
  

Abstract—Pathological voice discrimination has been made 

using digital signal processing techniques as a complementary 

tool to videolaringoscopy exams. This method is non-invasive to 

patients compared to laringoscopy. This paper aims at 

analyzing the use of cepstral analysis to discriminate voices 

affected by vocal fold pathologies.  A Vector Quantizer  using a 

distortion measurement followed by a Hidden Markov Model-

based classifier is employed.  Results obtained show an effective 

and objective way in analyzing voice disorders caused by a 

vocal fold pathology. 

I. INTRODUCTION 

OME vocal fold pathologies affect the vocal folds 

causing modifications in the voice. They could appear as 

a modification of the excitation morphology (the distribution 

of mass on vocal fold is increased). These are classified as 

organic pathologies as nodules, polyps, cysts and edemas. 

Voice disorders can also be caused by other pathologies 

which are provoked by neuro-degenerative diseases [1],[2].  

The evaluation of a voice quality is usually based on 

listening to the patient's voice or in the inspection of the 

vocal folds through laryngoscopy. These first techniques are 

both subjectives.  The second one is more accurate, but is 

considered invasive and may cause discomfort to the 

patients. It also requires high cost tools. 

Acoustic analysis could be employed as a useful tool in 

the diagnosis of diseases, as a complementary technique for 

the direct observation of the vocal folds. It is a non-invasive 

technique based on the digital processing of voice signal, 

and it can be used to measure the alterations in the vocal 

function and the evaluation of the voice. This technique aims 

mainly at the precocious detection of vocal folds pathologies 

or the evaluation of the vocal quality of patients subject to 

surgical or pharmacological processes in the vocal folds. 

Some researchers have dedicated efforts for obtaining 

efficient methods for discriminating normal and pathological 

voices using acoustic analysis [3]-[8]. 
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These methods have extensively used estimation of glottal 

noise, feature extraction from time-frequency parameters, 

linear prediction modeling and measures based on auditory 

modeling. However, the research for a more detailed and 

representative acoustic analysis of pathological voice signals 

is still a promising area.  

In this work, techniques of digital signal processing are 

used to carry out an acoustic analysis of the pathological 

voice. The study is related to the case of voice disorders   

caused by vocal fold edemas.  For this purpose, a parametric 

analysis based on linear prediction coding and a non 

parametric approach were carried out and the following 

parameters of voice are obtained: cepstral (CEP), delta 

cesptral (DCEP), weighted cepstral (WCEP), weighted delta 

cepstral (WDCEP) and mel-cepstral coefficients (MEL).    

 A vector quantization technique (VQ) associated with a 

distortion measurement is applied to the cepstral parameters 

of the speech signal. The VQ was trained with voices 

affected by the considered pathology and the results will be 

used to build an effective method basis for detecting 

pathological voices. Then, a left-to-right Hidden Markov 

Model is applied to refine the classification process. Results 

show an effective method in discriminating pathological 

voices. 

II. CEPSTRAL ANALYSIS 
 

A. Cepstral Coefficients 

The speech signal can be considered as the result of the 

convolution of the excitation with vocal tract sample 

response of a linear model of speech production. By cepstral 

analysis, it is possible to separate these two components.  

Pathological speech presents significant spectral 

differences of normal voices. The noisy characteristic of 

pathological voices affected by laringeal pathologies as 

vocal fold edema, for example, suggests the existence of 

relevant components in high frequencies of the spectrum [4]. 

Cepstral coefficients can be calculated recursively from 

the linear predictor (LP) coefficients, α(k), by means of [9]: 
 

(1) (1)

1  .
( ) ( ) (1 ) ( ) ( )     1

1

c

n j
c n n j c n j n pi

nj

α

α α

 =−
 − =− − − − < ≤∑

=     

(1) 

where p is the number of cepstral coefficients. 

Cepstral coefficients obtained by (1) provide a good 

measure of the difference in the spectral envelope of the 

speech frames [10]. 
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B. Delta Cepstral Coefficients (DCEP)  

 The first derivatives of the cepstral coefficients (Delta 

Cepstral Coefficients) is given by [10]: 
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where c(n,t) is the n-th LP coefficient at time t, ø is a 

normalization constant and 2K+1 is the number of frames 

over which the computation is performed.  

These coefficients are used in order to observe the 

information of voice transitions in pathological speech signal 

versus normal speech.  

In this work, the delta cepstral coefficients are obtained 

as a simplified version of (2), as it was proposed by [10]:  
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where G  is a gain term (for example, 0.375),  p is the number 

of delta cepstral coefficients, K=2, n the coefficient index and  i 

the frame of analysis [12]. 

 

C. Weighted Cepstral Coefficients (WCEP) 

In order to account for the sensitivity of the low-order 

cepstral coefficients to overall spectral slope and the 

sensitivity of the high-order cepstral coefficients to noise, 

cepstral weighting (liftering) is employed [10].  

  The weighted cepstral coefficients, cwi(n),  are obtained  

by [10]-[12]: 

 ( ) ( ) ( ).i icw n c n w n= ⋅     (4) 

The bandpass liftering (BPL) window was applied, 

given by [10]: 
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where L is the size of the window. The BPL weights a 

cepstral sequence by (6) so that the lower- and higher-order 

components are de-emphasized. 

 

D. Weighted Delta Cepstral Coefficients (WDCEP) 

  Weighted Delta Cepstral coefficients are obtained 

replacing (4) in (5), resulting on 

 ( ) ( ) ( ).i icw n c n w n∆ = ∆ ⋅      (6) 

Using (6), the characteristics of weighted cepstral and 

delta cepstral are associated.  

E. Mel-cepstral Coefficients (MEL)  

Mel-cepstral analysis is based on the human auditory 

perception system, which incorporates some aspects of 

audition. This method provides a logarithmic relationship 

between the real and the perceived frequency scales (mels). 

Mel-frequency cepstral coefficients, cmel(n), are calculated 

by means of [13]: 
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where M  is the number of mel bands in the mel scale and 

S(k), given by 
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where Wk(j) is the triangular weighting windows associated 

with the mel-scales, and X(j) is the NFFT-point magnitude 

spectrum [3]. 

 The approximate formula to compute the mels for a 

given frequency f in Hz is given by [13] 

 

fmel=2595.log10(1+f(Hz)/700) .      (9)  

 

III. DATABASE AND METHODOLOGY 
 

A. Database 

The database used was developed by the Massachusetts 

Eye and Ear Infirmary (MEEI) Voice and Speech Lab [14]. 

The following cases were selected: 44 patients presenting 

vocal fold edema; 53 patients with normal voices and 23 

patients affected by nodules (07), cysts (08) and paralysis 

(08). The speech signals are a sustained vowel /a/. 

 

B. Methodology 

  Figure 1 and Figure 2 show diagram blocks of the 

methodology employed. 

 
 

Fig. 1 – Training Phase. 

 

In order to maintain the stationarity, the speech signals are 

pre-processed. The signals are multiplied by a 20 (ms) 

Hamming window with an overlap of 50%. A filter of 

preemphasis (0.95) was also used (pre-processing). Then 

each parameter is calculated using an LP filter of p=12 

coefficients.  
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Fig. 2 – Classification Phase. 

 

A training phase is carried out and the reference patterns 

are obtained for each parameter using just voices under 

vocal fold edema. A different classifier is used to each 

parameter computed as described in Section II. 

The VQ-classifiers are applied to static feature vectors, 

which are computed for every analysis frame of the speech 

samples over a dynamic input sustained vowel /a/. It was 

used 50% of vocal fold edema cases in the training phase. 

To the test phase were used the other 50% of voices signals 

under vocal fold edema, and all the normal (53) and 23 

voices under nodules (07), cysts (08) and paralysis (08). 

After the feature extraction, a codebook is generated using 

the Euclidean distortion measurement and the nearest 

neighbor rule was used to find the codevector. It consists of 

the N discrete level generation that each input vector could 

assume.  

Thus, an N-level vector quantizer can be defined as a 

mapping Q of a K-dimensional Euclidean space R
K
 into a 

finite subset W of R
K
. Thus, 

 

                               Q : R
K
 → W                                 (10) 

 

where the codebook W={wi ; i=1, 2, ….N} is the set of 

codevectors, K is the dimension of the quantizer and N is the 

number of codevectors in W [15].   

The mapping Q assigns to a K-dimensional real-valued 

input vector x a K-dimensional codevector wi=Q(x).  

VQ defines a partitioning of the K-dimensional 

Euclidean space into non-intercepting cells, 

 

            Si = {x : Q(x) = wi}, i = 1, 2, …, N                 (11) 

 

As the Voronoi cell Si collects together all input vector 

mapping to the i-th codevector, the codevector wi may be 

viewed as a pattern-class label of the input patterns 

belonging to Si. 

The mapping of the input vector x to a codevector wi 

occurs if  

 

                       d(x,wI) <  d(x,wi), ∀i  ≠ I,                     (12) 

 

where d(.) is a distortion function.  It follows the nearest 

neighbor rule to find the codevector that presents the greatest 

similarity to x.  Here, LBG algorithm and the least mean 

square distance were used [16],[17]. 

Here, it was used N=64 and K=12. 

In the classification process, a pre-classification is made 

using a decision rule, based on least mean square distortion 

between test and reference patterns. A distortion threshold is 

applied and a decision is taken: pathological or  

nonpathological. In the case of the distortion obtained to a 

determined signal is higher to the threshold, a re-estimation 

using Hidden Markov Models (HMM) (Figure 3) will be 

make to refine the classification process.  
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Fig. 3 – left-to-right HMM with 5 states [18]. 

 

HMM is specified by a five-tuple  ),,,,( BAOS π [18]. 

1) S = {1, 2, …, N} 

Set of hidden states. 

N: the number of states , 
ts  : the state at time t  

2) { }MoooO ,...,, 21=  

Set of observation symbols. 

M: the number of observation symbols. 

3) { }iππ =         ( ) NiisP oi ≤≤== 1,π  

The initial state distribution. 

4) { }
ijaA=          ( ) NjiisjsPa ttij ≤≤=== − ,,| 11

 

State transition probability distribution. 

5) { })(kbB j=       e       

MkNjjsoXPkb tktj ≤≤≤≤=== 11 ,),|()(  

Observation symbol probability distribution in state. 

 

Given a HMM, ),,( πλ BA= , and a sequence of 

observations, { }MoooO ,...,, 21= , the objective in the final 

classification phase is calculate the probability )|( λOP  (the 

probability of the model that generates the observations) 

[18]. 

 

Discrete left-to-right HMMs of five states are used to 

represent each parameter. Reference patterns, ),,( πλ BA= , 

are obtained using Baum-Welch algorithm and test patterns 

are obtained using a probability measurement [18]. A second 

decision rule, using a threshold is applied and a final 

decision is taken.  

IV. RESULTS 

Three classes are considered here: 1) Edema (voices under 

vocal fold edema); 2) Normal (normal voices, without any 

pathology on vocal folds); and 3) Other Pathologies (voices 

affected by nodules, cysts and paralysis). 

For simplicity, the tests were divided in three cases: 

 

• Case 1: the system was trained with the class Edema and 

tested with Edema and Normal voices (Edema x Normal); 
 

• Case 2: the system was trained with Edema and tested 

with Edema and Other Pathologies, considered as different 

classes (Edema x Other Pathologies); 
 

• Case 3: the system was trained with Edema and tested 

with Edema plus Other Pathologies in the same class and 

Normal voices as another class ((Edema + Other 

Pathologies) x Normal). 

 

To evaluate the performance of the methods, the 

following measurements were used [3]:  

• Correct acceptance (CA): The presence of the 

pathology is detected when that is really present. 

• Correct rejection (CR): It is detected the correct 

absence of the pathology. 

• False acceptance (FA): It is detected the presence of 

the pathology when it is not present. 

• False rejection (FR): The presence of the pathology 

is rejected when, in fact, it is present. 

The Efficiency is computed to each case representing  the 

correct classification of a given class when that is present, 

given by 
 

       E(%)= (CR+CA)/(CR+CA+FA+FR) x 100.       (13) 

 

• Case 1 – Edema x Normal 

 

The efficiency of methods in discriminating pathological 

voices from normal voices is presented in Table I. 

TABLE I  
PERFORMANCE EVALUATION – EFFICIENCY TO THE CASE OF VOCAL FOLD 

EDEMA AND NORMAL VOICES. 
 

Parameter QV HMM 
 

Cepstral 90 % 97 % 

Weighted Cepstral 90 % 99 % 

Delta Cepstral 92 % 99 % 

Weighted Delta Cepstral 87 % 97 % 

Mel Cepstral 97 % 99 % 

 

The superiority of MEL (E =97%) using only QV is 

shown  in Table I.  To the other parameters, however, HMM 

improves the results considerably. All efficiency values are 

higher than 95%. 
 

 

• Case 2 – Edema x Other Pathologies 

 

Table II shows results obtained when comparing voices 

under vocal fold edema and Other Pathologies (nodules, 

cysts and paralysis) in different classes. Cepstral and 

Weighted Cepstral methods have a good performance, but it 

is lower than case 1. The methods employed using QV were 

not efficient in discriminating Other Pathologies from 

Edema as well as discriminating Edema from Normal 

voices.  

TABLE II 

 PERFORMANCE EVALUATION - VOCAL FOLD EDEMA AND OTHER 

PATHOLOGIES IN DIFFERENT CLASSES. 
 

Parameter QV HMM 
 

Cepstral 80 % 95 % 

Weighted Cepstral 80 % 94 % 

Delta Cepstral 69 % 78 % 

Weighted Delta Cepstral 72 % 94 % 

Mel Cepstral 61 % 73 % 

 

When using HMM, the performance is higher then 

using only QV. Efficiency about 95% is obtained (Cepstral). 

There is a great improvement in efficiency using HMM.  



  

The methods with HMM using Cepstral, Weighted 

Cepstral and Weighted Delta Cepstral coefficients have a 

very good performance (Effciency higher than 90%). Delta 

Cepstral, however, presents an efficiency lower than 80%.  

MEL method, however has  the lower performance than all 

the others both in QV and HMM classification.. Perceptual 

aspects of mel coefficients does not give a good 

discrimination among perceptual aspects from the 

pathologies in analysis. All of them are vocal fold 

pathologies and their perception aspects are very similar to 

human perception auditory. To make a good distinction 

among these pathologies, a more accurate method has to be 

employed. As cited in [20], an accurate diagnose of nodule, 

polyp and laryngeal edema is very difficult, requiring some 

information about microscopic aspects.   

• Case 3 – (Edema + Other Pathologies) x Normal 

In Table III is presented the values of Efficiency 

obtained to this case, in which Edema and Other Pathologies 

are considered in the same class. 

TABLE III  
PERFORMANCE EVALUATION - VOCAL FOLD EDEMA AND OTHER 

PATHOLOGIES IN THE SAME CLASSES. 
 

Parameter QV HMM 
 

Cepstral 92 % 96 % 

Weighted Cepstral 87 % 99 % 

Delta Cepstral 89 % 99 % 

Weighted Delta Cepstral 83 % 92 % 

Mel Cepstral 95 % 98 % 

 

    In Table III, Mel cepstral parameter have best 

performance, using QV and HMM. The results in Case 3 are 

better than in the Case 2. However, all the methods are their 

best performance in discriminating Normal from Edema.  

The performance using HMM in the classification 

process is also higher in this case to all parameters, when 

considering the pathologies nodules, cysts, paralysis and 

edema in the same class.  

V. CONCLUSION 

The efficiency of the cepstral analysis is shown observing 

results on the three cases considered here and shown in the 

previous section. Cepstral analysis is efficient in tracking the 

variability in speech given by the edema pathology. The 

increase of mass in vocal folds affects their vibration 

producing irregular patterns. Disordered voice signals were 

analyzed using LPC-based cepstral coefficients and its 

derivatives (weighted cepstral, delta cepstral, weighted 

cepstral and weighted delta cepstral).  Mel-cepstral 

coefficients were also applied to discriminating pathological 

voices. The behavior of cepstral coefficients and their 

derivatives represents the result of the incomplete closure of 

vocal folds, because of the pathology during a sound 

production. Results show LPC-based Cepstral coefficients 

are very representative of changes in vocal tract by the 

edema pathology.  
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