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Abstract— Recent advances of robotic/mechanical devices
enable us to measure a subject’s performance in an objective
and precise manner. The main issue of using such devices is
how to represent huge experimental data compactly in order
to analyze and compare them with clinical data efficiently.
In this paper, we choose a subset of features from real-time
experimental data and build a classifier model to assess stroke
patients’ upper limb functionality. We compare our model with
combinations of different classifiers and ensemble schemes,
showing that it outperforms competitors. We also demonstrate
that our results from experimental data are consistent with
clinical information, and can capture changes of upper-limb
functionality over time.

I. I NTRODUCTION

Stroke (cerebrovascular accident) is defined as damage
to brain tissue caused by the interruption of blood flow
to the brain that lasts more than 24 hours [1]. It is the
most common cause of disability and affects approximately
700,000 people each year in the United States [2]. Only
about ten percent of stroke survivors can fully recover, and
impairment often includes upper-limb hemiparesis resulting
in a substantive reduction in the quality of life post-stroke
[3]. Thus the main medical efforts for stroke patients are
focused on rehabilitation and assessment [4].

Recent advances of robotic/mechanical devices enable us
to measure a subject’s performance in an objective and
precise manner [5], [6], whereas most current clinical assess-
ment measures require trained physicians who have special-
ized knowledge on how to perform the various assessment
techniques, and still may suffer from reliability problems
or from poor responsiveness [7]. The major issue of using
such devices is how to represent huge experimental data
compactly in order to analyze and compare them with clinical
data efficiently (e.g., see [8]).

In this work, we extract distinctive features from exper-
imental task data, calculate the outlier boundaries for each
feature and trial, and build a performance data set which
represents upper-limb functionality of chronic stroke patients
compared with control subjects group. Based on this data,
we implement a hierarchical ensemble network to generate
estimation of stroke impairment, and to classify stroke pa-
tients’ data. The reaching assessment score built from this
model is demonstrated with the clinical information, and
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Fig. 1. An experimental setup for the unloaded reaching task. Subjects are
asked to reach one of eight targets from the center. The movement cue is
given by the illumination of a target. A trial is finished whenthe subject’s
hand reaches to the target and stays there. Note that the visual feedback is
provided through a projected monitor screen, which prevents subjects from
looking their arm movement directly.

we show that this model can measure performance changes
between repeated experiments, while Chedoke-McMaster
scores [4], one of the major outcome measure for stroke
impairment and recovery assessment, did not. Finally, we
compare our classification results with five other classifier
models with/without ensemble schemes, and show that our
model outperforms competitors.

II. M ETHODS

A. Participants

Forty six hemiplegic stroke patients and 77 control sub-
jects who report no previous neurological disorders were
included in this work. Patients and control subjects were
selected with the inclusion criteria of age over twenty and
right-dominant handed. As we repeat the same experiment on
both of the groups over time, the actual data set we used here
consists of 52 left-arm affected stroke patients’ experiment
data, 53 right-arm affected, and 84 control subjects’ data.

B. Experimental Device

We used a robotic exoskeleton platform for this experi-
ment, called KINARM (Kinensiological Instrument for Nor-
mal and Altered Reaching Movements, BKIN Technologies,
Kingston, ON) [9]. This device enables: 1) to facilitate a
subject’s flexion and extension movements of the shoulder
and elbow with the arm projected on the horizontal plane;



Fig. 2. Examples of the raw hand trajectory data. The upper figure shows
a typical stroke subject’s hand movements during reaching tasks from the
center point to eight different targets, and the lower figuredepicts a typical
control subject’s hand trajectory. Color coding is used in order to designate
trials towards the same target direction.

2) to minimize effects of gravity during movements by
attaching braces to the upper and lower segments of each
arm; 3) to provide a visual feedback through a projected
monitor screen, preventing a subject from looking his/her
arm movement directly; and 4) to measure and record various
aspects of upper-limb motor performance including hand
position, tangential hand velocity, shoulder angles, and elbow
positions.

C. Task

In an experimental session, a subject performed two sets
(left and right arm) of an unloaded, center-out reaching
task [10], [11] which is illustrated in Fig. 1. Subjects were
instructed to reach out from a given center point to one of the
eight fixed peripheral targets (0◦ = L1/R1, 45◦, ..., 315◦ =
L8/R8) when a target light is turned on. No restriction on the
minimum/maximum velocity was given and subjects were
instructed to keep their hand at the target until the target
light was turned off. The order of illuminated targets are
selected in a random manner, but with a configuration that
the total number of repeated trials per each direction would
be the same. Fig. 2 and fig. 3 show an example of the hand
trajectory and velocity selected from a typical stroke patient’s
data and a control data.
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Fig. 3. Examples of the raw tangential hand speed data. For each trial,
velocity data are illustrated as if the target light is turned on at time frame
1000. Upper and lower graph show changes of hand speed duringreaching
task from a stroke patient (upper) and a control subject (lower), respectively.
Most of control subjects end trials within three to four second period, while
many of stroke patients cannot finish a trial within this period, as shown in
the upper graph.
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Fig. 4. An illustrative example of tangential hand velocityprofile of a single
trial. The leftmost (red) vertical line designates the timeframe on which
the target light is turned on. The following two vertical lines (green) show
points when the subject starts moving (onset) and stops moving (offset),
respectively. The magenta line between onset and offset specifies the end
frame of the first movement in this trial, which is defined by the frame on
which the first local minimum velocity occurs after onset.



D. Feature Selection and Data Preprocessing

We selected eight features that capture the main charac-
teristics of the original data [12], [13], [14]. Posture period
is defined as the interval between the end of the previous
trial and the current target light on, and we calculated the
mean speed of 500 milliseconds before target on time (V̄pos).
Reaction time (Tr) is the time interval until the subject starts
to move after target on. First peak velocity (V 1

max) is the first
local maximum velocity, and the maximum velocity (V ∗

max)
is the global maximum velocity. For most of control cases,
V 1

max is equal toV ∗

max, which is not necessarily true for
stroke subjects. First movement distance error (Edist) and
directional error (Edir) are defined as the error in distance
and angular direction relative to the optimal path length and
direction during the first movement, which is illustrated in
Fig. 4. Total movement time (Tt) is the time between the
subject starts to move and stops, and path length ratio (P ) is
defined as the actual path length duringTt over the optimal
distance between the center and the target.

Next, we chose outlier boundaries based on the control
data, as specified below. For each feature, all control data
was collected and sorted per direction. Assuming each row
designates one session data and each column means a set of
sorted trials (e.g.,PL1

(1) specifies the column of the smallest
path length ratio, in the directionL1), the outlier boundary
values were selected either to bemean ± 2.58 σ if the
current column passed Lilliefors’ normality test [15] with
α = 0.05, where σ means the standard deviation of this
column. Otherwise, the outlier values were chosen to be the
maximum (minimum) value(s) of the current column.

With this boundary set, we calculated the number of outlier
trials per each feature and the side of arm, for both of the
patient and control subject groups. The training/testing data
after this preprocessing consist of 16 attributes (8 features x
two sides) per each session.

E. Hierarchical Ensemble Networks

We used a neural network ensemble model as our clas-
sifier, as it has shown good performance in our pre-
vious works [8], [16]. First, the current training data
T = {[V̄pos, Tr, Tt, V

1
max, V ∗

max, Edist, Edir, P, C]i | i =
1, ...|T |}, where the classification labelC ∈ {0, 1}, was
partitioned into 16 subgroups according to the arm tested
(s = L | R) and three randomly partitioned features (f =
1, ..., 8). Each subnetworksf trained to examine if the
stroke patient group and the control group can be separated
by these features. A feedforward network with five hidden
nodes was used for each subnetwork, trained by a resilient
backpropagation algorithm. Next, the intermediate output
data from these 16 subnetworksOsf

were fed into the main
neural classifier, in order to produce an estimation of this
session being a control subject (= 1.0) or not (= 0.0). Finally,
this whole procedure is repeated with ten times of 10-fold
cross validation [17] to obtain a generalized performance
expectation for this ensemble classifier.

III. R ESULTS

A. Reaching Assessment Score
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Fig. 5. Left and right reaching assessment scores are shown in two-
dimensional plane. Each marker represents one session data. Red circles,
blue left triangles, yellow right triangles specify control subjects, left arm
affected stroke patients, and right arm affected stroke patients respectively.
The affected arm information is independently reported through clinical
assessments, not estimated from the experimental data or our ensemble
network results.

Based on the final sub-classifier outputsOsf
for each ses-

sion, we constructed an outcome index that measures motor
performance of each arm. More specifically, the reaching
assessment score of sessioni was determined as a sum of
Osf

values,

scorei = [

8∑

f=1

Oi
Lf

8∑

f=1

Oi
Rf ]

The maximum score of[8.0 8.0] means that the subject
showed no upper limb deficits during the experimental task,
whereas the minimum score of[0.0 0.0] implies the opposite.
Fig. 5 illustrates the result combined with the affected
arm information, independently collected through clinical
examinations. Many of the stroke session scores appear on
[7.5 8.0] range, but it is not surprising in a sense that about
45 percent of stroke session data (47/105 sessions) were
diagnosed clinically intact by Chedoke-McMaster measure.

B. Responsiveness

Next, we check the responsiveness (i.e., sensitivity to
changes within patients over time [4]) of our measure by
comparing the reaching scores from the same subject with
Chedoke-McMaster scores, which are measured by physi-
cians. Fig. 6 plots the changes of the reaching score while the
corresponding Chedoke-McMaster scores remain the same
during various time intervals. Each line segment depicts the
result of two sessions done by the same subject, and the
x-axis represents the time interval between two sessions.
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Fig. 6. Plots of left and right reaching assessment score changes over time.
Each line segment represents changes of our assessment score between two
sessions done by the same subject, over the given time intervals specified
in x-axis. Note that only changes while the corresponding clinical-based
Chedoke-McMaster scores remain fixed are shown in this figure. The first
session date is set as day zero for all sessions.

TABLE I

CLASSIFICATION PERFORMANCECOMPARISON

Classifier Type SS CC CS SC Err (%)

k-NN 79.7 86.3 18.7 4.3 12.2
k-NN + Bagging 80.7 85.0 20.0 3.3 12.3
NaiveBayes 80.3 87.7 17.3 3.7 11.1
NaiveBayes + Bagging 80.7 87.0 18.0 3.3 11.3
NaiveBayes + Boosting 80.3 84.7 20.3 3.7 12.7
Log. Regression 74.0 94.4 10.6 10.0 10.9
Log. Regression + Bagging 76.7 95.0 10.0 7.3 9.2
SVM 79.7 89.7 15.3 4.3 10.4
SVM + Bagging 80.0 92.0 13.0 4.0 9.0
SVM + Boosting 78.7 93.0 12.0 5.3 9.2
Decision Tree 76.3 92.0 13.0 7.7 11.0
Decision Tree + Bagging 76.2 96.1 8.9 7.8 8.8
Decision Tree + Boosting 78.9 93.5 11.5 5.1 8.8

Ensemble Networks 79.7 98.0 7.0 4.3 6.0

Most lines move towards performing better than the previous
assessment, showing that our measure are responsive in both
short term (e.g., a few days) or relatively long term (6 months
or more) periods in the rehabilitation process.

C. Classification Performance

Five different classification algorithms were considered
for performance comparison: k-nearest neighbor [18], Naive-
Bayes [19], Logistic Regression Models [20], Support Vector
Machines [21], and Decision Tree (C4.5) [22]. Bagging [23]
and boosting (AdaBoost.M1) [24] are combined with above
classifiers in order to build an ensemble, and the option of
ten iterations and a resampling ratio of 1.0 was applied to
both schemes.

Table I summarizes the results for the different classifica-
tion algorithms. Column SS and CC correspond to the aver-
age number of session data set that were correctly classified
as stroke and control. Column CS and SC correspond to

the average number of incorrect classifications as stroke to
control and vice versa. The error column shows the mis-
classification rate of each classifier in percentage, averaged
over ten iterations of 10-fold cross validation procedures.
The maximum possible number of SS and CC are 84 and
105 respectively, and the lowest error possible from blind
estimation is 44.4 percent for this data.

We tried 1 to 10 nearest neighbor options and Table I
shows the best classification rate among them. Ensemble
version of classifiers typically performed about two percent
better than the original version, as shown in regression,
SVM, and decision tree models, but nearest neighbor and
naive Bayes algorithm did not get such performance boost
in this work. We also tried different type of kernels and its
parameters including linear, polynomial, radial basis function
and sigmoid kernels for SVM, and the best results are shown
above. Our ensemble classifier outperforms all competitors,
but the performance difference is not statistically significant.
However, the error rate is significantly lower in general
compared with our previous result [16], in which similar
feature data and ensemble networks were used.

IV. CONCLUSION

In this work, we extracted characteristic features from
real-time, experimental task data, reduced data set by sum-
marizing features into a compact outlier sets, and trained
a hierarchical ensemble network model in order to identify
stroke patients and assessing their upper limb functionality.
The reaching assessment score proposed here is calculated
from the partial output of sub-network classifiers, and we
showed that this outcome measure coincides with clinical
assessment information of affected arm. We also showed
that this score can capture the changes of functionality over
time, whereas Chedoke-McMaster score remained the same.
The classification performance was compared with other
algorithms and ensemble schemes including nearest neigh-
bor, SVM, logistic regression, naive-bayes, and decision
tree models, and our network outperformed all compared
classifier models.

Our future goal would be to discover relationship between
the experimental data and more subtle clinical assessment
information, including type of strokes, lesion location, and
CT/MRI data.
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