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  Abstract—In this paper, the objective was to investigate 

the heart rate variability in two selected groups of 

premature infants (sepsis vs non-sepsis). We studied the RR 

interval series not only by linear methods — time domain 

and frequency domain, but also by non-linear methods – 

chaos theory and information theory, in order to find the 

optimal parameters to distinguish sepsis premature infants 

from non-sepsis ones. The results show that indexes of 

information theory are useful parameters for the diagnosis 

of late neonatal infection in premature infants with 

recurrent apnea-bradycardia. 

 

 

I.  INTRODUCTION 

 

ate-onset sepsis, defined as a systemic infection in 

neonates older than 3 days, occurs in approximately 

7% to 10% of all neonates and in more than 25% of very 

low birth weight infants who are hospitalized in Neonatal 

Intensive Care Units (NICU) [1]. The clinical 

manifestations of neonatal sepsis, whatever the source of 

infection, are always not so evident. Accordingly, lacking 

in early and adapted interventions always leads to life 

risk. 
1
Therefore, this disease is a major problem resulting 

in high morbidity and mortality for premature infants [2].  

 As we know, sick preterm newborns do not show any 

fever, only with blood culture, the possible signs of sepsis 

may be detected. However, on one hand, the 

hematological and biochemical markers which have been 

used in this symptom, not only require invasive 

procedures which should not be frequently repeated, but 

also have low predictive values in the early phase of 

sepsis. On the other hand, it has been observed 

experimentally that phenomena of apnea-bradycardia 
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happened more frequently in sepsis preterm newborns 

than in non-sepsis ones [3].  

 The heart rate variability (HRV) analysis in 

neonatology is a useful tool to understand the 

cardiovascular control system behavior in late-onset 

sepsis of premature infants. Starting from the obvious 

increase in apnea-bradycardia crisis related with the state 

of sickness, a way to evaluate the relationship between 

the infection and its manifestation was investigated. In 

particular, since apnea-bradycardia was an indication of 

altered mechanisms of cardiovascular regulation, the 

HRV investigation on these subjects is an immediately 

consequent decision. Therefore, we investigated the RR 

interval series extracted from ECG signals.   

 In this paper, we study both linear methods and 

non-linear methods in order to find the optimal 

parameters to discriminate between infected and 

non-infected premature infants. In section II, we will 

refer to linear methods. In section III, non-linear methods 

are presented in details. We offer experimental protocol in 

section IV. Results are demonstrated in section V. Finally, 

we discuss and conclude with summary in section VI. 

 

 

II. LINEAR METHODS 

 

Linear indexes are proposed in both time domain and 

frequency domain [4].  

 

A. Time Domain   

 

 Time domain analysis consisted in the extraction of 

the standard deviation (SD) as an estimation of global 

variability, 
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and square root of the mean of squared successive 

differences (rMSSD) as an estimation of short term beat 

to beat variability. 
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B. Frequency Domain   

 

 Concerning frequency domain, a 10-order 

autoregressive model was used in power spectral analysis 

for RR. The order was estimated from all the experiments 

as the one which most often provided the minimum of 

L 



Akaike criteria. The following spectral bands were 

defined: very low frequency (VLF, 0.002 to 0.02 Hz), low 

frequency (LF, 0.02 to 0.2 Hz), and high frequency (HF, 

0.2 to [0.5 ]RR Hz) where RR  is the mean RR in the 

corresponding window containing 1024 beats [5][6]. The 

areas below each peak as well as the total power spectral 

density (0.002 to 0.5 RR Hz) were calculated and 

expressed in ms
2
 for RR[7][8]. Power of HF (p_HF), LF 

(p_LF) and VLF (p_VLF) are also computed after natural 

logarithm transformations (ln ms
2
)  

 

 

III. NON-LINEAR METHODS 

 

 We also use two kinds of non-linear methods: chaos 

theory and information theory.  

 

A. Chaos theory   

 

 To test for the scale invariance, the detrended 

fluctuation analysis (DFA) was evaluated in the methods 

described by Peng et al [9]. The fluctuations were 

characterized by the scaling exponentα , a self-similarity 

parameter representing the long-range fractal correlation 

properties of the signal. The exponentα is 0.5 for white 

noise with uncorrelated randomness, 1 for1 f noise and 

long-range fractal correlations, and 1.5 for Brown motion 

[9][10]. In most cases, the log-log plot was not strictly 

linear but rather consisted of two distinct linear regions of 

different slopes separating at a break point near 40 beats. 

Therefore, in accordance to previous study, we evaluated 

the fractal scaling exponent
fastα from 4 to 40 beats, 

and
slowα from 40 to 1000 beats [11].   

 

B. Information theory 

 

 Information theory is derived from the ideas about 

entropy of random variables and processes provided by 

Claude E Shannon. Entropy is defined in terms of a 

discrete random event x, with possible states 1…n as: 
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The concept of entropy in information theory describes 

how much ‘uncertainty’ there is in a signal or random 

event. An alternative way to look at this notion is to talk 

about how much information is carried by the signal.  

   So, according to the same reasoning that led to the 

definition of entropy, it is possible to find the same 

quantity for pairs of random events, which is called the 

joint entropy, written as [ , ]H x y . 

   Then, when the state of one of the two variables, let 

us say, y is known, the possible states for the x variable 

are expressed by the cross-conditional entropy, i.e. the 

entropy of x conditioned on y, written as [ ]H x y . 

   Entropy, as it relates to dynamical systems, is the rate 

of information production. However, methods for 

estimating the entropy of a system represented by a time 

series are not well suited to analysis of the short and 

noisy data sets encountered in cardiovascular and other 

biological studies.  

 Recently, it has been observed that non-linear indexes 

based on information theory may be useful to discern 

sepsis from non-sepsis babies [12]. Thus, analysis of 

non-linear variables has been performed in order to assess 

randomness of the series. Four metrics were considered: 

Approximate Entropy, Sample Entropy, Permutation 

Entropy and Regularity.   

 

 

   1) Approximate Entropy: Pincus [13] introduced 

approximate entropy (AppEn), a set of measures about 

system complexity closely related to entropy, which has 

been extensively applied to biological series analysis. It 

allows discriminating signals depending on their 

regularity without considering the model of the system. 

Consequently, regardless of their nature, whatever it is 

stochastic or purely deterministic, linear or non-linear, 

AppEn allows calculating indirectly signal correlation 

and persistence. 

   Given a sequence SN, consisting of N instantaneous 

Heart Rate measurements HR(i), i=1,…,N. We must 

choose values for two input parameters—m and r, to 

compute the AppEn(SN,m,r) of the sequence, where m 

refers to the pattern length, and r defines the criterion of 

similarity. We denote a pattern of m HR measurements, 

beginning at i within SN, by the vector ( )
m

ix . Two 

patterns, ( )
m

ix and ( )
m

jx , are similar if the difference 

between any pair of corresponding measurements in the 

patterns is less than r, i.e., if  

( ) ( )HR i k HR j k r+ − + <   for 0 k m≤ <  (4) 

Now given the set xm of all patterns of length 

m[ ](1), (2), , ( 1)m m m N mx x x − +L within SN, it is possible to 

define 
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Where nim(r) is the number of patterns in xm that are 

similar to xm(i)(given the similarity criterion r). The 

quantity Cim(r) is the fraction of patterns of length m that 

resemble the pattern of the same length that begins at 

interval i.    

   Finally, we define the AppEn of SN, for patterns of 

length m and similarity criterion r, as following: 

( )
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where ( )m rC is the mean value of ( )im rC .  

 

 

  2) Sample Entropy: Sample entropy (SamEn) is 

derived from approaches developed by Grassberger and 

his co-workers [14-17]. SamEn(m,r,N) is precisely the 

negative natural logarithm of the conditional probability 

that two sequences similar for m points remain similar at 

the next point, where self-matches are not included in 



calculating the probability. Thus a lower value of SamEn 

also indicates more self-similarity in the time series.  

    We began from the work of Grassberger and 

Procaccia[16], who defined 
1
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The average of the ( )
m

i rC defined above. This differs from 

( )
m

rΦ only in that ( )
m

rΦ is the average of the natural 

logarithms of the ( )
m

i
rC . They suggest approximating the 

Kolmogorov entropy of a process represented by a time 

series by  
1
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Where iA is the number of vectors
1
( )

m
jx + within r of 

1
( )

m
ix + , and iB is the number of vectors ( )

m
jx within r of 

( )
m

ix .   

   In this form, however, the limits render it unsuitable 

for the analysis of finite time series with noise. We 

therefore made two alterations to adapt it to this purpose. 

Firstly, we followed their later practice in calculating 

correlation integrals [14-17] and did not consider 

self-matches when computing ( )
m

rC . Secondly, we 

considered only the first N-m vectors of length m, 

ensuring that, for 1 i N m≤ ≤ − , ( )
m

ix and
1
( )

m
ix + were 

defined. 

   We defined ( )
m

i rB as
1

( 1)N m
−

− − times the number of 

vectors ( )
m

jx within r of ( )
m

ix , where j ranges from 1 to 

N - m, and j ≠ i to exclude self-matches. We then defined 
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Similarly, we defined ( )
m

i rA  as
1

( 1)N m
−

− − times the 

number of vectors
1
( )

m
jx + within r of

1
( )

m
ix + , where j 

ranges from 1 to N - m (j ≠ i), and set 
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( )
m

rB is then the probability that two sequences will 

match for m points, whereas ( )
m

rA is the probability that 

two sequences will match for m+1 points. We then 

defined the parameter 

[ ]{ }( , ) lim ln ( ) ( )m m

N

SamEn m r r rA B
→∞

= −  (12) 

which is estimated by the statistics 

[ ]( , , ) ln ( ) ( )m mSamEn m r N r rA B= −  (13) 

Where there is no confusion about the parameter r and 

the length m of the template vector, we set 

[ ]{ }( 1)( ) 2 ( )mB N m N m rB= − − −  (14) 

and 

[ ]{ }( 1)( ) 2 ( )mA N m N m rA= − − −  (15) 

So that B is the total number of template matches of 

length m and A is the total number of forward matches of 

length m+1. We note that [ ]( ) ( )
m m

A B r rA B= , so 

SamEn can be expressed as 

( , , ) ln( )SamEn m r N A B= −  (16) 

 

 

   3) Permutation Entropy: Permutation entropy 

(PermEn) was introduced by Bandt and Pompe[18] as a 

convenient means of mapping a continuous time series 

onto a symbolic sequence. To illustrate the idea, let us 

first embed a scalar time series { ( ), 1, 2, }x i i = L to a 

m-dimensional space [19]: 

[ ( ), ( ), , ( ( 1) )]i x i x i L x i m LX = + + −L  (17) 

where m is called the embedding dimension and L the 

delay time. For a given, but otherwise arbitrary i, the m 

number of real values Xi can be sorted in an increasing 

order:

1 2
[ ( ( 1) ) ( ( 1) ) ( ( 1) )]

m
x i L x i L x i Lj j j+ − ≤ + − ≤ ≤ + −L  

When an equality occurs, e.g. 

1 2
( ( 1) ) ( ( 1) )

i i
x i L x i Lj j+ − = + −  (18) 

we order the quantities x according to the values of their 

corresponding j’s, namely if ji1<ji2, we write 

1 2
( ( 1) ) ( ( 1) )

i i
x i L x i Lj j+ − ≤ + −  (19) 

This way, the vector Xi is mapped onto (j1,j2,…,jm), which 

is one of the m! permutations of m distinct symbols 

(1,2,…,m). It is clear that each point in the m-dimensional 

embedding space, indexed by i, can be mapped to one of 

the m! permutations. When each such permutation is 

considered as a symbol, then the reconstructed trajectory 

in the m-dimensional space is represented by a symbol 

sequence. The number of distinct symbols can be at most 

m!. Let the probability distribution for the distinct 

symbols be P1,P2,…,PK, where !K m≤ . Then the PermEn 

for the time series{ ( ), 1, 2, }x i i = L is defined [18] as the 

Shannon entropy for the K distinct symbols 

1

( ) ln
K

p j j

j

mH P P
=

= −∑  (20) 

When Pj=1/m!, then Hp(m) attains the maximum value 

ln(m!). For convenience, we always normalize Hp(m) by 

ln(m!), and denote 

0 ( ) ln( !) 1pp m mHH≤ = ≤  (21) 

Thus Hp gives a measure of the departure of the time 

series under study from a complete random one: the 

smaller the value of Hp, the more regular the time series 

is.    

 

 

  4) Regularity: Regularity (Reg) can be defined as the 

degree of recurrence of a pattern in a signal. The 

evaluation of the regularity for a process x is based on the 

calculation of corrected conditional entropy (CCEx), 



representing the amount of information carried by the 

most recent samples of the series when some past 

samples are known [20]. To derive an index of 

complexity which is independent of the different 

probability distribution of the process, the CCEx is 

normalized by the Shannon entropy of the process, so the 

normalized corrected conditional entropy (NCCEx) is 

obtained. 

    The index of Reg of the process x is defined as: 

Re 1 min( ( ))xg LNCCE= −  (22) 

where L is the maximum of length for patterns.  

   From equation (22), it is obvious that Reg ranges 

from 0 to 1. In detail, Reg tends to 0, if the series is a 

fully unpredictable process. On the contrary, it tends to 1, 

if the series is a really periodic signal. Besides, Reg 

assumes intermediate values for those processes that can 

be partially predicted by the knowledge of the past 

samples. 

 

 

 

IV. EXPERIMENTAL PROTOCOL 

 

 Data were obtained from two groups of premature 

infants (9 sepsis vs 11 non-sepsis) hospitalized from the 

NICU in the Center of Hospital affiliated to University of 

Rennes 1 (CHU-Rennes) between 2001 and 2006. This 

research was approved by the local ethics committee in 

France (03/05-445). Furthermore, the parents of these 

babies were informed and gave common consents.  

 Inclusion criteria were: more than one bradycardia 

per hour and/or need for bag-and-mask resuscitation 

and/or the intention of the attending physician to 

investigate for a suspected infection. Exclusion criteria 

were: ongoing inflammatory response with or without 

confirmed infection, medication known to influence 

autonomic nervous system (ANS) including morphine, 

catecholamine, sedative drugs, intra-tracheal respiratory 

support, intra-cerebral lesion or malformation.  

 “Sepsis” is defined as the combination of an 

inflammatory response, i.e. C-reactive protein (CRP) 

higher than 5mg/l 24 hours after the recording, and 

positive blood cultures. “No-sepsis” is defined as the 

association of an absence of inflammatory response, i.e. a 

CRP less than 5mg/l 24 hours after the recording, and 

negative blood cultures.  

 All recordings were performed in the NICU and data 

were recorded in standard conditions. The monitoring 

(Powerlab system®, ADInstruments) included one-hour 

recording of two electrocardiogram (ECG), 

electrooculogram (EOG), electroencephalogram (EEG) 

leads, one pulse oxymetry saturation (SaO2), nasal flow 

and abdominal respiration trace.  

 Continuous ECG signals were sampled at 400HZ, 

which was also carried on for the other biological signals. 

There were no significant differences in gender, 

gestational age, chronological age (>72 hours), 

post-menstrual age (<33 weeks), weight and haematocrit 

between sepsis and non-sepsis groups.   

 

 

V.  RESULTS 

 

   Data analysis was conducted on home-made signal 

processing tools designed with the software Matlab® 7.1 

Release 14 (The Mathworks, Inc.). Consecutive 

sequences of successive cardiac cycle length (RR series) 

were extracted from ECG recordings and employed into 

time domain, frequency domain, chaos theory and 

information theory. The parameters were calculated in the 

windows covering 1024 beats. 

   Kruskal-Wallis test is used to evaluate p-value for 

each parameter. The Kruskal-Wallis test is a 

nonparametric version of one-way Analysis of Variance 

(ANOVA). The low p-value means the Kruskal-Wallis 

test results agree with the one-way ANOVA results.  

   The Kruskal-Wallis test evaluates the null hypothesis 

H0 (all samples come from populations that have the 

same median) against the alternative hypothesis H1 (the 

medians are not all the same). 

   The Kruskal-Wallis test makes the following 

assumptions about the test data: 

• All samples come from populations having the 

same continuous distribution, apart from 

possibly different locations due to group effects. 

• All observations are mutually independent. 

   The Kruskal-Wallis test is based on an analysis of 

variance using the ranks of the data values, not the data 

values themselves. It is preferable to perform a test to 

determine which pairs are significantly different, and 

which are not.  

 

 
Table 1  

Values of Parameters Extracted from HRV 

 Sepsis Non-Sepsis 

SD 16.83 ± 13.67 10.40 ± 4.15 

rMSSD 1.83 ± 0.78 1.45 ± 0.34 

p_HF(ln) 5.99 ± 1.18 5.75 ± 0.65 

p_LF(ln) 7.76 ± 1.18 7.88 ± 0.64 

p_VLF(ln) 6.66 ± 0.86 6.67 ± 0.60 

slowα  0.89 ± 0.16 1.03 ± 0.08 

fastα  1.49 ± 0.13 1.47 ± 0.08 

AppEn* 0.63 ± 0.15 0.84 ± 0.15 

SamEn* 0.39 ± 0.16 0.68 ± 0.25 
PermEn* 0.73 ± 0.05 0.78 ± 0.03 

Reg* 0.79 ± 0.05 0.71 ± 0.05 
* Kruskal-Wallis test, p<0.05, sepsis vs non-sepsis 

 

 

 Referring to information theory, the index of AppEn, 

a measure quantifying the complexity and regularity of 

time series, was calculated from the continuous 1024 

beats segments with fixed input variables m = 2 and r = 

0.2. About SamEn, m = 3 and r = 0.2. With regard to 

PermEn, we choose the most suitable values: the 

embedding dimension m = 6, the window size w = 1024. 

As for Reg, the maximum of length for patterns L is 10. 

Furthermore, we box plot these four indexes as following 

and see them in detail.  
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Figure 1. Indexes of information theory 

 

 In figure 1, Red lines in boxes stand for mean values 

of indexes separately for sepsis group (S) and non-sepsis 

group (NS).  

 HRV analysis shows that the mean values of AppEn, 

SamEn and PermEn are lower in sepsis infants than in 

non-sepsis ones, while, the mean values of Reg index 

give lower values for non-sepsis than for sepsis. These 

performances above express a decrease in information 

content in the newborns suffering from infection. Here, 

HRV analysis confirmed the previous studies based on 

entropy analysis, giving higher regularity values in sepsis 

cases. 

   Compared with these three entropy indexes, SamEn 

(p=0.0201) is superior to AppEn (p=0.035) and PermEn 

(p=0.025) to distinguish sick babies from healthy ones.  

 

 

VI. DISCUSSIONS AND CONCLUSIONS 

 

 In this paper, the aim of the work was to find 

quantitative mathematical criteria for the diagnosis of 

late-onset sepsis happened in premature infants by a 

non-invasive way. The clinical manifestations of neonatal 

sepsis, whatever the source of infection, are frequently 

nonspecific.  

 The aim was achieved by means of RR signal 

analysis. HRV characteristics such as quantitative linear 

estimates (SD, rMSSD, p_HF, p_LF, p_VLF) and chaos 

indexes (
slowα and

fastα ), we were unable to find a 

correlation between these parameters and sepsis. 

However, four metrics from information theory were 

considered: Approximate Entropy, Sample Entropy, 

Permutation Entropy and Regularity. Results confirmed 

the relationship between the occurrence of disease and a 

reduction of information carried by cardiovascular signals. 

AppEn, SamEn and PermEn showed that a decrease of 

entropy is associated with sepsis condition, and 

coherently, the Reg index measured a higher value for the 

same group of patients.  

 In conclusion, an increase in regularity coincides with 

a decrease in entropy contents in HRV signals from sepsis 

neonates. The distinctive variation in heart rate behavior 

related with sepsis could be useful in the field of 

neonatology.   
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