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Joining Retinal Vessel Segments
Bashir Al-Diri, Andrew Hunter, David Steel and Maged Habib

Abstract—A new method is introduced for joining vessel
segments together to form a vessel graph. Using a reference image
set from the Sunderland Eye Infirmary, we analysed the retinal
bifurcation geometry, to define measurements for the geometrical
junction features. These distinctive measurements are employed
to resolve the junctions. Self organized feature maps (SOFM)
are used to “learn” cost functions for forming bifurcation and
bridge forms. The system joins segments depending on their
“projective intersections” and the SOFM cost functions. The
system includes algorithms to handle overlapping and parallel
segments. Transferring the vascular network to a vascular graph
provides an opportunity to extract more information and to
calculate features that have been not previously calculated, by
providing new measurements from graph theory.

Index Terms—Parametric active contour, A self organized
feature map, vascular network, vascular junction.

I. INTRODUCTION

A number of authors have presented algorithms to detect
retinal vascular networks, including [1], [2], [3], [4]. Usually
these algorithms are less reliable in detecting junctions than
vessels segments between junctions. This paper presents algo-
rithms for the detection of vessel junctions, on the assumption
that segments have been previously calculated.

An analysis of retinal vascular junctions is presented, and
used to define a list of junction measurements that are em-
ployed in the junction resolution algorithm. The segments may
be joined using one of three types of joining forms: bifur-
cations, bridges and leaves (unjoined). The self organizing
feature map (SOFM) is trained using junction measurements
to estimate the cost of a joining form given its feature
measurements. The segment ends are gathered together in local
sets under geometrical and functional conditions. In each set,
the segment ends may join different joining forms, so that there
are various possible configurations of joining forms – cases.
The chosen case has the total cost over its joining forms.

II. MATERIALS

A retinal image set, the geometric image set (GIS) is used
to analyse the geometrical features of the retinal bifurcations,
to guide the design of the joining algorithms. The GIS was
selected from the fundus images database of the diabetic
retinopathy clinic at Sunderland Eye Infirmary. Retinal photog-
raphy was performed to all patients according to a standardised
protocol as part of their routine clinical care. Mydriasis
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was induced using tropicamide (1%) eye drops. All images
were independently graded by a qualified diabetic retinopathy
grader adopting the modified classification developed for the
EURODIAB IDDM complication study [5]. The GIS consists
of 21 images; these images were graded as follows; 12 images
are normal, one image is level one (Minimal Non-proliferative
Retinopathy), three images are level two (Moderate Non-
Proliferative Retinopathy), two images are level three (Severe
Non-Proliferative Retinopathy) and three images are level five
(Proliferative Retinopathy). There are 435 marked junctions.
The main features of each junction have been measured: seg-
ment widths, segment directions and segment head intensities.
Segments were categorized as Arteries and Veins.

A. Geometrical Features

The basic measurements associated with the bifurcations are
shown in Figure 1. The use of actual measurements such as
diameters is associated with difficulties and errors, particularly
when the measurements are taken from a magnified images
of the bifurcation. Theses problems can be avoided by spec-
ifying a bifurcation in terms of relatives, rather than actual,
measurements. The angles θ, θ1 and θ2 are used to assess
the branching geometry at a bifurcation; the diameter ratios
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Fig. 1. The basic bifurcation features: diameters (di) and bifurcation angles
(θ, θi).

The values of these features are described in Table I.
The analysis focusses mainly on three parameters: angles,

widths and intensity.
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No Min Max Mean Std E Std D Var
d0 435 4.67 19.78 9.47 0.13 2.69 7.23
d1 435 3.78 17.51 8.36 0.12 2.49 6.18
d2 435 1.06 12.91 6.36 0.08 1.74 3.01
α 435 0.01 1.32 0.64 0.01 0.23 0.06
β 435 0.66 1.86 1.27 0.01 0.22 0.05
λ 435 0.11 1.15 0.79 0.01 0.16 0.03
λ1 435 0.61 1.05 0.88 0.00 0.08 0.01
λ2 435 0.11 0.97 0.69 0.01 0.13 0.02
K 435 0.00 27.13 3.96 0.13 2.71 7.32
θ 435 43.75 132.32 80.17 0.70 14.62 213.87
θ1 435 -18.09 70.21 23.23 0.65 13.47 181.45
θ2 435 10.17 97.72 56.94 0.77 16.14 260.44

TABLE I
DESCRIPTIVE STATISTICS OF RETINAL JUNCTION FEATURES: THE PARENT

WIDTH (d0), FIRST CHILD SEGMENT WIDTH (d1), SECOND CHILD
SEGMENT WIDTH (d2), ASYMMETRIC RATIO (α), AREA RATIO (β),

BIFURCATION INDEX (λ), FIRST DIAMETER RATIO (λ1), SECOND
DIAMETER RATIO (λ2), JUNCTION EXPONENT (K), BIFURCATION ANGLE

(θ) AND BRANCH ANGLES (θ1 , θ2).

III. JOINING UP THE VASCULAR NETWORK

The algorithm is initialised with a set of vessel segments
extracted in a previous processing stage; we use the “Ribbon
of Twins” [6] algorithm, which gives reliable results; see
Figure 2.

Fig. 2. The extracted segments of the first image from test set of the DRIVE
database [7].

A. Segments

Segments of different types: veins and arteries, do not
connect with each other directly, although they may cross each
other. Each segment in the vascular retinal network has two
ends: the head and the tail. The segment ends are classified into
three types: leaf segment ends, where segment ends are inside
the macula, reach the image rim or have no other segment ends

nearby; root segment ends, where segment ends are located
inside the optic nerve head (ONH); root segment ends are not
covered further in this work; and joinable segment ends; see
Figure 3.

Fig. 3. Segment end profiles contain end centre point, local direction, width
and intensity.

The three types of segment ends are differentiated by assess-
ing their neighbouring segment ends. It is worth noting that
the nearest neighbouring segment ends do not always form a
junction, and they sometimes lie some distance away from the
correct joining position. Gaps appear between segments either
because of normal features such as junctions, crossings and
overlays, or because of abnormal features such as pathology,
noisy and corrupted edges and very low contrast. It can be
particularly hard to detect the vessel edges (which are often
traced by robust segmentation algorithms); however, the vessel
ridge is almost still visible and can be traced.

B. Centre Line Growing

The centre line of the vessel is located on the vessel ridge.
The centre lines are grown using a twin contours as defined in
ROT [6]. The segment centre line is grown iteratively using the
twin; on each iteration the stopping conditions below (which
identify the segment end type) are tested.

1) Leaf,
a) if the growing centre point reaches the image rim,
b) if the growing centre point reaches the Macula rim

(if Macula is defined),
c) if there is no segment end within radius equal half

the ONH radius,
d) if the growing centre line is longer than half the

ONH radius.
2) Root, if the growing centre point reaches or falls inside

the ONH (this does not occur in our research).
3) Joinable, if the nearest segment end is less than the

width of the growing segment end.
The algorithm continues until all the segment ends are

categorized as leaf or joinable.

C. Creating local sets

Joining between segment ends has three forms: first, the
leaf form, where the segment end is not joined to any other
segment ends; second, the bridge form, which joins two sub-
segments to fill a gap between them; third, the junction form,
which joins three segment ends forming a bifurcation. These
joining forms represent all acceptable junctions that might
occur in the retinal network. The term local set is used to
represent a group of segment ends within a vicinity that might
conceivably join each other. Each segment end belongs to a
single local set. During set assignment, we first check each
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segment end for “projective intersection” with the segment
ends nearest to it. When projective intersections occur, the
two segments are assigned to the same set, creating new sets,
joining existing one or merging existing ones as necessary.
Having completed this stage, we repeat for all unresolved
segment ends using the next nearest neighbors, then with the
second nearest neighbours (three levels of neighbours have
proved sufficient in all our experiments).

1) Projective Intersection Algorithm: To assign segment
ends to local sets, we use a “projective intersection” algorithm.
Given two segment ends, we project the centre lines and
edge lines of each, detecting intersection of the two centre
lines, and intersection of any of the three lines with the line
segment joining the two end points of the other segment’s
edges; see Figure 4. The total of seven possible collisions
defines a measure, the collision score (cij = N/7), where N
is the number of collisions that occur.

Fig. 4. An illustration of segment end intersections. (a) The segment end
represented as three rays and an end-cap line. (b An intersection between two
rays. (c) An intersection between ray and end-cap line.

D. Features of Joining Forms

The cost function parameters are defined according to
features of the topology and geometry of the joining form.
Two questions arise at this stage: given three segment ends
what is the likelihood that they form a valid bifurcation; given
two segment ends, what is the likelihood that they form a
valid bridge? We base the decision on appropriate feature
vectors. The vector of bifurcation geometric features (BfGF)
consists of α, β, λ, λ1, λ2, θ, θ1, θ2, which are described in
section II-A; the vector of bridge geometric features (BgGF) of
(λ1, ϕ, η) (defined below). Defining ρi as the mean intensity of
the ith segment end (of pixels within the last three profiles),
and vi as the segment direction vector, the parameters are
defined as:

λ1 =
min(d1, d2)
max(d1, d2)

. (1)

ϕ =
arccos(v1.v2)

π
(2)

η =
min(ρ1, ρ2)
max(ρ1, ρ2)

, (3)

From a study of the GIS, the parent and the first child
segments are used to simulate two subsegments separated
by a gap. The discrepancies between the parent and the
first child segments should be higher than that between two
consecutive subsegments. Therefore, the discrepancy features
between their width, their intensity and their direction are
extracted. Table II shows the descriptive statistic of the BgGF
vector.

No Min Max Mean Std E Std D Var
λ1 430 0.61 1.00 0.88 0.004 0.074 0.005
ϕ 430 0.68 1.00 0.88 0.003 0.063 0.004
η 430 0.80 1.00 0.96 0.002 0.033 0.001

TABLE II
DESCRIPTIVE STATISTICS OF THE BRIDGE GEOMETRIC FEATURES (BGGF)

IN THE GIS.

The relationship between the parameters in these joining
forms is complex, making it difficult to model a cost function
explicitly. Instead, we define an implicit cost function by
training a self organizing feature map (SOFM) [8], which is
an unsupervised artificial neural network model. This consists
of neurons organized on a regular low-dimensional grid, called
the map. During learning, the SOFM develops “prototype
vectors” on the neurons, which represent typical values of
the input vector; during execution, the output of the SOFM
is the Euclidean distance of the input vector from the nearest
prototype vector. The SOFM is trained using a set of typical
input vectors (in our case, taken from the GIS). The output of
the SOFM is a novelty signal – zero for a perfectly recognised
input, and progressively higher for less familiar inputs. It may
thus be treated as a cost function, with unfamiliar configura-
tions of junctions parameters being assigned a high cost.

Two SOFMs are created, the Jsofm and the Bsofm, each
with topological map dimensions 8× 6 nodes.

E. Cases of Joining Forms

Once the local sets are created, we can resolve each in-
dependently. A set of joining forms that could be generated
from a local set is called a case. We consider all possible
configurations of joining forms in the set, and choose the best
configuration by sum of the joining form costs.

1) Cost of Bifurcation Form: The bifurcation cost (Jcost)
is the product of the intersection cost (1−C12C23C31)
which depends on the likelihood of collision between
segment ends and the optimum cost (Jsofm), which pro-
vided by a SOFM. So Jcost = Jsofm(1−C12C23C31).

2) Cost of Bridge Form: The bridge cost (Bcost) is the
product of the intersection cost (1 − C12) and the
optimum cost (Bsofm). So Bcost = Bsofm(1− C12).

3) Cost of Leaf Form: We define the cost of a leaf as
the “opportunity cost” of not connecting it to the best
available bridge or bifurcation; that is, the cost is unity
minus the minimum cost of all possible joining forms
that include the leaf. This ensures that the system
penalizes the assignment of segment ends to leaves that
can form high likelihood junctions or bridges.
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F. Overlapping Segments

Segments of different types may cross each other at different
angles. When the crossing angle is small, the crossing area
length increases. When the crossing area length becomes
longer than the diameters of the segments, the crossing area is
called an overlapping area or overlapping segment, where parts
of segment are hidden beneath the other one; see Figure 5.
Figure 6 shows different type of overlap examples. The first

Fig. 5. An illustration shows two segments at different positions forming
overlaps

row shows segments crossing each other, and the second row
shows an example of the second type where a junction is
formed when these segments meet each other in a crossing
as in Figure (d); or a non-crossing as in Figure (e) and (f).

Fig. 6. Examples of different types of overlap segments. The first row shows
different examples for overlapping segments of the first type. The second row
shows examples of the second type; (d) an overlapping segment part before a
crossing part; Figures (e) and (f) are an examples of two overlapping segments
without crossing (closely parallel segments).

1) Overlapping Segment Detection: Two types of overlap-
ping segments can be recognized. Figure 5 (a-c), shows an
overlapping segment that is about to become a parent segment
to two junctions. The other type of overlapping segment is
illustrated in Figure 5 (d-f), where the overlapping segment
is almost the parent segment of one junction. Figure 5 (e-f)
shows the first part of the overlapping segments before the
crossing starts, where the two segments are closely parallel;
their segments may form a crossing or may not. The over-
lapping segment detecting algorithm considers sets with three
members. For the first type of overlapping segment, segments

that belong to two sets are collected. These may be overlapping
segments if:

• The segment length is less than half of the ONH radius.
• The segment width is wider than that of the child seg-

ments.
• The segment ends at each junction are very close to each

other; thus, the distance between segment ends is less
than double the summation of segment widths.

• The segment is parent segment to two junctions at both
ends. The segments of both set, at the both ends, have two
sequences to form junctions, because the parent segment
is not swapped. These sequences are assessed using the
cost of the bifurcation form algorithm. The successful
sequence with minimum cost represent a junction at each
set.

• The θ angles of both junctions are less than the mean of
the θ angles (80.17o) of the bifurcations as reported in
Table I.

The second type of overlapping segment, where the overlap
segment is a parent segment to a single junction, is detected
if:

• The segment length is less than half of the ONH radius.
• The segment width is wider than that of the child seg-

ments.
• The distance between segment ends is less than double

the summation of the segment widths.
• The segment successfully forms a junction with and is

identified as the parent segment.
• The θ angle is less than the minimum θ angles (43.75o)

of bifurcations as reported in Table I.
2) Extracting Segments from Overlapping Segments: In the

first type, the overlapping segment is replaced by two bridge
segments. Each face to face segment end connects to the
other using a bridge. The cost of the bridge form algorithm is
employed to explore the viability of connecting face to face
segment ends. If the cost is below a threshold for both bridges,
then bridge segments are created to connect face to face
segment ends. The first row of Figure 7 shows the extracted
bridge segments. For the second type, the overlapping segment
is divided into two segments corresponding to the other
two segment widths. Each edge of the overlapping segment
corresponds to one of the involved segments. The second
(internal) edge is defined related to its segment width; see
second row of Figure 7.

IV. RESULTS

The performance of the overlapping segment detection
algorithm is assessed using the first five images of the DRIVE
database. There are 27 overlapping segments. The algorithm
detects 21 overlapping segments, including one false positive,
thus the sensitivity and precision of the algorithm are 74%
and 95% respectively. From the correct overlapping segments,
33% and 67% of detected overlapping segments are from
the first and second types respectively. The false positive is
of the second type. The undetected cases are more complex
cases where the overlapping segments are long and some
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Fig. 7. The proposed solutions for junctions in Figure 6.

parts are not extracted; in addition, some bifurcate during the
overlapping.

The performance of the segment joining and graph forming
algorithm is assessed using the first five images from the
DRIVE database. Table III shows the performance for each
joining form. The true positive rate (TP), false positive rate
(FP) and precision, which is the proportion of positive cases
of positively classified cases, are defined.

Image Detected Bifurca-
tion

Detected Bridge Detected Leaf

No FP Precision No FP Precision No FP Precision
1 59 7 89% 118 8 94% 22 2 92%
2 41 5 89% 56 3 95% 2 1 67%
3 56 6 90% 95 3 97% 7 1 88%
4 39 7 85% 55 2 96% 15 2 88%
5 56 5 92% 91 4 96% 14 1 93%

TABLE III
THE PERFORMANCE ON EACH JOINING FORMS ARE MEASURED USING THE

FIRST FIVE DRIVE IMAGES.

Over the five images, 281 junction joining forms, 435 bridge
joining forms and 67 leaf joining forms are detected; see
Table IV.

Joining forms TP FP Precision
Bifurcation form 251 30 89%
Bridge form 415 20 95%
Leaf form 60 7 90%

TABLE IV
THE PERFORMANCE OF THE JOINING FORMS CALCULATED USING THE

FIRST FIVE IMAGES FROM THE DRIVE DATABASE.

The retinal vascular network is transfered to a vascular
graph, represented by nodes (joining forms) and edges (seg-
ments). The vascular graphs are illustrated overlaid on their
retinal images; see Figure 8.

V. CONCLUSION

The physiological constraints underlying the formation of
vascular junctions are still not fully understood, requiring more

Fig. 8. The vascular graph of the first retinal image in the DRIVE database [7]
is illustrated overlaid on its retinal image.

mathematical analysis. We analyzed a reference data set to
define measurements of the geometrical features of retinal
bifurcations. These distinctive measurements were employed
to build an algorithm for joining vessel segments. The system
requires a cost function, to allow the selection of viable vascu-
lar junctions. Since an analytical form for this cost function is
not available, we employed SOFM neural networks to estimate
the cost function from data. These were trained from the GIS
data set to estimate the cost functions for bifurcation and
bridge forms. The resulting system has good performance in
locating and correctly configuring junctions. The information
that can be extracted from separate vessel segments is limited;
joining these segments provides an opportunity to extract more
information, and to calculate features that have never been
calculated automatically before. Transforming the vascular
network to a vascular graph gives researchers additional tools
to analyse and understand the vascular system. The joining
algorithm can efficiently join vessel segments to form a vessel
graph; it could further be used in variety of vision applications,
such as analysis of road junctions captured through aerial or
satellite imagery.
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