between [Sgro and the domain ontology I.Sps. Note
that pathway ISgro < [So; is automatically generated, as
discussed in Section III-E.

This solution presents two desirable properties. First, since
ISgs is a relational schema that contains the same infor-
mation as the domain ontology, the creation of the overall
transformation pathways from the data sources to this ontol-
ogy is a two-step process and therefore more straightforward,
compared to integrating each data source schema directly
into the ontology. This is due to the difficulty of mapping
between a relational schema and an ontology, caused by
the fundamental differences in modelling decisions made
when designing each one. For example, ontology classes are

30GSA-DAI (www.ogsadai.org.uk) is an open-source, extendable
middleware product exposing resources on Grids via web services. OGSA-
DAI supports relational, XML and text data sources and a variety of
operations for them, including querying and updating.

often modelled as data values in the relational model (e.g.
Caucasian is a subclass of Race in our ontology, but a data
value in the data sources).

Second, since I Sk is modelled based on the data sources,
mappings maintenance is much simpler, considering the
possible evolution of either the ontology or of the data
sources. In case one of the data sources LS; evolves, only
the pathway LS; < ISp; < IS is affected (if LS; was
extended with information not present in /.Sgi), or even
just LS; <> ISRy (in all other cases). In case the ontology
evolves, only the pathway ISy < 1.Sgs < [Spo2 is affected
(if the ontology was extended with information not present
in ISR2), or oven just I.Sis <> ISp2 (in all other cases).

This solution illustrates how mapping composition [2]
for BAV is the straightforward process of appending trans-
formation pathways, in contrast with the GAV/LAV/GLAV
approaches. Furthermore, BAV readily supports the evolution
of both integrated and data source schemas [7].

C. Relational Data Integration

The first step in producing the ASSIST integrated re-
source is to integrate the data source schemas into ISg;.
For each one of the data source schemas, LS;, we issue
AutoMed primitive transformations, producing schema LS.
This schema is now identical to .Sk and so an id AutoMed
transformation is issued between LS. and ISg;, denoting
that the two schemas contain the exact same constructs. As
an example of this process, transformations (1)—(4) in Table I
are some of the transformations used to integrate LSy
with ISgi. Note that, as shown in the transformations, the
primary key of a relation in 1.Sg; is a set of tuples with arity
2, where the first component of each tuple is a string that
identifies the provenance of the tuple (see also Section III-D).

The second step is to produce pathway [Sr; — ISgs.
Transformations (8)-10 in Table I are some of the transfor-
mations in this pathway, and show the relationship between
relation ((case)) and relation ({visits)) in ISgs. Currently,
each patient visit is considered as a separate case, however
this is going to change in the near future, and a case will
be defined as the set of visits of a particular patient over a
certain timeframe. Adapting the pathway for this is straight-
forward, e.g. if the timeframe is a single year, the IQL query
for transformation will become: [genCaseld v|{y,v} «—
(group [{getYear d,v}|{v,d} «— ((visits, date))])], where func-
tion getYear expects a datetime input and returns the year,
function group expects a collection of pairs, groups them on
their first component, and returns a collection of collections
of visit identifiers, and function genCaseld generates a case
identifier for each collection of visits.

D. Data Cleansing

Data cleansing is the process of identifying inconsistent
data within one or more data sources and taking measures to
rectify or remove them. This includes erroneous, inaccurate
and incomplete data that exist due to errors in constructing
the data sources or due to merely putting together data

TABLE I
AUTOMED TRANSFORMATIONS FOR SECTIONS III-C, III-D AND III-E

Namespace r2owl corresponds to http://assist.dcs.bbk.ac.uk, assist to http://assist.iti.gr/assist_ontology.owl
and rdfs to http://www.w3.0rg/2000/01/rdf-schema, while authLSID stands for URN:LSID:assist.auth.gr.
Functions skl and sk2 are Skolem functions, as discussed in Section III-E.

Some Transformations in Pathway LSaurh < [SRr1

(@) add({(visits)), [{"authLSID.tblvisit’, t}|t « ((tblvisit})])

(
add({(visits, visit_id)),[{{’authLSID.tblvisit’, t}, {"authLSID.tblvisit’, t} }|t < ((tblvisit))])
add(((visits, date)),[{{’authLSID.tblvisit’, t}, v}|{t, v} « (tblvisit, VisitDate))])

add(((visits, patient_id)),[{{’authLSID.tblvisit’, t}, {"authLSID.tblpersonalinfo’, p} }|{t, p} « ((tblvisit, PID)])

add(((patients)), [{’authLSID.patients’, t}|t < ({tblpersonalinfo))])
add(((patients, patient_id)),[{{’authLSID.patients’, t}, {'authLSID.patients’, t} }|t < ((tblpersonalinfo))])

@
®
@
Some Data Cleansing Transformations in Pathway LSaurh < [Sr1
®
®
@

add(((lifestyle, cigarettes_per_day)), [{{’authLSID.tblpatientprofile’, t}, authSmokingMapping c}|

{t,c} < ((tblpatientprofile, CigsPerDay)); c >= 0;c <= 3])

Some Transformations in Pathway ISgr1 < [Sr2

add({{case)), ((visits))) (9) add({{case, case_id}),{{visits, visits_id))) G0 add({case, patient_id)),{(visits, patient_id)))

Some Transformations in Pathway [Sr2 < [So1

add({(assist :
add({(assist

{
add((

(case)),[sk1 c|c — ((case))])

(

(assist :
add(((

(a

: case_id, assist : case, rdfs : Literal)),[{skl c, cid}|{c,cid} < ((case, case_id))])

patient_id, assist : case, rdfs : Literal)),[{sk1l c, pid}|{c, pid} < {(case, patient_id))])

lifestyle_id, assist : case, rdfs : Literal)),[{skl c, lid}|{c, lid} < ((case, lifestyle_id))])

ssist : case_pk)), [sk2 c|c < ((case))]) @6 add({(pk, assist : case, assist : case_pk)), [{skl c,sk2 c}|c « ((case})])

Some Transformations in Pathway /So1 < [.So2

add({(assist :
add(((assist :
add({(assist :

Person)),[pidlit|{pid, pidlit} < {(r2owl :

\E)

2

\E

4 ((assist :
5 add((

(Y

a8 Case)),{(r2owl : Case)))
()

patient_id, r2owl :

patients, rdfs : Literal))])

hasCase, assist : Person, assist : Case)),[{y, x}|{x,y} < {(r2owl : patient_id, r2owl : case, rdfs : Literal}))])

TABLE II
EXAMPLE USER QUERY q ON I.Sps.

Note that authLSID stands for URN:LSID:assist.auth.gr and chariteLSID for URN:LSID:assist.charite.de.

q = [{p,v}|{p, c} < ((assist : hasCase, assist : Person, assist : Case)); {c,v} « ((assist : caseHasPart, assist : Case, assist : Visit))]
q’ = [{{’authLSID : tblvisit’, t1}, {"authLSID : tblpatientprofile’, v}, authSmokingMapping c1}|

{t1,v} — authLSID : ({tblvisit, VIDY); {t2, c1} < authLSID :
{’authLSID : tblpatientprofile’, v} = {’authLSID : tblpatientprofile’, t2}; (authSmokingMapping c1)

((tblpatientprofile, CigsPerDay)); c1 >= 0;c <= 3;
=" More_than_20’]

+ [{{/chariteLSID : patient’, t3}, {'chariteLSID : tabPatientGenerallnfo’, t3}, c2}|

t3 < charitelSID :

{(tabPatientGenerallnfo)); {t4, c2} < chariteLSID : ((tabPatientGenerallnfo, Cigs_per_day));

{’chariteLSID : tabPatientGenerallnfo’, t3} = {’chariteLSID : tabPatientGenerallnfo’, t4}; c2 =’ More_than_20']

sources that are individually consistent but that exhibit in-
consistencies as a whole. In the following, we describe three
data cleansing operations that are necessary in our setting.

1) Globally unique identifiers: Patients in ASSIST are
assumed to be disjoint across databases and therefore so are
all patient-related data. Since each data source uses locally
unique identifiers, we need to ensure that no two records
from two different resources are construed as equivalent. For
this reason, we use to life science identifiers, or LSIDs [5],
a Uniform Resource Name (URN) specification that pro-
vides a standardised naming scheme for life sciences enti-
ties. For example, the LSID URN:LSID:assist.auth.gr.
patients:126 refers to the row with primary key value 126
in table patients of the AUTh database — in this case the
LSID issuing authority is assist.auth.gr.

Transformations (5) and (6) in Table I show how this is

achieved for LS yrn. Note that, since in this case we are
performing data cleansing for a data integration setting, each
of these transformations is adding a construct of schema
ISRy (data integration aspect) and populating it by first
performing data cleansing on the construct of LSayrh,
which is deleted later in the pathway. If only data cleansing
was required, e.g. for providing an export schema for a data
source, we would instead replace these constructs.

This data cleansing operation has two benefits. First, it
provides globally unique identifiers for primary key data and
so joins on primary key attributes across data sources will
not result in ‘false positives’, i.e. results that erroneously
associate patient information across databases. Second, the
use of URNs means that there is explicit provenance infor-
mation within results of queries on the integrated schema,
which may be of particular interest to users in certain cases.

2) Data values formats: The ASSIST ontology de-
fines a set of permitted data values for each medical
entity, which, in general, is different from the set of
values permitted in each of the data sources. For ex-
ample, the Smoking class in the ontology allows four
different values, No_Smoking, Less_than_10, 10_to_20
and More_than_20, whereas the set of permitted values
in the corresponding attribute in the AUTh data source,
tblpatientprofile.cigarettes_per_day,is [0,1,2,3].
To address this data values incompatibility, an IQL function
is required to provide the association between the set of val-
ues used in the data source and the one used in the ontology.
In our example, transformation (7) in Table I shows how
function authSmokingMapping(Integer — String) maps
data values about smoking between LSy, and the on-
tology. Note that it is also possible to perform n-1, 1-m and
n —m data value associations using a suitable IQL function.

3) De-identification: Sensitive information that could lead
to patient identification was removed from the ASSIST data
sources prior to the integration effort. Since this may not
always be the case, AutoMed is able to use techniques similar
to the above to ensure data privacy. In particular, patient
names and other sensitive information can be anonymised
using an IQL function that, e.g. implements a salted MD5
hash function, commonly used in medical informatics [22].
Regarding the use of external de-identification services, it is
possible to invoke such a service through an IQL function
in order to keep this process external to AutoMed.

E. Ontology-based Data Access

Ontology-based data access to the integrated relational
resource is achieved by a two-step process that forms the
pathway ISgro < [So1 <« 1Spo. First, we automatically
translate schema I.Sgs to an OWL-DL schema, 1551, and
then we manually transform this schema to the ASSIST
ontology ISp2. Apart from generating part of the pathway
automatically, this two-step approach has the advantage that
the rest of the pathway, 1.Sp; < I Sps is easier to create as
there is no modelling language heterogeneity.

1) Relational-to-OWL-DL Translation: The relational-to-
OWL-DL algorithm is based on [9], which describes the rep-
resentation of relational databases in RDF. Similarly to [9],
our representation of relational databases in OWL-DL can
support single-column primary and foreign keys as well as
composite ones. We now briefly present the algorithm and
refer the reader to [25] for further details.

Given an input relational schema, in this case ISgo, the
translation algorithm has three parts. First, the algorithm
translates the relations of the input schema. In our example,
the algorithm first adds to ISgs a class ((C)) for every
relation {(R)) of I.Sgo and a property ((a, c, rdfs : Literal)) for
each attribute (R, a)) of {(R})). The algorithm also adds a class
{(Cpk)) and a property ((pk,C, Cpk)) for each relation. The
extent of ((C)) is generated by skolemising the extent of the
corresponding construct {(R)), i.e. the projection of the rela-
tion onto its primary key attributes, since all individuals in an
ontology must be unique. The extent of ((a, c, rdfs : Literal))

is generated similarly, i.e. by first projecting the relation
onto the primary key attributes and the attribute itself, and
then skolemising the primary key. The extent of (Cpk)) is
generated similarly to that of ((C)) but using a different
Skolem function, while ((pk,C, Cpk)) is populated by pairs
of instances from ((C)) and ((Cpk)), where the first item in
each pair is equivalent to the second item.

The second part of the algorithm iterates through the
foreign key constraints of the input relational schema and
for each one that describes the referencing of attributes
a; of relation ((R)) from attributes b; of relation ((S)), the
algorithm creates classes ((Cg,)) and {(Cs,)) and properties
(fk, Cr, Crq), (fk, Cs, Cs,) and ((fk, Cs,, Cr,), where fk
is the name of the foreign key constraint. Classes ((Cg,,))
and {(Cs,)) are populated by projecting the referenced and
referencing attributes of ((R)) and ((S)), respectively, and
skolemising them appropriately. Properties ((fk, Cgr, Cr,)
and ((fk, Cs, Cs,) are populated by projecting the corre-
sponding relation onto the primary key attributes and the
referenced/referencing attributes, respectively. The extent of
property ((fk, Cs,,, Cry,)) is populated by pairs where the first
and second items are equivalent, and each comes from the
skolemisation of the projection of the referencing attributes.

The third part then removes all relational constructs, using
the newly created ontology constructs to specify their extents.

Transformations (9)-36 show some of the transformations
produced by the algorithm, and in particular the generation of
the ontology constructs that correspond to relation ((case)).

2) OWL-DL Data Transformation: 1t is clear from the
above that schema ISp; bears a strong resemblance to the
relational schema ISk, from which it was generated, but is
not necessarily identical to the domain ontology I.Sos. For
this reason, we need to manually create pathway [So; <
IS02, and transformations (2-09 in Table I show some of
the necessary transformations.

FE Query Processing

After constructing the integrated resource, a user can for-
mulate a query against the ASSIST domain ontology via the
web interface and submit it to ASSIST. This query, internally
expressed in SeRQL, is expanded using the domain knowl-
edge encoded within the ontology, and is then submitted to
the AutoMed Query Processor (AQP) for evaluation. The
AQP first translates this query into an equivalent IQL query
Q. The AQP reformulates @), which only contains terms
from the ontology, into a query (),.s, which contains terms
from the data source schemas L.S;, using the transformation
pathways I1Spo — ISp1 — ISRy — ISR — LS;. It then
optimises ()r.r, produces the query plan and evaluates it
against the data sources (see [24] for details on the query
processing pipeline of the AQP).

As an example, consider an IQL query ¢ on I.Sp2 (see
Table II), which retrieves the cases in which patients smoke
more than 20 cigarettes per day. This query is reformulated
using pathways [Sps — [So1 — [Spe — ISp1 — LS;
(e.g. the first generator of ¢ can be fully reformulated using

transformations , @, and @) and is then optimised

into query ¢’ as shown in Table II. This query contains two
comprehensions, each of which can be evaluated using a
single data source, LSayry and LScharite, respectively.
The second comprehension can be translated into SQL in
full, however the first one cannot, since it is not possible to
translate IQL function authSmokingMapping. As a result,
the query plan produced for ¢ will contain 3 subqueries.
These are submitted for evaluation to the data sources, the
SQL results are translated back into IQL, and the AQP post-
processes the IQL results to produce the result of Q.

IV. CONCLUSIONS AND FUTURE WORK

We have presented a flexible, scalable and easily main-
tainable solution to the problem of integrating relational data
sources into a domain ontology, in a setting where both the
data sources and the domain ontology are likely to evolve
and where the number of data sources may increase. From
a medical perspective, ASSIST will provide researchers
with the ability to evaluate medical hypotheses and conduct
association studies that were previously prohibitively difficult
or even impossible, since such tasks require the integration
of medical repositories and not mere access to them.

Note that additional ontologies may be created as re-
sources holding information relevant to, but disjoint from,
the ASSIST ontology. To enable querying across this set
of integrated resources, a ‘super-ontology’ could then be
created, which will integrate the ontologies of the integrated
resources. This prospect, together with the ability to handle
the evolution of both integrated and data source schemas,
and the mapping composition strategy used to integrate
the ASSIST data sources, exemplifies the flexibility and
scalability of AutoMed’s transformation-based approach.

We are currently working on enhancing the query process-
ing capabilities of the ASSIST integration architecture. We
plan to investigate combining ontology-based query answer-
ing techniques together with AutoMed’s query processing
capabilities over virtual integrated database schemas. We
will also work on evaluating the integrated resource and the
overall system in terms of query processing performance.

The current ASSIST data sources are relational, but this
need not be the case in general and may indeed not be the
case in ASSIST in the future. Medical records, stored locally
or on the Web, frequently use unstructured or semi-structured
formats, and the ability to integrate such resources using
the same framework as structured resources is desirable.
AutoMed can support the integration of such heterogeneous
resources, as discussed in [17], [21].

Finally, further to extending the number and the type of
data sources accessible through ASSIST, we also plan to in-
vestigate the interoperation of ASSIST with other biomedical
systems. One such example is caBIG [4], which provides an
international Grid on cancer-related research.

V. ACKNOWLEDGMENTS

We would like to thank Dikaios Papadogkonas for his
insight into the semantics of the ASSIST data sources.

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

REFERENCES

F. Baader, S. Brandt and C. Lutz. Pushing the EL envelope. In Proc.
Int. Joint Conf. on Artificial Intelligence, pp. 364-369, 2005.

P.A. Bernstein, T.J. Green, S. Melnik and A. Nash. Implementing map-
ping composition. In Proc. Int. Conference on Very Large Databases
(VLDB’06), pp. 55-66, 2006.

P. Buneman, L. Libkin, D. Suciu, V. Tannen, and L. Wong. Compre-
hension syntax. SIGMOD Record, 23(1):87-96, 1994.

caBIG Strategic Planning Workspace. The Cancer Biomedical Infor-
matics Grid (caBIG): infrastructure and applications for a worldwide
research community. Medinfo, 12(Pt 1):330-334, 2007.

T. Clark, S. Martin, T. Liefeld. Globally distributed object identi-
fication for biological knowledgebases. Briefings in Bioinformatics,
5(1):59-70, 2004.

D. Dou et al. Integrating Databases into the Semantic Web through
an Ontology-Based Framework. In Proc. Int. Workshop on Semantic
Web and Databases (SWDB’06 at ICDE’06), pp. 54-63, 2006.

H. Fan and A. Poulovassilis. Schema evolution in data warehousing
environments — a schema transformation-based approach. In Proc.
Int. Conference on Conceptual Modeling (ER’04), pp. 639-653, 2004.
L.S. Kohane. Bioinformatics and medical informatics: the imperative
to collaborate. J. Am. Med. Infor. Assoc., 7(5):512-516, 2000.

G. Lausen. Relational databases in RDF. In Proc. Joint ODBIS &
SWDB Workshop on Semantic Web, Ontologies, Databases, 2007.

B. Louie, P. Mork, F. Martin-Sanchez, A. Halevy and P. Tarczy-
Hornoch. Data integration and genomic medicine. J. Biomed. Inform.,
40(1):5-16, 2007.

P. McBrien and A. Poulovassilis. A uniform approach to inter-model
transformations. In Proc. Int. Conf. on Advanced Information Systems
Engineering (CAISE’99), pp. 333-348, 1999.

P. McBrien and A. Poulovassilis. Data integration by bi-directional
schema transformation rules. In Proc. International Conference on
Data Engineering (ICDE’03), pp. 227-238, 2003.

P. McBrien and A. Poulovassilis. Defining Peer-to-Peer Data Integra-
tion using Both as View Rules. In Proc. Workshop on Databases,
Information Systems and Peer-to-Peer Computing (DBISP2P’03 at
VLDB’03), pp. 91-107, 2003.

P. McBrien and A. Poulovassilis. P2P query reformulation over Both-
as-View data transformation rules. In Proc. Workshop on Databases,
Information Systems and Peer-to-Peer Computing (DBISP2P’06 at
VLDB’06), pp. 310-322, 2006.

B. Motik, U. Sattler and R. Studer. Query Answering for OWL-DL
with rules. Journal of Web Semantics, 3(1):41-60, 2005.

P. Mork, R. Shaker and P. Tarczy-Hornoch. The Multiple Roles of
Ontologies in the BioMediator Data Integration System. In Proc. Data
Integration for the Life Sciences (DILS’05), pp. 96-104, 2005.

M. Maibaum, L. Zamboulis, G. Rimon, N. Martin, and A. Poulovas-
silis. Cluster based integration of heterogeneous biological databases
using the AutoMed toolkit. In Proc. Data Integration for the Life
Sciences (DILS’05), pp. 191-207, 2005.

A. Poggi et al. Linking data to ontologies. J. Data Semantics, X:133—
173, 2008.

W. Sujansky. Heterogeneous database integration in biomedicine. J.
Biomed. Inform., 34(4):285-298, 2001.

R. Stevens et al. TAMBIS: Transparent Access to Multiple Bioinfor-
matics Information Sources. Bioinformatics, 16(2):184-186, 2000.
D. Williams and A. Poulovassilis. Combining information extraction
and data integration in the ESTEST system. In Proc. Int Conf. on
Software and Data Technologies (ICSOFT’06), pp. 13-21, 2006.
D.H. Wyllie, T.E.A. Peto and D. Crook. MRSA bacteraemia in patients
on arrival in hospital: a cohort study in Oxfordshire 1997-2003. BM/J,
331(7523):992-995, 2005.

L. Zamboulis, H. Fan, K. Belhajjame, J. Siepen, A. Jones, N. Martin,
A. Poulovassilis, S. Hubbard, S. M. Embury, and N. W. Paton. Data
access and integration in the ISPIDER proteomics Grid. In Proc. Data
Integration in the Life Sciences (DILS’06), pp. 3—18, 2006.

L. Zamboulis, S. Mittal, E. Jasper, H. Fan and A. Poulovassilis.
Processing IQL queries in the AutoMed toolkit Version 1.2. AutoMed
Technical Report 35, 2008.

L. Zamboulis and A. Poulovassilis and J. Wang. Ontology-
Assisted Data Transformation and Integration. In Proc. Workshop on
Ontologies-based Techniques for DataBases in Information Systems
and Knowledge Systems (ODBIS’08 at VLDB’08), pp. TBC, 2008.

