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Abstract—Imaging mass spectrometry is a method for 

understanding the molecular distribution in a two-dimensional 
sample.  This method is effective for a wide range of molecules, 
but generates a large amount of data.  It is difficult to extract 
important information from these large datasets manually and 
automated methods for discovering important spatial and 
spectral features are needed.  Independent component analysis 
and non-negative matrix factorization are explained and 
explored as tools for identifying underlying factors in the data.  
These techniques are compared and contrasted with principle 
component analysis, the more standard analysis tool.  
Independent component analysis and non-negative matrix 
factorization are found to be more effective analysis methods.  A 
mouse cerebellum dataset is used for testing. 
 

Index Terms— Imaging Mass Spectrometry, Independent 
Component Analysis, Non-negative Matrix Factorization, 
Principle Component Analysis 

I. INTRODUCTION 
MAGING mass spectrometry (IMS) is an analytical method 
for measuring the concentration and location of molecules 

in biological samples.  Matrix-assisted laser desorption 
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ionization imaging mass spectrometry (MALDI IMS) has 
further increased the usage of IMS, by improving its 
sensitivity and accuracy [1].  MALDI IMS is a tool used in a 
variety of research areas including biochemical tissue 
composition exploration, protein identification and detection, 
peptide analysis, drug and metabolite distribution, and lipid 
analysis [1-6]. 

The versatility of IMS contributes to its great potential.  
Unlike other analysis methods, such as fluorescence 
microscopy, which are designed to identify specific molecules, 
IMS can measure a broad range of molecules simultaneously 
without any target specific reagents [5].  This extensive 
coverage, although a strength, is at the same time a challenge 
because of the amount of data that must be analyzed. Typical 
IMS datasets have thousands of pixels, each with a spectrum 
containing thousands of mass-to-charge ratios (m/z).  As a 
result, IMS datasets can quickly become a case where more 
information can obscure important features.   

Standard IMS analysis software presents IMS data as ion 
image maps.  Typically, the user is left to decide which ions 
are significant and discover relationships between different 
ions.  Given that there are thousands of ion maps per dataset, 
this is a difficult task to accomplish by eye.  Statistical 
methods fit into the IMS analysis workflow when little is 
known about the dataset.   Matrix factorization can be used for 
identifying key information such as the most significant 
molecules and spectral relationships.  Once identified, these 
can be further explored by users who can examine molecular 
ratios and distributions using their knowledge of the biological 
significance of these molecules. 

Past research on unsupervised methods has included 
multivariate analysis techniques such as principle components 
analysis (PCA) and clustering, multivariate analysis of 
variance, linear discriminant analysis in combination with 
PCA [3, 7, 8].  Of these, IMS researchers most frequently use 
PCA.  Here we consider ICA and NMF, which are often used 
for source separation.  This paper will explain and compare 
the features of and algorithms for PCA, ICA, and NMF.  The 
result of applying ICA and NMF to an IMS dataset will then 
be compared to PCA since it is the standard method. 
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II. ANALYSIS TECHNIQUES 

A. Data Interpretation 
The raw data is best interpreted as a three-dimensional 

dataset, with the x- and y-directions for spatial coordinates on 
a two-dimensional grid, and the z-direction being mass-to-
charge ratio (Fig. 1).  In order to perform any of the 
algorithms discussed here, the data must be in the form of a 
two dimensional matrix.  Given that the x-direction has a 
dimension of X, the y-direction has a dimension of Y, and the 
z-direction has a dimension of M, the original Y×X×M matrix 
is reshaped to be an M×N matrix, where N = X·Y.  This means 
that each column of data contains the spectrum information for 
a pixel and each row contains rasterized spatial information 
for each mass-to-charge ratio. 

 
Another step of pre-processing is masking.  In many cases, 

the sample is an odd shape which does not cover the entire 
field of view.  Since, the IMS machine scans in a rectangular 
gird, some regions may not contain sample and should not be 
considered in the raw dataset.  These pixels tend to have very 
noisy spectra, because the normalization process can impose a 
large gain.  The mean image from an IMS dataset reveals this 
structure (Fig. 3). The aim of masking is to remove any areas 
outside of the sample prior to processing.  For algorithms, 
such as PCA, which depend on measures of variance, this is an 
important step in reducing error [6].   

B. Principle Components Analysis (PCA) 
PCA is a popular method in a variety of fields for reducing 

the dimensionality of large datasets.  PCA has also been 
heavily used on IMS data as a means to identify linearly 
dependent molecules and spatial regions of interest [3, 6-8].  

PCA works by projecting the data onto orthogonal bases 
that explain the maximum amount of variance in the data.  The 
first base points in the direction of maximal variance in the 
data.  Each additional base is orthogonal to the previous bases 
and points in the direction of maximal remaining variance.  

Using the first v orthogonal bases and their corresponding 
projections produces a rank-v estimate of the data matrix with 
the minimum mean square error. 

PCA works best with Gaussian data.  If the data used is 
Gaussian, the resulting projected data will be independent.  
For non-Gaussian data, the results are only uncorrelated.  For 
IMS datasets, data tends to be very non-Gaussian because of 
the large number of zeros found in the data.  For example, the 
dataset used for testing contains 66% zeros. 
 
The Standard PCA Algorithm 

PCA is performed on an M×N data matrix X where each of 
the M rows represents an image and each of the N columns 
represents a mass spectrum.  First, the mean is subtracted from 
each row to form the mean-centered data matrix .  The 
covariance matrix, Σ, is then estimated.  Next, the 
eigendecomposition of the covariance matrix is found.  In our 
experiments we trim the matrix of orthonormal eigenvectors, 
V and the sorted diagonal matrix of eigenvalues, Λ to contain 
the largest L eignevalues and associated eigenvectors: 
 

 
 
The mean-centered data is approximated by the product of an 
M×L matrix VL and an L×N matrix BL, which is the dataset 
projected onto the L basis vectors in VL. 
 

 
 
For the analysis of IMS data, the columns of VL contain the L 
eigen-spectra and the rows of BL contain the L projected 
images. 

C. Independent Components Analysis (ICA) [9] 
ICA is a matrix decomposition technique that is often used 

for source separation.  While PCA makes the projected images 
uncorrelated, ICA maximizes their statistical independence 
while keeping them uncorrelated.  That is, one projected 
image should not provide any information about the other 
projected images.  In this way, each image is maximally 
informative.  In past research, ICA has been used to analyze 
mass spectrometry data for metabolite fingerprinting, where it 
was found to be more effective than PCA [10].  ICA was also 
used for resolving overlapping signals in mass spectrometry 
[11]. 

The ICA algorithm generally starts with the uncorrelated 
projected images from PCA, and then whitens the projected 
images so that they have unit variance.  We model the mean-
centered data as a linear combination of the K underlying 
independent images in the rows of SK: 

 

 
 

where the M×K matrix AK contains the associated m/z profiles 
in its columns. 

 
Fig. 1. The three-dimensional IMS dataset structure. 
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Most ICA algorithms try to obtain independence in the 
signals by maximizing non-Gaussianity of component images.  
A variety of parameters and measurements can be used to do 
this and the method used depends on the algorithm. 

 
The Fast ICA Algorithm [9, 12] 

A popular ICA implementation is FastICA which measures 
non-Gaussianity using the kurtosis of the projected images.  
FastICA maximizes the absolute value of the kurtosis using a 
unitary rotation matrix UK, where ZL is the whitened data. 
 

 
 

D. Non-negative Matrix Factorization (NMF)[13, 14] 
Non-negative matrix factorization is another type of matrix 

decomposition.  Whereas the PCA algorithm is effectively a 
factorization with an orthogonality constraint and the ICA 
algorithm utilizes an independence constraint, NMF utilizes a 
non-negative constraint.  Here, non-negative means that all 
individual values in the resulting decomposed parts have non-
negative values. 

For the IMS problem, this is a very sensible constraint.  
Negative values in spectra do not appear in the data and do not 
make sense physically.  However PCA or ICA factorizations 
often produce negative components.  Like ICA, NMF also 
does not expect the data has a Gaussian distribution. 

In past research of biological applications, NMF has been 
used to analyze microarray data [15] and to assist cancer 
classifications [16].  The NMF factorization problem is 
defined mathematically: 

 
 

 
Where X is the original data and W and H are the non-
negative factors.  For the IMS problem, the rows of H contain 
images of the contribution of each of the spectral components 
found in the columns of W.  The cost function used to 
measure the factorization performance in this formulation is 
the mean square error.  This function is minimized subject to 
the non-negative constraints. 
 The minimization is done through a multiplicative update of 
W and H.  It can be shown that these update rules can be 
derived from a simple additive gradient descent update rule by 
choosing the proper step size for each element.  These rules 
create a non-increasing Euclidean distance, which is 
guaranteed to converge.  The H and W matrices are initialized 
with random nonzero values and with the desired dimensions.  
This means that if L components are desired, and the original 
data X is M×N, then W will be size M×L and H will be size 
L×N at initialization. 

E. Summary of Methods  
With careful notation and formulation, the three algorithms 

can be summarized using common variables and structures 
(Fig. 2).  From these formulations, the spectra that the 
algorithms deem significant can be plotted from the columns 

of the first factor and the intensity maps for these spectra can 
be plotted from the projections factor rows.  
 

 

III. EXPERIMENTATION 
Each of the methods above was tested on an IMS dataset to 

determine its effectiveness.  The algorithms were implemented 
in MATLAB. 

 
A. Biological Samples 
To examine the mouse cerebellum, tissue was frozen, then 

sliced and thaw-mounted to the MALDI plate.  A matrix was 
then applied to the sample.  The mass spectra measurements 
were taken using an Applied Biosystems Voyager DE STR 
MALDI-TOF tool.  The data was acquired from the tool using 
Novartis’ MMSIT software.  We follow the same 
experimental setup as our previous work [2]. 

B. Implementation 
MATLAB scripts were written for each of the analysis 

PCA: 
 

 
 
 
ICA: 

 
 
 
 
NMF: 

 
 
 
 
 
Fig. 2. Method summary. 

 
Fig. 3. The mean image is shown to give general sense of the dataset. 
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algorithms.  The PCA test script was implemented using the 
MATLAB eigendecomposition function. The ICA test script 
was implemented using the FastICA MATLAB package [17].  
The NMF test script was adapted from Patrik Hoyer’s 
MATLAB nmfpack [18].  These scripts generated visual 
outputs of an image and its associated spectrum side by side.   

All scripts were set up to create 10 components.  We felt 
this was a good compromise given the computational 
complexity and time needed to the analyze results.  This does 
not represent an optimized number of components.  Had a 
different numbers of components been used, such as 15, the 
components generated with the ICA and NMF algorithms 
would all be different from the 10 obtained here.  For PCA, 
however, the first 10 of the 15 would be the same as the 10 
obtained here. 

All data for testing was downsampled by five times in the 
m/z ratio axis, leaving 2,570 points.  Downsampling was done 
because of computer memory limitations and to decrease run 
time.  All testing was done on a 2.2GHz personal computer 
with two gigabytes of memory.  The processing time for these 
scripts was on the order of 10 minutes. 

 

IV. RESULTS 
The important features and results observed will be shown 

and described here.  For comparison, components from each 
method with the same or similar spatial features are shown 
along with their spectra.  Spectra are normalized to have unit 
L2-norm so that energy differences are visible in the images. 

The quality of the results is judged based on the crispness of 
both the image and the spectrum.  A spectrum with a large 
background of noise is harder to interpret.  An image with 
fuzzy spatial features and large amounts of variance reveals 
less structure. 

The main peaks labeled in the figures are the peaks with the 
highest magnitude in the spectra.  All of the main peaks used 
to identify biological molecules found by the methods are 
identified in the same way. 

A. PCA Results 
PCA’s performance is different than expected and less 

energy was concentrated in the first few principle components, 
with less than 10 percent of the energy in the first component.  
Principle component one (PC1) of the results contains the 
main spatial feature in the data (Fig. 4).  This feature is also 
visible in the mean image of the dataset.  The associated 
spectrum of this PC is typical of the other PCA components, 
with many peaks and decaying noise at the start of the 
spectrum.  PC1 also contains negative concentrations of the 
spectrum at many pixels. 

 
 PC6 contains the second major spatial feature (Fig. 5).  

Like PC1, it has a noisy spectrum with both positive and 
negative peaks.  

 
 PCA does a good job of identifying some spatial 
information, however, most PCA images contain more noise 
than those from ICA and NMF.  Spectra from PCA also have 
more noise and often times contain both positive and negative 
peaks.  While these positive and negative peaks can be useful 
for finding negative correlations, it is also physically 
confusing and makes results difficult to interpret. 
 Biologically, some lipids are indentified as main peaks in 
PCA components, including Sulfatide 20:0 (m/z 834.61), 
Sulfatide 24:0 (m/z 888.66), and Sulfatide 24:1 (m/z 890.66) 
peaks.  However, because most spectra contain a lot of noise, 
peaks are harder to identify and molecules are not easy to 
discover. 

B. ICA Results 
When using the ICA algorithm, PCA was performed prior 

to ICA for dimension reduction and noise removal.  This is 
standard practice and the data was reduced to the first 10 PC 
projections.  ICA, unlike PCA does not have ordered outputs, 
making it hard to directly compare ICA results with PCA 
results.  Still, the same spatial features can be compared. 

The independent component in Fig. 6 is comparable to PC1, 
since it identifies the same spatial feature.  The spectrum, 
however is very different and even has a different main peak 
at m/z 892.74. 

 
Fig. 4. Principle component 1 – main peak m/z 729.8268. 

 
Fig. 5. Principle component 6 – main peak m/z 1384.4827. 
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 The image of the second spatial feature is more clearly 

defined through the ICA algorithm (Fig. 7).  The spectrum 
also contains the same main peak as PC 6. 

 
 The ICA algorithm manages to isolate most noise to a 
single component (Fig. 8).  This noise tends to be nearly 
evenly spread out over the image except for a few spots.  The 
absence of the decaying spectrum noise found in PCA 
components is largely a result of this noise being isolated to 
this component.  

 
 The noise removal feature of ICA is a major benefit and an 
important part of its performance.  ICA is able to better isolate 
biologically significant molecules into main peaks with crisp 
images.  Like PCA, ICA also isolates Sulfatide 20:0 (m/z 
834.61), Sulfatide 24:0 (m/z 888.66), and Sulfatide 24:1 (m/z 
890.66) peaks.  These peaks however contain less spectral 
noise (Fig. 9). 

 
C. NMF Results 
NMF has even crisper spatial separation.  This is readily 

seen in the first spatial feature (Fig. 10).  Outside of the bright 
region in this image, there is not much noise.  The spectrum 
here is very similar to the one found for ICA, but all positive.  

 
 The second spatial feature is not as crisp as the one found 
with ICA, but does have the same spectral peaks and a similar 
spectrum (Fig. 11). 

 
 Like the ICA algorithm, NMF also isolates noise (Fig. 12).  
However, it produces two “noise” spectra for this dataset, 
rather than one as in ICA. 

 
 NMF’s performance is very similar to that of ICA.  It tends 

 
Fig. 6. Independent component – main peak m/z 892.74. 

 
Fig. 7. Independent component – main peak m/z 1384.4827. 

 
Fig. 8. Independent component – noise spectrum. 

 
Fig. 9. Comparison of PCA (left) and ICA (right) main peak isolation of 
m/z 891.5547. 

 
Fig. 10. NMF component – main peak m/z 892.74. 

 
Fig. 11. NMF component – main peak m/z 1384.4827. 

 
Fig. 12. NMF component – noise spectrum. 
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to have slightly cleaner spectra.  Again, this is most likely a 
result of the segregation of spectral noise into separate 
components.  The non-negative constraint of NMF ensures 
that results are purely additive, which makes the most sense 
from a physical perspective.   
 The main peaks of NMF components identify the three 
biological molecules: Sulfatide 20:0 (m/z 834.61), Sulfatide 
24:0 (m/z 888.66), and Sulfatide 24:1 (m/z 890.66).  The 
spectra containing these are very similar to those in ICA. 

V. DISCUSSION AND CONCLUSIONS 
Although all three methods isolated the same biological 

molecules, NMF and ICA produced components, with less 
noise in both the spectra and images.  These algorithms 
require more computation time, but may be a better choice for 
IMS data exploration.  The benefits of NMF versus ICA are 
not significant as far as spatial clarity and molecule separation 
are concerned. 

The multivariate analysis techniques explained and explored 
here show excellent potential as methods for first examining 
an IMS dataset.  They are able to rapidly identify and separate 
spatially significant and spectrally significant information.  
These initial interesting features can then guide a 
knowledgeable researcher in discovering relationships and 
biologically significant molecules in the dataset. 

Further research should be done with more datasets to better 
understand the effects of using different algorithms.  The 
effectiveness of the different methods at isolating molecules 
and components in diseased versus healthy samples could also 
yield interesting results.  If any one of the methods yielded a 
separate disease component, this could be helpful for other 
research applications. 
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