
  

  

Abstract—This paper presents a novel method for DNA 

microarray gridding based on Support Vector Machine (SVM) 

classifiers. It employs a set of soft-margin SVMs to estimate the 

lines of the DNA microarray grid by maximizing the margin 

between the lines and the spots. This process comprises an 

efficient and effective approach of separating the spots into 

distinct rows and columns. The classifiers are trained using the 

spot locations as training vectors. The results obtained from the 

application of the proposed method on reference microarray 

images illustrate its robustness in the presence of artifacts, noise 

and weakly expressed spots. The comparative evaluation 

presented reveals its advantageous performance over a state of 

the art gridding approach. The gridding quality achieved 

exceeds 95% in terms of the total number of perfectly gridded 

spots. 

I. INTRODUCTION 

NA microarrays are devices that enable monitoring of 

the expression levels for thousands of genes in each 

experiment, rendering them a valuable tool of biotechnology. 

An experiment involves the isolation of two mRNA samples 

to be compared. The two samples are labeled with distinct 

fluorescent dyes, commonly Cy5 and Cy3, hybridized with 

the known genes that are printed on the microarray and 

scanned at the wavelength of each dye. The output of an 

experiment is a high resolution digital image for each 

wavelength. A microarray image consists of a matrix of 

blocks, each of which contains a number of rows and 

columns of spots. The intensity of each spot signifies the 

degree of hybridization of the sample to a known gene, 

thereby indicating the expression level of the particular gene. 

The processing of microarray images is usually performed 

in three steps, namely gridding, segmentation and intensity 

extraction. Gridding involves assigning coordinates to each 

spot, whereas segmentation handles the separation of the 

spot pixels (foreground) from the background. In the last 

 
Manuscript received July 5, 2008. This work was realized under the 

framework of the Reinforcement Program of Human Research Manpower 

(“PENED 2003” – 03ED324), co-funded 25% by the General Secretariat 

for Research and Technology, Greece, and 75% by the European Social 

Fund. 

D. Bariamis is with the Dept. of Informatics and Telecommunications, 

University of Athens, Panepistimiopolis, 15784 Athens, Greece. (e-mail: 

d.bariamis@di.uoa.gr). 

D. Maroulis is with the Dept. of Informatics and Telecommunications, 

University of Athens, Panepistimiopolis, 15784 Athens, Greece. (correspo-

nding author, phone: +302107275317, e-mail: d.maroulis@di.uoa.gr). 

D. K. Iakovidis is with the Dept. of Informatics and 

Telecommunications, University of Athens, Panepistimiopolis, 15784 

Athens, Greece. (e-mail: dimitris.iakovidis@ieee.org). 

step, the intensity of the foreground and background is 

extracted from the respective pixels. Since gridding is the 

first step in the microarray image processing, its results 

significantly affect the accuracy of the following steps and 

the extracted spot and background intensities. 

A gridding algorithm should be able to address several 

issues that arise during the processing of microarray images, 

such as rotation, irregular spot sizes and shapes, spots of 

very low or zero intensity, as well as noise and various 

artifacts that are introduced by the wet lab process. 

Furthermore, the algorithm should not require user 

intervention or parameter fine-tuning, in order to facilitate 

high-throughput processing of large amounts of data and 

avoid the dependence of the results on the user input. 

Several methods have been proposed for microarray 

gridding, but most rely on some user input or adjustments, 

such as those implemented in ScanAlyze [1] and ImaGene 

[2]. Only a few state of the art methods address the problem 

of automatic gridding. Such methods are based on 

mathematical morphology [3], Markov random fields [4], 

Voronoi diagrams [5], Bayesian grid matching [6], genetic 

algorithms [7] or a combination of approaches [8]. However, 

there are still problems that have to be resolved before fully 

automatic gridding can take place. For example, the method 

proposed in [3] requires that grid rows and columns are 

strictly aligned with the x and y axes; the region 

segmentation approach proposed in [4] fails to detect many 

weak signal spots; in [8], the number of rows and columns of 

spots per grid is required; the method proposed in [6] is quite 

complex; and the genetic approach [7] is very time-

consuming. 

In this paper we propose the use of a soft-margin linear 

Support Vector Machine (SVM) classifier [9] for DNA 

microarray gridding that overcomes the aforementioned 

issues. A spot detection step selects spots that have specific 

properties, filtering out any irregularities and artifacts. The 

remaining spots are then automatically separated into rows 

and columns by estimating the distance between consecutive 

rows and columns of spots, as well as the image rotation 

angle. The SVM classifier automatically sets the separating 

lines between consecutive rows or columns so as to 

maximize the margin between the lines and the spots. The 

motivation for the using the linear SVM classifier in a 

gridding application was its well known geometric properties 

as a maximum-margin classifier, as well as its generalization 

ability and tolerance to outliers. These features provide 
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robustness in the presence of weakly expressed spots and in 

the presence of irregularities or artifacts.  

It is worth noting that the approach proposed in [5] is 

equivalent to using an 1NN (nearest neighbor) classifier, 

which requires thorough filtering of outliers and the 

introduction of artificial spots in place of the spots that are 

very weakly expressed. In contrast to this approach, the use 

of SVM in the proposed method allows a significant 

tolerance to outliers and enables gridding without requiring 

interpolation of non-expressed spots. 

The rest of the paper is organized in three sections. 

Section II describes the proposed gridding methodology. The 

results of the experiments conducted are presented in Section 

III, and the conclusions of this study are summarized in 

Section IV. 

II. METHODOLOGY 

A number of preprocessing steps are initially applied to 

discover the locations of the spots, as well as the distance 

between consecutive rows and columns of spots in a DNA 

microarray. Once extracted, that information is used to train 

a set of linear SVM classifiers, which produces the lines that 

form the microarray image grid. Each SVM classifier is 

trained with the spot locations as training vectors and 

produces a grid line. In short, the proposed methodology 

consists of four steps: 

1. Image preprocessing 

2. Spot detection 

3. Distance estimation between consecutive rows and 

columns 

4. SVM-based gridding 

 

A. Image preprocessing 

 The first step involves normalization of the microarray 

image (Fig. 1a), in order to enhance its dynamic range (Fig. 

1b). The edges of the spots are detected by the application of 

the Sobel operator on the image (Fig. 1c). A threshold t is 

used to isolate the sharpest edges, which correspond to 

prevalent spots (Fig. 1d). If the value of t is lower than 

optimal it might lead to several pixel groups per spot in cases 

where the spot edges are not sharp, otherwise a higher value 

might lead to merging of several spots into one pixel group 

in case the distance between them is too small. 

    

(a) (b) (c) (d) 

    

(e) (f) (g) (h) 

 

Fig. 1. Gridding algorithm steps: (a) original image, (b) normalization, (c) edge-detection, (d) thresholding, (e) spot 

detection, (f) valid spots, (g) rows and columns of spots, (h) SVM-based gridding 
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Fig 2. Histogram of rectangle sizes 
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B. Spot detection 

The thresholded image is analyzed, in order to locate pixel 

groups, each of which contains pixels that reside on a single 

spot edge. Each group is represented as a rectangle that 

circumscribes the pixels of the group, as illustrated in Fig. 

1e. Ideally, each rectangle should contain a single microarray 

spot, however in some occasions it might also include 

artifacts or multiple merged spots. Subsequently, only the 

rectangles that have specific size and shape characteristics 

are considered valid, as shown in Fig. 1f. 

In order to assess the validity of each pixel group, the 

histogram of the sizes of the circumscribed rectangles is 

created, as illustrated in Fig. 2. A size threshold s is derived 

from the histogram at its leftmost zero bin, thus rejecting any 

pixel groups that are larger. The threshold for the case shown 

in Fig. 2 is s=20 pixels. Furthermore, the rectangles should 

be quasi-square in order to contain only one microarray spot, 

therefore the ratio r of the smaller to the larger side of each 

rectangle must be close to unity. 
 

C. Distance estimation between consecutive rows and 

columns 

Given a microarray image of x×y dimensions and an 

estimate of the distance dr between the rows of its spots, the 

image is segmented into subimages of size x×dr pixels. The 

subimages are then accumulated into a single x×dr image. 

Such images for several values of dr are illustrated in Fig. 3. 

The distance dr is represented by a floating point value, 

resulting in a tiling that only partially includes the pixels that 

reside at the edges of each subimage. The gray level values 

of those pixels are then linearly interpolated. The value of dr 

for which the standard deviation of the gray levels in the 

resulting image is maximized, is the estimated distance 

between the rows. Figure 3 presents the normalized standard 

deviations that correspond to each value of dr. This process 

is repeated to calculate the distance dc between columns. 

By analyzing the resulting x×dr image, it is possible to 

calculate the angle of rotation of the original microarray 

image, in order to automatically get aligned. Figure 4 depicts 

a x×dr image produced from a microarray image that has 

been rotated by 15 degrees. It is evident that the angle of 

rotation can be easily extracted. 

Having the distances dr and dc, the spots detected in the 

previous step can be divided into rows and columns as 

shown in Fig. 1g. 
 

D. SVM-based gridding 

In this step, the spots that belong to each pair of consecutive 

rows k and k+1 of the grid are isolated. The coordinates of 

the center pixel of each spot form a vector. If the spot 

belongs to row k, it is assigned to class +1, else it is assigned 

to class -1. Therefore, for each pair of rows, a set D (Eq. 1) 

of vectors xi and their respective classes ci is created and it is 

provided as a training set to a linear SVM classifier. 
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Fig 3. Calculation of the distance between rows dr and columns dc in a subgrid. 
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Fig. 4. Detection of subgrid rotation angle 



  

The classifier produces the separating line 

0=−⋅ bxw  (2) 

that maximizes the margin between the vectors xi which 

represent the spots belonging to the two rows. Considering 

the fact that the spots reside on distinct rows, the set of 

training vectors is linearly separable and can be successfully 

classified using a hard-margin SVM classifier. Nevertheless, 

we have chosen a soft-margin classifier to diminish the 

effects of misdetected spots that act as outliers in the training 

set. Thus, the margin is maximized when  

∑+
i

iCw ξ
2

2

1
min  (3) 

is minimized under the constraints 

iii bxwc ξ−≥−⋅ 1)(  (4) 

The cost parameter C (Eq. 3) determines the effect that 

outliers or noise might have on the separating lines produced 

by the SVM. Large values of C result in separating lines that 

are mostly determined by any outliers or noise and are not 

optimal. On the other hand, if a smaller value of C is used, 

the separating lines follow the general trend of the training 

set given to the classifier, ignoring any outliers.  
 

III. RESULTS 

The dataset used for the evaluation of the proposed 

method consists of the 25 DNA microarray images, from the 

Stanford Microarray Database (SMD), used in [7]. The 

images have 1900×5500 pixels and 16-bit gray level depth. 

Each of these images includes 41472 spots, equally 

distributed in 48 blocks. They have been produced for the 

study of the gene expression profiles of 54 specimens of 

acute lymphoblastic leukemia. The specimens span 37 

positive and 17 negative to BCR-ABL [10], which is a fusion 

gene product resulting from translocation between the 9th 

and the 22th chromosomes. 

 The gridding performance of the proposed method was 

evaluated using C=0.01 and t=16. The SVM cost parameter 

C determines the effect that outliers or noise might have on 

the separating lines that the SVM produces. Figure 5 

illustrates the separating lines produced using C=0.01, 

C=0.05 and C=0.1 for a training set that includes an outlier, 

which is denoted by the arrow. It is evident that in the case of 

C=0.01, the outlier is virtually ignored, whereas in the case 

of C=0.1, it determines the positioning of the separating line, 

resulting in a line that is significantly closer to most of the 

vectors of the top row. Therefore, a small value of C=0.01 

should be selected for successful gridding. The value of t 

was experimentally determined.  

    Each spot was evaluated as being perfectly gridded when 

all its pixels reside within its respective grid cell, marginally 

gridded when more than 80% of its pixels reside within its 

respective grid cell and incorrectly gridded when less than 

C=0.1

C=0.01

C=0.05

C=0.1C=0.1

C=0.01C=0.01

C=0.05C=0.05

 
 

Fig 5. Comparison of separating lines as a function of the SVM cost parameter C. An outlier 

vector is denoted by the arrow. 
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Fig. 6. Gridding results in images with artifacts 

 
TABLE I 

GRIDDING PERFORMANCE COMPARISON 

 Perfect Marginal Incorrect 

Proposed method 95.1% 4.5% 0.4% 

Zacharia et al. [7] 94.6% 4.8% 0.6% 

 



  

80% of the spot pixels reside within its respective grid cell. 

The evaluation results are shown in Table I. Out of more 

than a million spots present in the data set, 95.1% spots were 

perfectly gridded, whereas 4.5% and 0.4% were marginally 

and incorrectly gridded respectively. These results show that 

the proposed method achieves higher quality gridding than 

the state of the art method presented in [7]. Additionally, it is 

significantly faster than the genetic algorithm approach. 

Figure 6 illustrates an indicative gridding example with 

the proposed method. It can be noticed that the obtained 

gridding is accurate even in the presence of considerable 

artifacts in the microarray image. 

IV. CONCLUSION  

In this paper, we presented a novel method for automatic 

microarray gridding, which is based on the soft-margin linear 

Support Vector Machine classifier as a means of achieving 

high accuracy and robustness. 

A spot detection step prior to the use of the classifier 

facilitates the artifact removal process. Subsequently, the 

distance between consecutive rows and columns of spots, as 

well as the image rotation angle, is estimated and the spots 

are organized into rows and columns. The SVM produces the 

separating lines of the grid so as to maximize the margin 

between the lines and the spots, and displays high tolerance 

to outliers that result from misdetected spots or artifacts and 

to weakly expressed spots. 

Overall, the proposed method achieves successful 

gridding of DNA microarray images in the presence of the 

following conditions: 

• Irregular and weakly expressed spots 

• Noise and artifacts 

• Rotation 

The experimental results on reference DNA microarray 

images showed that the proposed method outperforms the 

state of the art method presented in [7], providing the 

potential of achieving perfect gridding for the vast majority 

of the spots. 
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