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Abstract— Recent advances of robotic/mechanical devices
enable us to measure a subject’s performance in an objective
and precise manner. The main issue of using such devices is
how to represent huge experimental data compactly in order
to analyze and compare them with clinical data efficiently.
In this paper, we choose a subset of features from real-time
experimental data and build a classifier model to assess ske
patients’ upper limb functionality. We compare our model with
combinations of different classifiers and ensemble schemes
showing that it outperforms competitors. We also demonstrte
that our results from experimental data are consistent with
clinical information, and can capture changes of upper-linb
functionality over time.

I. INTRODUCTION

Stroke (cerebrovascular accident) is defined as damage
to brain tissue caused by the interruption of blood flow
to the brain that lasts more than 24 hours [1]. It is th&ig. 1. An experimental setup for the unloaded reaching. t8skjects are
most common cause of disability and affects approximateRgked to reach one of eight targets from the center. The meweoue is
700.000 I h in the United S 21 O iven by the illumination of a target. A trial is finished whére subject's

, people each year In t_e nite tates [2]. On and reaches to the target and stays there. Note that thel ésdback is
about ten percent of stroke survivors can fully recover, angtovided through a projected monitor screen, which prevenbjects from
impairment often includes upper-limb hemiparesis resglti '0oking their arm movement directly.
in a substantive reduction in the quality of life post-s&ok

[3]. Thus the main medical efforts for stroke patients are )
focused on rehabilitation and assessment [4]. we show that this model can measure performance changes

Recent advances of robotic/mechanical devices enable ka%tween repeated experlments, while  Chedoke-McMaster
to measure a subject's performance in an objective aroreS [4l, one of the major outcome measure for stroke
precise manner [5], [6], whereas most current clinical ssse 'MPairment and recovery assessment, did not. Finally, we
ment measures require trained physicians who have speciﬁ?—mpare our (_:Iassmcanon results with five other classifier
ized knowledge on how to perform the various assessmemodels with/without ensemble schemes, and show that our
techniques, and still may suffer from reliability problemsmOdel outperforms competitors.
or from poor responsiveness [7]. The major issue of using
such devices is how to represent huge experimental data o
compactly in order to analyze and compare them with clinicdl- Participants
data efficiently (e.g., see [8]). Forty six hemiplegic stroke patients and 77 control sub-

In this work, we extract distinctive features from experjects who report no previous neurological disorders were
imental task data, calculate the outlier boundaries foheadncluded in this work. Patients and control subjects were
feature and trial, and build a performance data set whicselected with the inclusion criteria of age over twenty and
represents upper-limb functionality of chronic strokeigratis  right-dominant handed. As we repeat the same experiment on
compared with control subjects group. Based on this dathoth of the groups over time, the actual data set we used here
we implement a hierarchical ensemble network to generatensists of 52 left-arm affected stroke patients’ expenime
estimation of stroke impairment, and to classify stroke padata, 53 right-arm affected, and 84 control subjects’ data.
tients’ data. The reaching assessment score built from this . )
model is demonstrated with the clinical information, and®- Experimental Device

. , We used a robotic exoskeleton platform for this experi-
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Kingston, ON) [9]. This device enables: 1) to facilitate a
subject’s flexion and extension movements of the shoulder
and elbow with the arm projected on the horizontal plane;



Fig. 2. Examples of the raw hand trajectory data. The upperdighows
a typical stroke subject's hand movements during reachasgst from the
center point to eight different targets, and the lower figiepicts a typical
control subject’'s hand trajectory. Color coding is usedriteo to designate
trials towards the same target direction.
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Fig. 3. Examples of the raw tangential hand speed data. Fdr &l

velocity data are illustrated as if the target light is turan at time frame
1000. Upper and lower graph show changes of hand speed dedching
task from a stroke patient (upper) and a control subjecteipwespectively.
Most of control subjects end trials within three to four seg@eriod, while
many of stroke patients cannot finish a trial within this pdrias shown in
the upper graph.

2) to minimize effects of gravity during movements by
attaching braces to the upper and lower segments of each
arm; 3) to provide a visual feedback through a projected

monitor screen, preventing a subject from looking his/k
arm movement directly; and 4) to measure and record vari
aspects of upper-limb motor performance including ha
position, tangential hand velocity, shoulder angles, dbove
positions.

C. Task

In an experimental session, a subject performed two <
(left and right arm) of an unloaded, center-out reachi
task [10], [11] which is illustrated in Fig. 1. Subjects wer
instructed to reach out from a given center point to one of 1
eight fixed peripheral target®99(= L1/R;1,45°,..., 315° =
Ls/Rs) when a target light is turned on. No restriction on tf
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minimum/maximum velocity was given and subjects were

instructed to keep their hand at the target until the targ
light was turned off. The order of illuminated targets ar

g{g. 4. An illustrative example of tangential hand velogityfile of a single
trial. The leftmost (red) vertical line designates the tifreme on which
&he target light is turned on. The following two verticaldm (green) show

selected in a random manner, but with a configuration thabints when the subject starts moving (onset) and stops ngofgffset),

the total number of repeated trials per each direction wou C
be the same. Fig. 2 and fig. 3 show an example of the ha

trajectory and velocity selected from a typical stroke gatts
data and a control data.

|gspectively. The magenta line between onset and offseifigsethe end

me of the first movement in this trial, which is defined byg firame on
ich the first local minimum velocity occurs after onset.



D. Feature Selection and Data Preprocessing [1l. RESULTS

We selected eight features that capture the main charde- Reaching Assessment Score

teristics of the original data [12], [13], [14]. Posture oer
is defined as the interval between the end of the previous & : DR AR T

trial and the current target light on, and we calculated the : ) “ : i ;454
mean speed of 500 milliseconds before target on tﬂ};;gsﬁ. 75 < «e :ﬁogg’
Reaction time ;) is the time interval until the subject starts e : “ v i >
to move after target on. First peak velocity ) is the first £ R - s
local maximum velocity, and the maximum velocity {,,.,) 2 ‘ A S
is the global maximum velocity. For most of control cases, %6_5 <t P
V.. is equal toV; ., which is not necessarily true for >
stroke subjects. First movement distance ery;{;) and é» o . Y
directional error £4;,) are defined as the error in distance 3 .
and angular direction relative to the optimal path lengtth an gss
direction during the first movement, which is illustrated in £~ / .
Fig. 4. Total movement timeT{) is the time between the £ ) “ .
subject starts to move and stops, and path length r&fjoy * s ) >
defined as the actual path length durifigover the optimal g
distance between the center and the target. s

Next, we chose outlier boundaries based on the control g

data, as specified below. For each feature, all control date 45 5 55 5 Y 7 75 8
was collected and sorted per direction. Assuming each row Left Hand Reaching Assessment Score

designates one session data and each column means a s gOfS. Left and right reaching assessment scores are shovwd-

. L age .
sorted trials (e._g.]? 0 speglfles_ the column qf the smallestgimensional plane. Each marker represents one sessionRizdacircles,
path length ratio, in the directioh,), the outlier boundary blue left triangles, yellow right triangles specify cortsubjects, left arm
values were selected either to becan + 2.58 o if the affected stroke patients, and right arm affected strok&miat respectively.
.. , L .., The affected arm information is independently reportedufgh clinical
current column passed Lilliefors’ normality te_St_ [15] th assessments, not estimated from the experimental data roermemble
a = 0.05, wheres means the standard deviation of thisnetwork resuits.
column. Otherwise, the outlier values were chosen to be the _ N
maximum (minimum) value(s) of the current column. _ Based on the final sub-cla55|f|er_0utpﬂl§f for each ses-
With this boundary set, we calculated the number of outlig?iOn: We constructed an outcome index that measures motor
trials per each feature and the side of arm, for both of theerformance of each arm. More specifically, the reaching

patient and control subject groups. The training/testiatad assessment score of sessiowas determined as a sum of

after this preprocessing consist of 16 attributes (8 featur Os; Values, . .
two sides) per each session. i i i
) P score’ = [ZOLJ"ZORJ"]
=1 =1
E. Hierarchical Ensemble Networks The maximum score of8.0 8.0] means that the subject

showed no upper limb deficits during the experimental task,
We used a neural network ensemble model as our claghereas the minimum score [0 0.0] implies the opposite.
sifier, as it has shown good performance in our prerig. 5 illustrates the result combined with the affected
vious works [8], [16]. First, the current training dataarm information, independently collected through clihica
T = {[Voos; Trs Tt, Vihaws Vinaw Eaist, Eair, P, C]' | i = examinations. Many of the stroke session scores appear on
1,..|T|}, where the classification lab&l € {0,1}, was [7.5 8.0]range, but it is not surprising in a sense that about
partitioned into 16 subgroups according to the arm testegs percent of stroke session data (47/105 sessions) were

(s = L | R) and three randomly partitioned feature$ £ diagnosed clinically intact by Chedoke-McMaster measure.
1,...,8). Each subnetworks; trained to examine if the

stroke patient group and the control group can be separatd Responsiveness

by these features. A feedforward network with five hidden Next, we check the responsiveness (i.e., sensitivity to
nodes was used for each subnetwork, trained by a resiliecttanges within patients over time [4]) of our measure by
backpropagation algorithm. Next, the intermediate outpwtomparing the reaching scores from the same subject with
data from these 16 subnetworks , were fed into the main Chedoke-McMaster scores, which are measured by physi-
neural classifier, in order to produce an estimation of thisians. Fig. 6 plots the changes of the reaching score wtdle th
session being a control subject (= 1.0) or not (= 0.0). Bnall corresponding Chedoke-McMaster scores remain the same
this whole procedure is repeated with ten times of 10-folduring various time intervals. Each line segment depiots th
cross validation [17] to obtain a generalized performancesult of two sessions done by the same subject, and the
expectation for this ensemble classifier. x-axis represents the time interval between two sessions.
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Fig. 6. Plots of left and right reaching assessment sconegesaover time.
Each line segment represents changes of our assessmenbstween two
sessions done by the same subject, over the given time afgespecified
in x-axis. Note that only changes while the correspondirgical-based
Chedoke-McMaster scores remain fixed are shown in this figtine first
session date is set as day zero for all sessions.

TABLE |
CLASSIFICATION PERFORMANCECOMPARISON

Classifier Type ss cc cs  sc] Er (%)
k-NN 79.7 86.3 18.7 4.3 12.2
k-NN + Bagging 80.7 850 200 33 12.3
NaiveBayes 80.3 877 173 3.7 111
NaiveBayes + Bagging 80.7 87.0 180 33 11.3
NaiveBayes + Boosting 80.3 847 203 37 12.7
Log. Regression 740 944 106 10.0/ 109
Log. Regression + Bagging 76.7 950 100 7.3 9.2
SVM 79.7 89.7 153 4.3 10.4
SVM + Bagging 80.0 920 13.0 4.0/ 9.0
SVM + Boosting 78.7 93.0 120 5.3 9.2
Decision Tree 76.3 920 130 7.7 11.0
Decision Tree + Bagging | 76.2 96.1 8.9 7.8 8.8
Decision Tree + Boosting | 789 935 115 51 8.8
Ensemble Networks | 79.7 98.0 7.0 4.3|| 6.0

the average number of incorrect classifications as stroke to
control and vice versa. The error column shows the mis-
classification rate of each classifier in percentage, aegrag
over ten iterations of 10-fold cross validation procedures
The maximum possible number of SS and CC are 84 and
105 respectively, and the lowest error possible from blind
estimation is 44.4 percent for this data.

We tried 1 to 10 nearest neighbor options and Table |
shows the best classification rate among them. Ensemble
version of classifiers typically performed about two petcen
better than the original version, as shown in regression,
SVM, and decision tree models, but nearest neighbor and
naive Bayes algorithm did not get such performance boost
in this work. We also tried different type of kernels and its
parameters including linear, polynomial, radial basisction
and sigmoid kernels for SVM, and the best results are shown
above. Our ensemble classifier outperforms all competitors
but the performance difference is not statistically sigaifit.
However, the error rate is significantly lower in general
compared with our previous result [16], in which similar
feature data and ensemble networks were used.

IV. CONCLUSION

In this work, we extracted characteristic features from
real-time, experimental task data, reduced data set by sum-
marizing features into a compact outlier sets, and trained
a hierarchical ensemble network model in order to identify
stroke patients and assessing their upper limb functignali
The reaching assessment score proposed here is calculated
from the partial output of sub-network classifiers, and we
showed that this outcome measure coincides with clinical
assessment information of affected arm. We also showed
that this score can capture the changes of functionality ove
time, whereas Chedoke-McMaster score remained the same.
The classification performance was compared with other
algorithms and ensemble schemes including nearest neigh-
bor, SVM, logistic regression, naive-bayes, and decision
tree models, and our network outperformed all compared
classifier models.

Most lines move towards performing better than the previous Our future goal would be to discover relationship between
assessment, showing that our measure are responsive in b experimental data and more subtle clinical assessment
short term (e.g., a few days) or relatively long term (6 msnthinformation, including type of strokes, lesion locatiomda

or more) periods in the rehabilitation process.

C. Classification Performance

CT/MRI data.
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