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Abstract— A novel methodology is introduced here that 

exploits microscopic images of domestic animals’ parasites in 

arbitrary deformation instances, so as to verify assumptions 

about their mechanoelastic properties. The obtained knowledge 

of these properties manifests parasite body characteristics that 

are deformation invariant, thus allowing for unwrapping them. 

�ext, we have stated differential equations that govern the 

parasite body deformation and we have solved them by 

performing a set of equivalent image operations on the 

deformed body images. This process furnishes the parasite 

undeformed version from its deformed image. The method has 

been applied to a dataset of 193 microscopic images of highly 

deformed parasites. It is demonstrated that different 

orientations and deformations of the same parasite give rise to 

practically the same undeformed shape, thus confirming the 

consistency of the approach. 

I. INTRODUCTION 

HERE are numerous applications, where bodies suffer 

deformation due to elastic forces (stresses). In these 

cases, one frequently encounters to important problems: a) to 

make consistent and reliable estimation of the deformed 

bodies’ mechano-elastic properties from images of random 

instances of body deformation and b) to identify the 

deformed body automatically from these very images. We 

would like to emphasize that, as a rule, automatic 

classification of bodies on the basis of images of their 

deformation, is practically prohibited by the randomness of 

the deformation. One encounters such problems in various 

disciplines applications, such as automatic identification of 

highly deformed parasites, cells or large molecules from 

their images obtained via microscope, in strength of 

materials, elastography [1], in civil engineering in general, 

etc.  

In the present paper, we have applied the following new 

approach to tackle the aforementioned problems as follows: 

We estimate the mechano-elastic properties of a body 

suffering an equivalent to 2D deformation from an image of 
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it at an arbitrary deformation instance. Knowledge of these 

mechano-elastic properties allows for unwrapping/straighten 

the deformed body image, a fact that in turn permits 

application of pattern recognition techniques for the body 

automatic classification/identification. We have applied the 

introduced to an important and some times crucial veterinary 

problem, namely the automatic identification of domestic 

animal parasites, from their images obtained via microscope 

[2]. These images represent the parasites in a state of serious 

deformation. Although the introduced approach can be 

extended so as to be applicable in many 2D bodies 

deformations, in order to tackle the problems related to 

parasite bodies more easily, we have made a number of 

plausible assumptions described in Section II.  

II. EXPLOITATION OF ELASTICITY THEORY FOR 

UNWRAPPING DEFORMED OBJECTS 

A. Adopted hypotheses concerning the considered 

object’s elastic properties 

1. All object (e.g. parasite) parts are isotropic, homogeneous 

and continuous. 

2. The static equation of balance holds for the deformed 

element too (1st order Theory) 

3. There exists a curve of symmetry for the undeformed 

object. 

4. Object’s straight line segments, the cross sections, which 

are initially perpendicular to its symmetry curve, remain 

straight and perpendicular to a proper corresponding line 

after the deformation, which is usually called neutral line. 

5. The cross dimensions are small compared to the symmetry 

curve’s length.  

6. The generated stresses and displacements along the object 

body are linearly related, namely the generalized Hooke’s 

law holds. 

The aforementioned hypotheses allow us to study the 

elastic behavior of the object in two dimensions. 

Consequently, the information extracted from the deformed 

object images may be sufficient for this study, for 

unwrapping the objects and thus obtaining instances useful 

for their identification.  

In the bibliography, there are some approaches for 

generating the phases between an initial and a final stage of a 

body elastic deformation [3], [4]. In these publications, 

images of both the initial and final stages deformation are 
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available. On the contrary, in the present paper, images of 

the undeformed body cannot be obtained, hence there are no 

initial phase representations. Moreover, methods that do not 

demand given initial body image to perform deformation, 

use deformable lines or surfaces [5], [6], which are not 

connected to deformation invariants of body shape. Thus, 

they cannot be used to create representative undeformed 

body images from its deformed instances. These facts calls 

upon an alternative approach which is, for the first time, 

presented below. 

B. Object body’s 2D elastic deformation equations 

We assume that the undeformed object has a symmetry 

curve :M  ( ))(),()( sysxs µµµ =
r

 parameterized via its length s. 

Then we define the unit vector µµ &r&r /)(̂ =sl  tangent at an 

arbitrary point of M at length s and the unit vector )(ˆ sn  

normal to )(̂sl . Next, coordinates of the points of object’s 

body will be expressed via their distance vector from the 

symmetry curve M . Namely for each point with position 

vector  jyx ˆˆ +ι  we define the distance vector from object’s 

symmetry line  

( ) ( ) )(ˆ)(ˆ)(ˆ)()(),( snsjsyysxxssr δµιµδ µµ +=−+−+=
rrr

. 

Thus any differential displacement in the undeformed 

body is expressed ( ) )(ˆ)(ˆ1),( sndsldssrd δφδδ ++= &r
 where the 

curvature )(ˆ)(ˆ sn
ds

d
sl =φ& . Now, we can represent any 

differential deformation jdwdu ˆˆ +ι  by using the basis 

( ))(ˆ),(ˆ snsl  as a curved vector 
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)(ˆ)(ˆ snwsnudd TT

wu
∇+∇= δδ  

Equivalently to the displacement jdwdu ˆˆ +ι  one can define 

a displacement ( ) )(ˆ~)(ˆ~~ snwslwud
s δ∂+∂+  with the functions u~  

and w~   with correspondence to u and w given by the 

expressions ( ) ( )22

)(ˆ)(ˆ)(ˆ~ slwsluslu TT ∇+∇=∇ , 

( ) ( )22

)(ˆ)(ˆ)(ˆ~ snwsnusnw TT ∇+∇=∇ . 

Then the differential deformation is written  
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Then u~  and w~  are given by the differential equations 
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Strains 
nlnnll

εεε ,,  and 
nlε  caused by the deformation 

functions u~ , w~  are given by the following expressions:  
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1
0 ∇
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According to the assumption of elastic deformation, the 

expression connecting stresses and strains along )(ˆ sl , )(ˆ sn is 

expressed via the relation εσ ~~~ Ε= ; where 







=Ε

2221

1211~

EE

EE
 a 

constant matrix.  

C. Solutions of deformation functions’ PDEs via 

morphological operations 

For an arbitrary point (x,y) we consider the definitions of 

A) its initial distance from a point Σ of the symmetry line 

suffering s-deformation obtained via 

{ } ( ) ( )






 −+−= 22

0 )()(min)(),( ττδ µµτ
yyxxsyx  (6) 

B) the correspondence of Σ with a unique Σ’ of the 

undeformed symmetry line suffering δ-deformation obtained 

via { } ( ) ( ){ }22

0 )()(minarg)(),( ττδ µµ
τ

yyxxyxs −+−=   (7) 

Then PDE (3) with initial condition { } )(),(0 syxδ  is 

equivalent to the action over { } )(),(0 syxδ  of a dilation filter 

at scale s with a flat disk kernel [7]. Namely  

{ }[ ] ( )( ){ }{ })(,sup)()(),(),(~
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syxsyxMsw εδδδδ
δε

r

r
+==

≤

+    (8) 

Similarly PDE (5) with initial condition { } )(),(0 δyxs  is 

equivalent to the dilation of { } )(),(0 δyxs  with flat disk kernel 

at scale s 
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For the solution of (4), first we express the directional 

derivative of 
nw~  at an arbitrary direction v̂ , 

nvwlvwnwHvw T

nn

T
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T
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ˆˆ~ˆˆ~ˆ)~(ˆ~ +==  (10).  

But, performing dot product of (2) with n̂  results 0~ =nlw . 

By substituting in (10) we obtain nvww T

nnnv
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where )(0 δs  is given for δ-deformation using (7) and the 

initial condition ( ){ } ),0(,
~

0 δφ yx  can be derived straight from a 

dilated version of the global initial conditions ( )
00 ,δs . 

To unify both these cases in one process we define the 



 

 

 

function { }( ) ( )∞−= ))((sgn)(),(
00

δφδκφ ssyx & . Then we adopt 

the process  
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(12). This functional’s derivative is given by the formula 
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Letting ( ){ } ),0(,
~

0)( δφδ yxg =  the above filter on s-scale 

space gives a solution for (11) and equivalently of (4). 

Finally, correspondence between (4) with initial conditions 

)(δg  and filter )]([ )( sg δα , gives  

( ){ } ( ){ } ( ){ }[ ]( ))(),0(,
~

exp),0(,~),(,~
0 syxayxwsyxw δφδδ =  (13) 

 

III. IMAGE ANALYSIS FOR THE DETERMINATION OF THE 

DEFORMED BODY NEUTRAL LINE 

A. Confirmation that the neutral line passes from the 

middle of its cross sections 

Consider a section A normal to the symmetry line in the 

undeformed object’s state. Then, the vertical shear force V 

and force )  normal to A  and along the symmetry line are 

given by the expressions: 

∫=
A

nl dAV σ   (14)      and     ∫=
A

ll dA) σ  (15) 

We assume that the object is in an equilibrium position 

each time a photograph is taken.   Then, equilibrium along 

symmetry line implies that 0=) , 0=V . Since we have 

adopted the assumption that the generalized Hooke’s law 

holds, it follows that  
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∇
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Combining (16) and 0=) , we deduce that 

ssyxs += 0))}(,(~{ δ  (17) indicating that s-deformation is only 

offsetting the length of the initial symmetry line and hence 

that it can be ignored. Now, symmetry line’s stresses in the 

direction tangent to it, 
llσ , are given via  
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Combining (19) and 0=V , we deduce that 

δδδδ += 0)),(
~

}({ yx  (20), which similarly results that δ-

deformation is only offsetting the distances from the 

undeformed symmetry line and hence that it can be ignored. 

Now, symmetry line’s stresses in the directions normal to it, 

are given via ( )
0

11 ~
~

~

2
δσ −

∇
−= w

w

wE nn

nl
    (21). 

Combining (21) and (18) with zero offsetting of ),(0 yxδ  

we obtain  
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To study the stress that symmetry line suffers we let 

00 →δ  then  
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and finally (13) results  

( ){ } { } 0)(),(
~

lim),(,~lim 0
00 00

==
→→

syxsyxw φδδ
δδ

.  

Therefore, the curve to which symmetry line is 

transformed suffers no stress; the curve formed by all these 

unstressed points, usually called the neutral line, has the 

following properties: 

a) It is the curve to which the symmetry line is 

transformed due to the elastic deformation process. 

b) No stress is exerted along it. 

c) As a consequence, the neutral line and the body 

symmetry line are of the same length. 

d) The neutral line passes from the middle point of each 

cross section in the 2D image representation of the deformed 

body. 

e) The undeformed cross sections, initially perpendicular 

to the symmetry line, remain perpendicular to the neutral line 

even after the body’s deformation. 

B. An important property of the deformed object contour 

tangents 

In this paragraph we will state a new lemma, that has been 

proved by the authors, in order to deal with the problem of 

spotting deformed body’s cross sections. 

Lemma 

Let 
21ΣΣ  be the symmetry line of the unwrapped body and 

AD  an arbitrary cross section, intersecting 
21ΣΣ  at point M  

where part M1Σ  of the symmetry line has length s. Then, due 

to the deformation, AD  moves to a section DA ′′ , 

perpendicular to the neutral line at point 'M . Let moreover 

U’ and L’ be the upper and lower boundary curves of the 

deformed body, respectively and ')  be its neutral line. If  
'

'

U

AT
r

 is the tangent vector of 'U  at A′  , '

'

L

DT
r

 the tangent vector 

of 'L  at D′  and 
'ML

r
 is the tangent vector of the deformed 

symmetry line at point 'M ; then it holds that 

( ) ( ) π=−′∠+−′∠
'

'

''

'

'
,','

M

L

DM

U

A
LTDALTDA
rrrr

. 

C. Object contour extraction and its polynomial 

approximation 

As the introduced methodology makes use of the border 

line of each parasite, it is necessary to obtain well-defined 

boundary lines of all instances of the examined parasites. In 

order to achieve this, the following method is used:  

First, we have applied various image segmentation 

methods ([8],[9]) in order to obtain quite clear-cut and 

accurate region borders of each parasite. A rather simple 



 

 

 

method that seems to work well is the one that uses each 

parasite’s pixel intensity histogram and the lower turning 

point of it. All pixels with intensity lower than this turning 

point may be considered to belong to the parasite body. This 

method may generate various artifacts that may be removed 

by application of proper morphological filters, see e.g. [10].  

As it will become evident from the subsequent analysis, in 

order that the introduced methodology is applied, each 

contour line must have the following properties: A) each 

pixel must have exactly two neighboring pixels B) no 

isolated pixels or groups of pixels are allowed and C) three 

pixels must not form a compact right ( °90 ) angle. Since no 

edge detection algorithm can generate the parasite contour in 

this form, suitable software has been developed to achieve 

that. 

The next step is to determine if there are specific 

mathematical curves that optimally fit the object body, e.g. a 

parasite, contour in the obtained images. There are various 

techniques for achieving this goal (e.g. [11],[12]). For the 

present application the following method proved quiet 

satisfactory:  

 The curve parameter is chosen to be its contour length 

s, calculated via the distance of the successive pixels that 

form it. Subsequently, we approximate the variables x and y 

of the body contour by polynomials up to 21 degree: 
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Let BB

i
)ir ...,,2,1, =  be the centers of the pixels forming 

the upper contour and let { }
011011 ,,...,,,,,...,, bbbbaaaa nnnn −−=Π . 

Hence the parametric vector equation of the prototype curve 

is ( ) ( ) ( ) jsyisxsr M
rr

+=Π| . 

Next, we compute the optimal set of parameters Π
Ο
 and 

the corresponding sequence of values of the independent 

variable B

i )is ...,,2,1, = , so that ( )ΟΠ|
i

M sr  best fits B

i
r  

according to the chosen quadratic norm ∑
=

−=
B)

i

M

i

B

i rrE
1

2

2
. 

This minimization has been performed by usage of the 

Nelder – Mead method [13] starting from a tentative initial 

position 1Π and each time generating a new set of parameter 

values 32 , ΠΠ , etc, so that 
2E  eventually converges to its 

minimum value, in which case the optimal set of parameters 

Π
Ο
 is obtained.  

D. Determining deformed body’s neutral line via image 

processing 

In this section, we will analytically describe the 

methodology we have introduced and applied for 

determining the exact position of the neutral line in the 

deformed body image, as well as the positions of the cross 

sections that, by hypothesis, always remain undeformed and 

normal to the neutral line. The application of this 

methodology has been made on the available parasite images 

and comprises the following steps:  

Step1: We, first, extract the parasite contour. Next, we spot 

the head and the tail of the parasite as follows: First, to spot 

the tail, for each contour pixel p we consider the sets of 

pixels 
LP  that lie on its left and 

RP  that lie on its right. We 

approximate both 
LP  and 

RP  with line segments in the Least 

Squares sense. We let the tail T be the pixel where these two 

line segments form the most acute angle.  

Second, we spot the parasite “head” H: We move away 

from the tail and we locally approximate the contour by 

polynomials of fifth degree, of which we compute the 

curvature. We let the “head” be the point of maximum 

curvature, which also lies between 0.4 and 0.6 of the whole 

contour length.  

Step2: We divide the whole contour into two parts I and II 

(arbitrarily called upper and lower), that both end at the 

parasite “head” and “tail”. Then we approximate both parts 

with polynomials of type (22). All performed experiments 

indicate that this approximation is excellent. We form a 

dense sequence IIII

j
)jM ...1, =  of points belonging to the 

polynomial curve best fitting part II and a less dense 

sequence II

i )iM ...1, =  on curve fitting part I; let I

iτ
r

 and 

II

j
τ
r

 be the unit tangent vectors to these model curves at each 

I

iM  and II

jM  respectively.     

Step3: Subsequently, we spot parasite’s neutral line by 

applying the aforementioned lemma and the results of 

paragraphs A and B as follows: 

We move away from tail T along part I and we connect 
IM

1
 with each point of set KjM II

j ...1, = , where K is a 

predefined number of pixels, say 5% of the whole contour 

length. We form vectors KjMMr
III

jj ,...,1,1,1 ==
r

. We keep 

only those vectors 
j

r
,1

r
 that lie entirely within the parasite 

body and for these we compute the angles I

j,1ϕ  and II

j,1ϕ  

formed by each vector 
jr ,1

r
 and the tangent vectors I

1
τ
r

 and 

II

j,1
τ
r

 respectively. Then, we define the sequence 

πϕϕϕ −+=∆ II

j

I

jj ,1,1,1
 and we let II

)1
 be that point where the 

minimum value of the sequence 
j,1ϕ∆ occurs, say the 

1d -th of 

sequence II

jM ; we consequently define III )M
11

 to be a cross 

section of the parasite that remains undeformed and normal 

to the neutral line. 

Next we compute the second cross section as follows: We 

move away from the tail vertex T and I
M 1

 at I
M 2

 and once 

more, we define the set of points KjM II

jd ,...,1,
1

=+ . Proceeding 

as before we define vectors, KjMMr III

jdj
,...,1,

2,2 1
== +

r
. We 

compute the corresponding angles I

j,2
ϕ  between 

j
r

,2

r
 and I

2
τ
r

, 

as well as II

j,2
ϕ  between 

jr ,2

r
 and II

jd +1
τ
r

. We spot the minimum 

of the sequence πϕϕϕ −+=∆ II

j

I

jj ,2,2,2
, which occurs at point 

II)
2

, say the 
2d -th point of sequence II

j
M . We let III )M

22
 be 



 

 

 

the second cross section that remains undeformed and 

normal to the neutral line.  

Finally we proceed in obtaining all cross sections II

i

I

i
)M  

passing from II

i
)iM ...1, =  by the same method (Figures 

1A,B). The middle point of these cross sections belongs to 

the neutral line and the unit vector normal to these sections is 

tangent to the neutral line. 

IV. IMAGE OPERATIONS TO UNWRAP THE DEFORMED BODY 

We have shown in Section III that under the adopted 

assumptions the neutral line undertakes no stress and it is 

found in the middle of the corresponding cross section. 

Consequently, we define the neutral line of the deformed 

parasite to be the locus of the middle points νK  of the cross 

sections III )M νν as they are determined above. We achieve 

unwrapping of the deformed body by means of a new method 

consisting of the following steps: 

Step 1: Initially, the vector parametric equation of the neutral 

line is approximated via 21th degree polynomials of type 

(4.3.1) that best fit points νK  in the least squares sense, thus 

obtaining ( ))(),()( sysxsr µµµ =
r

. Using this vector parametric 

equation, we compute the unit directional vectors along 

)(srµ

r
, 
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ˆ)(ˆ)(
)(ˆ

sysx

jsyisx
sl

µµ

µµ

&&

&&

+

+
= , 

22 )()(

ˆ)(ˆ)(
)(ˆ

sysx

jsxisy
sn

µµ

µµ

&&

&&

+

+−
= , as 

well as the curvature 
22
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µµµµ
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yxyx
sc

&&

&&&&&&

+

−
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Step 2: Afterwards, at any pixel point ),( yx , inside the 

deformed body, we attribute the values the following two 

images, ),(0 yxs , ),(0 yxδ , have at this point 

( ) ( )






 −+−= 22

0 )()(min),( syysxxyx
s

µµδ  

( ) ( )






 −+−= 22

0 )()(minarg),( syysxxyxs
s

µµ  

These two images play the role of initial conditions for the 

PDEs (3), (5), (4) which describe the deformation 

functionals { } )(),(
~

δδ yx , { } )(),(~ syxs , { } )(),(
~

syxφ  respectively. 

Step 3: We have proved that the solution of deformation 

differential equations is equivalent to applying to ),(0 yxs , 

),(0 yxδ dilations (5) and 3) respectively, and the filter 

)](,[ sga κ  to the dilated ),(0 yxδ  as formula (4) indicates. As 

it was shown, the crucial operation is curvature deformation 

{ } )(),(
~

syxφ  given by formula (13). Namely 

{ } ))](,[exp()(),(
~

sgsyx φκαφ = , where ( ) ∞−= ),(sgn),( yxcyxφκ , 

),(
~

ln),(
0

yxyxg φ=  and ),(),(
~

00 yxyx δφ ∇= . This image 

represents, through scale s, all curvature deformations 

implied on the body. Since we want to straighten parasite 

bodies we demand zero curvature of symmetry line. For each 

pixel ),( yx  in the deformed parasite body, we determine the 

proper scale ),( yxσ  that minimizes { } )(),(
~

σφ yx , namely 

{ }{ })(),(
~

minarg),( syxyx
s

φσ = . Thus, if the given image of the 

deformed body is ),( yxf , then the above procedure 

generates an image that corresponds to the unwrapped body 

described by ),()),(),,(( 0 yxfyxyxfT =δσ . 

 

V. EVALUATION OF THE INTRODUCED METHODOLOGY-

CONCLUSION 

A. Evaluation of the method of unwrapping the deformed 

bodies 

If the assumptions made in this paper and the introduced 

methodology are correct, one expects that different instances 

of a specific body deformation will generate the same 

undeformed contour of the body, at least with an acceptable 

approximation. In particular, for the application in hand, one 

expects that different images of the deformed parasite must 

offer quiet close unwrapped versions after application of the 

methodology introduced in sections III and IV. In fact, the 

undeformed parasite borders have a difference that might be 

considered negligible in respect to the parasite dimensions. 

We have employed five different measures to describe the 

differences between the shapes of the unwrapped parasite 

that resulted from different phases. These measures are :  

1)
( )

%100,1 ⋅
−

=
P

PP

i

ia
l

ll
, where P

i
l  is the length of the 

unwrapped parasite obtained from the ith wrapped larva 

phase and 
P

l its mean value. 2)
( )

%100
,2

⋅
−

=
P

PP

i

i
E

EE
a , where 

P

i
E  is the area of the unwrapped parasite. 

3)
( )

( ) %100
,

,3
⋅

−
=

j
j

jji
j

i
ymean

yymean
a , where 

ji
y

,
 is the width of the 

unwrapped at point 
j

x ; hence, we define ( )
ji

i
j

ymeany
,

= . 

4)
( )

%100,4 ⋅
Π

Π−Π
=

P

PP

i

ia , where P

i
Π is the perimeter of the 

unwrapped parasite. 5)
( )

%100,5 ⋅
−

=
P

PP

i

i
C

CC
a , where P

i
C  is the 

maximum cross section diameter of the unwrapped parasite. 

The mean value and standard deviation of quantities 
i

a
,1

, 

ia ,2
, 

ia ,3
, 

ia ,4
,

ia ,5
 are shown in Table I. Evidently, the 

introduced method for deducing the undeformed body 

version from its deformation images, seems consistent, 

reliable and robust. 

B. Conclusion 

In this paper, a new methodology has been introduced that 

exploits images of elastic body deformation instances, so as 

to verify assumptions about its mechano-elastic properties. 

The validity of these assumptions allows for unwrapping the 

body, i.e. for obtaining the body undeformed version from its 

deformed image. We have reformulated some fundamental 

relations from Elasticity Theory, in order to derive equations 



 

 

 

for the 2D body deformation, which can be subsequently 

interpreted as a set of morphological operations acting on a 

2D body image. By applying the inverse morphological 

operation we obtain the undeformed image of the body via 

the process described in Section IV. 

Application of this methodology to 193 images of highly 

deformed parasites of domestic animals, offered straightened 

contours and body versions that seem to be consistent and 

reliable representations of the undeformed parasites. 

Employing these unwrapped parasite versions, a very 

successful automatic recognition of parasites from their 

images have been achieved.  
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Fig. 2A.  Generating the unwrapped version of the parasite of Fig. 1A 

 
Fig. 2B.  Generating the unwrapped version of the parasite of Fig. 1B 


