
A Machine Learning Based System for Multichannel Fluorescence
Analysis in Pancreatic Tissue Bioimages

Julia Herold, Sylvie Abouna, Luxian Zhou, Stella Pelengaris, David B. A. Epstein,
Michael Khan, Tim W. Nattkemper

Abstract— Fluorescence microscopy has regained much at-
tention in the last years especially in the field of systems
biology. It has been recognized as a rich source of information
extending the existing sources since it allows simultaneous
collection of spatial and temporal protein information. In order
to enable a high-throughput and high-content image analysis,
sophisticated image processing routines become essential. We
present a machine learning based approach for semantic image
annotation i.e. identifying biologically meaningful objects. A
semantic annotation becomes necessary, if image variables have
to be associated to single biological objects, for example cells.
We apply our method to pancreatic tissue sample images to
detect and annotate cells of the Islets of Langerhans and
whole pancreas. Based on the annotation, aligned multichannel
fluorescence images are evaluated for cell type classification
allowing accurate and rapid determination of the cell number
and mass. This high-throughput analytical technique, requiring
only few parameters, should be of great value in diabetes studies
and for screening of new anti-diabetes treatments.

I. INTRODUCTION

Over the past few years, various genome projects aiming
at sequencing the whole genome of multiple organisms have
been successfully carried out. Although many genes can
be functionally annotated by wet lab experiments or using
sequence similarity to annotated genes, for large numbers
of genes, function is still unknown [1]. We are far from
understanding how genomic information is interpreted during
organism development, specialization etc. By studying the
organism genomic sequence only, we are not able to tell
where and when a specific protein will be expressed, to
what function it will contribute and in which higher order
network it will be embedded [2]. The field of proteomics,
e.g. 2D gels etc., has focused on answering some of these
questions but it lacks spatial information, i.e. at what location
in a cell a protein is expressed and which other proteins
are colocalized, because cell homogenization destroys this
information. As has already been pointed out by Megason
and Fraser [2] this is where imaging can play a significant
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role in further understanding how proteins contribute to cell
function. It has the benefit of, for example, being able to
capture quantitative data, offering subcellular resolution and
by using fluorescence labeling, multiple proteins can be ana-
lyzed in the same sample making it possible to study patterns
of colocalization. As an alternative to classical multichannel
fluorescence imaging approaches [3], Schubert et al. [4]
have introduced a new imaging technology, the Toponome
Imaging System that enables the acquisition of images of
hundreds of proteins on the same sample, overcoming the
limitation of being able only to image few proteins at the
same time. Due to developments in the field of bioimaging,
an increasing amount of data needs to be analyzed, so that
manual evaluation is no longer feasible.

In many applications of imaging in systems biology,
it is necessary to restrict the analysis of image features,
e.g. protein location, to biologically significant objects in
order to reduce the amount of data to be analyzed and to
enable a semantic interpretation of the information obtained.
This semantic annotation can be, for example, identification
of individual cells or cell compartments which is mostly
achieved by intensity-, shape- or texture-based segmentation.

Depending on the object of interest, object characteristics
can vary greatly, and it can thus be reasonable to introduce
the concept of machine learning to the field of bioimage
analysis. Using machine learning approaches like support
vector machines (SVMs) [5], it is possible to learn object
characteristics from a hand labeled set of samples. Providing
the hand labeled set of image samples to tune the algorithm
allows the biologists to apply their primary visual experi-
ence and expertise to the semantic annotation. SVMs have
successfully been used in a variety of applications in the field
of biological imaging. In e.g. [6] we showed how synapses
only 3×3-5×5 pixels in size with very diffuse signals are
detected via an SVM approach in fluorescence micrographs
of neural tissue samples. Murphy et al. [7] have used SVMs
for classification of fluorescence signals of different cell
compartments, showing that structures of higher complexity
can also be learned by an SVM if one chooses appropriate
image features.

In this paper we demonstrate how machine learning based
semantic annotation, in combination with multichannel fluo-
rescence imaging, can be used to obtain information relevant
to diabetes study and to screening of new anti-diabetes
treatments. SVMs are applied for semantic annotation of cell
nuclei of the Islets of Langerhans and whole pancreas in
pancreatic tissue sample images. Based on the annotation



(a) (b) (c)
Fig. 1. 512×512 px sized pancreatic tissue sample images stained with (a) DAPI showing cell nuclei, (b) immunostained for glucagon showing α-cells
and (c) immunostained for insulin showing β-cells.

result two additional fluorescence images of the same tissue
are evaluated to identify islet specific alpha and beta cells.

Increasingly, researchers are interested in the ratio or
balance of alpha and beta cells as type 2 diabetes, which
affects around 200,000,000 people worldwide, is primarily
caused by a defective number of beta cells, which produce
the sugar lowering hormone insulin. However, excess of
alpha cells and glucagon production, which raise glucose,
may contribute to hyperglycaemia. Also current drugs may
partly work by reducing glucagon.

II. MATERIAL
Images are obtained by confocal microscopy with a ×40

objective. Each tissue section is immunostained for two
proteins, namely insulin and glucagon. Insulin is produced
by beta cells (β-cells) and glucagon by alpha cells (α-
cells), so this staining enables us to identify and distin-
guish these different cell types. In addition we use DAPI
(4’,6-Diamidino-2-phenylindol) which stains DNA blue irre-
spective of the cell type. As an example fig. 1 displays the
images obtained for one tissue sample. 1(a) shows the stain-
ing with DAPI displaying nuclei, 1(b) α-cell immunostaining
for glucagon and 1(c) β-cell immunostaining for insulin.

III. METHODS
In the following section we present our pipeline for seman-

tic image annotation and multichannel image analysis. Fig.
2 outlines the different steps. First, fluorescence imaging is
used to acquire multiple protein channels for each biological
sample, i.e. each protein channel represents one fluorescently
marked protein in the same sample (fig. 2 step 1.). In order
to restrict all further analysis to biologically meaningful
regions or objects, a semantic image annotation is carried
out by SVM classification of one or more images (fig. 2 step
2.). Based on the semantic annotation, additional channels
are analyzed and the objects extracted in step 2. can, for
example, be assigned to different object classes, here red,
blue, green and yellow, based on the underlying multichannel
characteristics. To this end, for each detected cell nucleus a
region of interest (ROI) is computed.

A. Image preprocessing
For noise reduction bilateral filtering [8] is applied. The

geometric spread parameter σd can be fitted based upon the

Fig. 2. Evaluation pipeline for multichannel fluorescence image analysis.
After acquisition of multiple protein channels via fluorescence microscopy
(1.) images are semantically annotated (2.). Regions of interest (ROI) are
shown in blue. Restricted to the ROIs, multiple other channels can be
analyzed. ROIs can then be e.g. classified in different object classes, here
red, blue, green, yellow.

maximum object size (Nmax) measured in pixels, in our case
the maximum nucleus size Nmax=17 pixels. Thus the geo-
metric spread is set to σd= Nmax−1

4 . The photometric spread
is set to σr= 20. These values have proven to be appropriate
values for noise reduction in the images analyzed.

B. Semantic Image Annotation

A support vector machine approach is applied for semantic
image annotation, i.e. localizing biologically meaningful
objects in the image, in our case cell nuclei stained with
DAPI. Therefore N×N (N = Nmax+2) sub-images-images
(patches) of the image are classified. Patches containing a
nucleus are to be classified as nuclear patches, and other
patches are assigned to the non-nuclear class. The patch size
is chosen based upon the maximum nucleus size and adding
a small border in order to include background pixels even
for very large nuclei.

As a SVM is a supervised learning approach, a training
set containing positive and negative samples is necessary for
SVM training. Therefore, an image of nuclei is manually
evaluated by a human expert labeling an equal number of
positive and negative training samples. For each nucleus
position contained in the training set the gray values of the
N ×N neighborhood are written to a N2 dimensional gray
value feature vector. As we assume that the samples are
invariant with respect to rotation we increase the training



set fourfold by rotating each patch four times by an angle of
β = k ∗ 360◦

4 with k = {0, 1, . . . , 3}.
For SVM training the dimensionality of the feature vectors

is reduced to 8 dimensions by applying a PCA projection
onto the first 8 eigenvectors with highest eigenvalues. This
has the benefit that less time is needed for SVM training and
fewer training samples are required. Training is performed
with a Gaussian kernel where kernel parameterization is
achieved through a fully automatic 10 fold cross validation.

To localize nuclei in a whole micrograph, for each image
location p, its N×N gray value feature vector is extracted, a
PCA projection is performed and the resulting feature vector
is classified by a trained SVM. If the patch is classified as
nuclear, the confidence value, i.e. distance to the hyperplane,
is written to position p of a new matrix of the same size
as the original image. This confidence map is subsequently
evaluated to obtain nucleus positions. High confidence areas
correspond to nucleus locations where the highest value is
likely to be the nucleus centerpoint. We therefore search for
local optima exceeding a confidence threshold t within a
Nd×Nd (Nd = N−1

2 ) neighborhood where Nd accounts for
the minimal distance between two separate objects. These
positions are interpreted as nucleus center positions.

If a gold standard for an image is available, performance
measures as sensitivity (SE) or positive predictive value
(PPV) can be calculated for the detection result obtained
by the SVM. Here, SE measures the percentage of nuclei
given in the gold standard which are also detected by the
SVM. PPV accounts for the percentage of detected nuclei
which are also contained in the gold standard. To obtain a
gold standard, all nuclei of an image are manually labeled
by a human expert.

C. Multichannel Analysis

Once an image has been semantically annotated, further
channels, i.e. different labeled proteins, can be analyzed and
evaluated restricted to the ROIs. In the image domain used
throughout this paper, two additional channels are available
which are used to classify a nucleus as an α-, β- or non-islet-
cell nucleus depending on the observed fluorescence signal
of the additional channels surrounding the nucleus.

To obtain ROIs, nucleus borders are extracted as a first
step. Therefore, at each nucleus position, obtained by the
semantic annotation, an image patch of size Nmax ×Nmax

is extracted, a gray value morphological closing is performed
and the image is thresholded via Otsu thresholding [9]. The
nucleus border can be obtained by a two fold dilation of the
thresholded image and subtracting the original thresholded
image from the dilated. See fig. 3(a) for the extraction of a
nucleus border.

Based on the nucleus segmentation, two strategies to
analyze the remaining channels for nucleus classification can
be applied:

1. α- and β-channels are separately thresholded via Otsu
thresholding into background and object pixels. For
each nucleus, we calculate the border coverage, i.e. per-
centage of nucleus border pixels, extracted in the pre-

Fig. 3. Multichannel analysis. After extraction of the nucleus border (a),
two strategies can be applied to analyze the different protein channels. (b)
Each channel is separately thresholded and the overlap of border image
and thresholded image is analyzed. (c) The overlap of the protein image
and border image is analyzed and the median intensity of the border is
calculated.

vious step, which are object pixels in the α- and β-
channel, as cα and cβ respectively. See fig. 3(b) for
an example. If cα ≥ tpα or cβ ≥ tpβ , with tpα

and tpβ being user defined thresholds, the nucleus is
classified as α- or β-cell nucleus, respectively. Any
nucleus classified neither as α- nor as β-cell nucleus
is classified as non-islet-cell nucleus. Thresholding the
different channels furthermore gives information about
the percentage of α- and β-cell mass with respect to
the whole islet cell mass which can be determined
by merging the thresholded α- and β-channels and
counting all object pixels.

2. A median intensity is calculated for α- and β-cell
channels for the nucleus border pixels, as shown in fig.
3(c). If the median intensity is above a user defined
threshold tiα or tiβ the nucleus is classified as α- or
β-cell nucleus, respectively. The remaining nuclei are
classified as non-islet-cell nuclei.

A gold standard for the α- and β-cell nucleus number is
obtained by a fourfold manual evaluation of the different
channels. The average over all four counts is used as the
gold standard.

D. Software

All the above mentioned steps for semantic annotation
including manual image labeling, training set generation,
SVM training as well as image classification and confidence
map evaluation are implemented in C++ in our own soft-
ware TIScoverer 1.0. It also allows non computer experts
to perform object detection via SVM while still offering
a reasonable amount of manual tuning if desired. Fig. 4
shows screenshots of the TIScoverer 1.0 software. The label
environment is shown in 4(1.) displaying all labels set in the
image, with green marking positive samples and red marking
negative samples, and an enlarged view of the current active
label allowing a precise determination of position. 4(2.) gives
an overview of the SVM training environment. The training
image and a training file containing human expert label
positions can be loaded, a PCA projection can be performed
and a few parameters, e.g. patch size and names of output
files, are then set. Fully automatic training runs and training
performance can subsequently be evaluated. The detection
result for a newly presented image is shown in fig. 4(3.).



Fig. 4. Screenshots of TIScoverer software. 1. shows the label environment allowing one to set up training sets or gold standards. An enlarged view
of the current active label enables accurate positioning. 2. Training is performed by selecting input image, training samples and some parameters. A full
automatic cross validation selects best parameters for kernel parameterization. 3. Detection results can be visually and statistically evaluated.

Rectangles show the detected nucleus positions and color
coding gives information about true positives (TP)(green),
false positives (FP)(red) and false negatives (FN)(pink). Also
statistics such as SE and PPV, as well as the whole number
of detected nuclei are presented at the right side.

IV. RESULTS

In the following we present the results obtained for nu-
cleus detection, i.e. semantic annotation, and multichannel
analysis. By way of example, results are presented for two
tissue sample images.

A. Nuclei detection

For nucleus detection, we perform a SVM training with a
Gaussian kernel on a tissue sample image stained with DAPI
(image not shown) with a hand labeled training set consisting
of 59 positive and 59 negative samples. The trained SVM is
then used for nucleus detection in the image in fig. 1(a).

To assess the automatic detection performance on the
image, we calculate SE and PPV for the SVM detection
result obtained for different confidence thresholds. The best
detection results is obtained with a confidence threshold of
0.0, which is true also for detections in other images, yielding
283 detected nuclei with a SE of 92% and PPV of 94%.
The detected nuclei are marked in fig. 5(a) with a rectangle
where TP are shown in white, FP in red and FN in orange.
An enlarged view of the detection result is shown in 5(b) for

(a) (b)

Fig. 5. Nucleus detection results for the image shown in fig. 1(a). Detected
nuclei are highlighted with a rectangle (white TP, red FP, orange FN). (b)
Enlarged view of the detection result. Overlapping nuclei and non regularly
shaped nuclei are correctly detected.

better visibility of overlapping nuclei, FPs, and FNs, which
are mostly out of focus nuclei of poor quality.

B. Cell type classification via multichannel analysis

For each nucleus position obtained by the semantic anno-
tation its boundary is extracted based on the DAPI stained
image. Fig. 6(a) and 6(b) show the extracted nucleus bound-
aries in white for fig. 1(a) and for a second tissue sample,
respectively. Fig. 6(c) and 6(d) show overlapping nuclei. The
boundaries overlap at their intersection point as can be seen
by the lighter gray boundary color. This information could



(a) (b)

(c) (d)
Fig. 6. Extracted nuclei borders, shown in white, with (a) for the image
of fig. 1(a) and (b) for a second tissue sample. (c) and (d) show sub-images
displaying two overlapping nuclei.

be used to separate nucleus boundaries if required.
After nuclei boundary extraction, α- and β-channel images

can be analyzed for each nucleus. The first strategy pre-
sented, i.e. Otsu thresholding and boundary coverage analy-
sis, allows us to analyze different protein channels based on
a biological model, e.g. a nucleus has to be surrounded by
stained cytoplasm to a specific minimum percentage. Fig.
7(a) shows the percentage of α-channel border coverage
vs. β-channel border coverage for each nucleus detected in
5(a). Setting the coverage threshold to 45% for the α- and to
60 for the β-channel (fig. 7(b)) yields 102 (35%) cell nuclei
classified as cell nuclei of β-cells and 22 (8%) classified as
α-cell nuclei, with an overlap of 10 nuclei classified both as
α- and β-cell nuclei. The nuclei classified both as α- and β-
cell nuclei are only counted as α-cell nuclei thus yielding 92
(33%) β-cell nuclei and an α- to β-cell ratio of 0.24. This
quite well agrees with the manual counting of an average
of 91 β-cell nuclei and 24 α-cell nuclei. The cell masses
calculated are 12% for the α-cells and 88% for the β-cells
with respect to the whole islet cell mass.

Fig. 8 presents the classification result with 8(a) showing
a blending of the nucleus- and α-channel where α-cell nuclei
are highlighted with a white box and 8(b) displaying a
blending of the nucleus- and β-channel with β-cell nuclei
highlighted with a white box. Fig. 8(c) and 8(d) show
equivalent results with the same thresholds for the second
tissue sample, yielding 23 (4%) α-cell nuclei and 110 (21%)
β-cell nuclei (α- to β-cell ratio: 0.21) with 14% α-cell mass
and 85% β-cell mass. The average manual count is 40 α-
cells and 100 β-cells. The disagreement between human and
machine counting of β-cells is caused by the fact that also
cells featuring no nucleus were manually counted.

The analysis strategy mentioned before might not always
lead to the desired result as it is based upon binarizing the
image via Otsu thresholding which might not always reflect
the true underlying structure. We therefore also compute
the median intensity value across the nucleus border. This
implicitly accounts for a border coverage of 50% with the

median as the intensity threshold. Fig. 7(c) shows the median
α-channel border intensity vs. the median β-channel border
intensity for each nucleus with logarithmic scaling. This
figure suggests an intensity threshold of 20 for the β-channel
and a threshold of 15 for the α-channel in order to separate
β- and α-cell nuclei from non-islet-cell nuclei. By looking
more closely at the classification results for these thresholds
(data not shown), one can see that there are some nuclei
assigned to the β-cell nuclei class which do not meet the
desired characteristics. Adjusting the threshold to 30 for the
β-channel, classification results close to the manual counting
can be obtained as can be seen in fig. 8(c) and 8(d) with 23
(8%) of the total of nuclei detected being classified as α-
cell nuclei and 92 (33%) as β-cell nuclei (α- to β-cell ratio:
0.25). Fig. 8(g) and 8(h) show results for the second tissue
sample, with a threshold of 15 for the α-channel and 35 for
the β-channel yielding 28 (5%) of all nuclei classified as
α-cell nuclei and 101 (20%) as β-cell nuclei (α- to β-cell
ratio: 0.27). This strategy gives slightly better results than
the previous strategy but is not as intuitively tunable as the
border coverage strategy.

V. DISCUSSION

We have given here an approach to working with multi-
channel microscope images by applying a machine learning
strategy for semantic image annotation. Only few parameters
are required for the training of a SVM detecting cell nuclei.
First, the maximum object size Nmax needs to be set,
from which further parameters (N , Nd) can be derived.
Second, the target dimensionality for PCA projection has
to be specified—this can easily be determined by analyzing
the eigenvalues which are displayed in TIScoverer 1.0. Fur-
thermore, a training set needs to be declared. In the analyzed
case a training set consisting of few representative samples
(59 positive and 59 negative samples) is already sufficient
to achieve good detection results in various images. Once
the SVM has been trained, no further parameters need to
be specified. This low number of parameters and training
samples required makes the software easily usable also by
non computer experts but at the same time allows for manual
tuning if desired. As SVMs have successfully been used for
the classification of more complex structures, an extension of
the system beyond structures as simple as cell nuclei should
be achievable.

Based on the semantic annotation, further channels, not
limited to α- and β-channels, can selectively be evaluated
and already very simple image processing approaches give
high quality results. Again, only few parameters, i.e. border
coverage in each channel or median intensity in each channel,
need to be specified. Setting these parameters is crucial for
the classification outcome but can be aided by visualizations
as shown in fig. 7 and by real time update of the resulting
classification visualization when parameters are changed.

The whole process of semantic annotation with a trained
SVM and multichannel analysis only requires around 20
seconds on an INTEL Core 2 Duo CPU with 3 Ghz and
2 Gb RAM, and it is sufficient to set 2 parameters which
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Fig. 7. (a) % of nucleus border covered by α-channel vs. % of nucleus border covered by β-channel for each nucleus. (b) Applying a coverage-threshold
of 45% for the α-channel and 60 for the β-channel, the nuclei are classified into 4 classes (non-islet-cell nucleus, α-cell nucleus, β-cell nucleus and both
α- and β-cell nucleus). (c) Median nucleus border intensity for α-channel vs. β-channel median nucleus border intensity with logarithmic scaling. Setting
a threshold of 30 for the β-channel and 15 for the α-channel separates the nuclei into 4 nucleus classes.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 8. α- and β-cell nucleus classification results for tissue sample 1 (a)-(d) and 2 (e)-(h). Nuclei assigned to the specific class are marked with a
white rectangle. (a)+(e) α-cell nuclei and (b)+(f) β-cell nuclei identified with the border coverage strategy. (c)+(g) α-cell nuclei and (d)+(h) β-cell nuclei
identified with median border intensity strategy.

makes high-throughput analysis feasible and provides valu-
able information for diabetes study.
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