
  

  

Abstract—Emotion identification has recently been 

considered as a key element in contemporary studies for 

advanced human-computer interaction. The achievement of 

this goal is usually attempted via methods incorporating facial 

expression and speech recognition, as well as, human motion 

analysis. In this paper it is attempted to fuse multi-modal 

physiological signals of the autonomic (skin conductance) and 

central nervous systems (EEG), through the use of appropriate 

feature extraction procedures discriminating emotional arousal 

modulations, to a neural network classifier. Thus, skin 

conductivity responses, evoked-related potential peaks, and 

delta frequency oscillatory patterns are analyzed for a 

comparatively large number of subjects exposed to different 

emotions, evoked by pictures selected from the International 

Affective Picture System. The achieved neural network 

classifications were encouraging. It was found that fear was 

successfully differentiated (100%), pleasant emotions differing 

in their arousal level were well distinguished (80%), but the 

discrimination of low arousing negative feelings such as 

melancholy was more difficult (70%). It is argued that 

physiological patterning of multimodal recordings may 

successfully contribute to the enhancement of human computer 

interaction and emotion aware computing. 

 

I. INTRODUCTION 

HE  improvement of the interaction between humans 

and computers is essential for the development of 

intelligent interfaces which may be useful in a wide range of 

applications such as e-health, education and learning, and 

elderly care [1]. For example, a virtual tutor can adjust the 

lesson according to the individual skills and abilities, as well 

as, the current state and circumstances of each student. 

Moreover, such interfaces can be extremely useful in web 

applications, where they can cope with emotions such as 

frustration or anger when facing difficulties to fill in an 
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electronic form or to complete a task or even to navigate 

through a web interface. To achieve this goal, human 

computer interaction (HCI) should get closer to human- 

human interaction (HHI). Humans communicate each other 

mainly due to their skill of emotional understanding. 

According to [2] the successful interaction of computers 

with humans will adopt basic principles required for the 

communication among human beings. Therefore, a subset of 

human emotional skills should be embedded to machines in 

order to facilitate them with adequate intelligence for 

adapting their behavior more suitably to the interacting with 

them people. 

 However, the task of discriminating human emotions is 

not a simple one to achieve. This is due to many reasons. 

First, the inherent emotion related physiology has not been 

well researched yet. In addition, there are problems in 

human-human interactions: e.g. the inability to understand 

emotions and needs of family, friends and colleagues, is the 

most common cause of conflict in one’s daily lives. 

Furthermore, in many cases some innermost emotions 

remain completely unrecognizable even by humans. Last but 

not least, the human body responds in almost a similar way 

to certain emotions which are very different, like erotic lust 

and fear. 

In order to succeed in giving computers the ability to 

discriminate the human feelings, we should think about the 

ways that we use to understand the mood of the person with 

whom we want to interact. For example, a teacher can alter 

her tone of voice in order to encourage her students or to 

keep them silent. Furthermore, she could change her facial 

expression or her posture when she recognizes the boredom 

or the frustration of the students. Gestures or different 

postures may be used to emphasize an important fact. 

Consequently, it is desirable to envisage the interaction 

richness of computers to all the aforementioned ways used 

by people upon communicating with each other. Apart from 

the use of human natural senses, as mentioned in [3] 

emotions can efficiently be recognized by means of 

physiological recording heart rate, the electrodermal activity 

measured in palmar or plantar surfaces, the respiration rate, 

the electromyographic activity of certain muscles and the 

cerebral activity as recorded by the Electroencephalogram 

(EEG).  

The study of electric potentials measured on the human 

scalp can lead to a unique richness of neurophysiological 
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findings that will not only enhance the classification rates in 

emotion recognition tasks, but will also provide 

neuroscientists with useful information for the better 

understanding of various cognitive approaches during 

emotional processing. Event-related potentials and 

tomographic estimates of brain activity may map the 

temporal brain activity due to emotionally evocative stimuli, 

coupling the involved emotions to specific brain regions [4]. 

Time-frequency analysis of the cerebral oscillatory activity 

caused by an emotional stimulus may reflect the intrinsic 

membrane properties of single neurons as well as the 

organization and inter-connectivity of functioning networks, 

which result in coherent neuronal activity exercised by large 

neuronal pools in distributed or restricted brain regions [5]. 

The main theories about the processes that lead to 

emotional activation and modeling are the Darwinian, the 

cognitive and the Jamesian ones [6]. The Darwinian theory 

correlates the emotions with their contribution to survival. 

The cognitive approach attributes to the human brain a 

central role for emotional processing according to the 

situation judgment as either good or bad. The last theory 

regards emotions as the perception of body changes and 

favors the role of the physiological responses. Originating 

from cognitive theory, emotions are regarded as points in a 

2D emotional space. The dimensions are valence, which 

divides emotions to pleasant and unpleasant, and arousal, 

which judges a specific emotion as either calm or excited.  

To contribute to the research of finding ways to facilitate 

computers with the ability to recognize human emotions, we 

conducted an experiment that aimed to study the 

neurophysiological signatures of human emotions. The 

elicited motions differed in their arousal and valence 

dimensions as those were evoked by selected pictures from 

the International Affective Picture System (IAPS) [7]. The 

recordings of signals were obtained from both the autonomic 

and the central nervous systems. In this context, the present 

work aims at assessing the arousal dimension of human 

emotions by analyzing the multimodal recordings and 

classifying them by means of a neural network classifier.  

So, in the remaining of this paper, necessary background 

knowledge is provided in section II, followed by a 

presentation of the experimental and preprocessing details. 

Theoretical and analytical steps of the feature extraction 

procedures are presented in section IV. The classification 

results achieved by the neural networks employed are 

subsequently provided and discussed in the last couple of 

sections.  

II. PREVIOUS WORK 

During the last few years there is growing evidence that 

fusing physiological recordings of the nervous system 

activities could lead to the formation of the scientifically 

sound signatures for a wide range of human emotions. 

One decade ago, in the pioneering work of the MIT Media 

Lab [8] a single subject intentionally expressed eight 

affective states over a period of more than a month. During 

the experiment EMG activity on the masseter muscle, skin 

conductivity and respiration rate were recorded. From these 

signals a set of eleven features was extracted in order to 

discriminate between eight affective states by means of 

pattern recognition techniques such as the Fisher linear 

discriminant projection and the leave one out test method. 

Anger was fully discriminated from the peaceful emotions. 

Furthermore the eight emotions were separated into two 

classes according to their arousal dimension, but the study 

failed to distinguish between pleasant and unpleasant 

emotions. A later work of the same team [9], improved the 

results achieving 81% recognition accuracy by seeding a 

Fisher Projection with the results of Sequential Floating 

Forward Search. The latter was the first ever work to report 

similarities among physiological features for different 

emotions on the same day, which partially explains the 

difficulties on user-independent emotion recognition.  

The aforementioned studies inspired the recent work 

conducted in [10]. More specifically, physiological data 

from the autonomic nervous system were gathered from a 

single subject on different days and different times of the 

day. Additionally to the previously used sensors, a Blood 

Volume Pressure (BVP) was used. A great number of data 

segments (1000) was extracted and used for training a neural 

network classifier. The duration of each segment was set at 

two seconds. Due to the large number of feature vectors (700 

for training, 150 for testing and 150 for validation) it was 

feasible to robustly detect both arousal (96.58%) and valence 

(89.93%) dimensions of the emotions elicited by a single 

subject, when exposed to photos from the IAPS set.  

Another study [11] used a long (45 min) show of slides 

and movie clips to elicit emotions in a fixed order. The 

emotion recognition task used non-invasive wearable 

sensors to gather data such as heart rate, skin temperature 

and phasic increases of the subject’s electrodermal activity. 

Unlike to previous studies, the sample included 29 

participants. Twelve features were extracted and three 

supervised algorithms were implemented. The results were 

promising. Recognition rates greater than 85% were 

achieved for all the emotions except surprise and frustration.  

A recent study used fusion of EEG and peripheral data for 

the arousal evaluation using emotionally evocative pictures 

selected from IAPS [12]. Peripheral signals included blood 

pressure, skin conductivity, heart rate, respiration and 

temperature. The data from the central nervous system 

included power values representing frequency bands from 

theta, beta, gamma, alpha and beta oscillations. The number 

of participants was very limited and the best performance 

achieved was 55%. Despite the fact of the poor arousal 

discrimination, this study shows that more research efforts 

should be done towards the integration of EEG (and perhaps 

MEG) data with the well studied signals derived from the 

autonomic nervous system.  



  

III. MATERIALS & METHODS  

A. The AFFECTIO� project context 

This work is part of the AFFECTION collaborative 

project, between the Medical Informatics at the Medical 

School of the Aristotle University of Thessaloniki, Greece, 

and the Brain Science Institute of RIKEN in Japan. It aims at 

the robust identification of discrete human emotions elicited 

from selected IAPS pictures. 

Healthy adults (13 men and 13 women) are being exposed 

to emotionally evocative-stimuli. The experiment consists of 

pictures, selected from IAPS, presented on a PC monitor in 

random order. Each picture has a specific (L for Low, H for 

High) Valence-Arousal dimension (HVHA, LVLA, LVHA, 

HVLA). There are 40 trials from each one of the four 

affective space conditions. Consequently, the participant 

passively views 160 pictures. Each photograph is presented 

during 1 second. Between two successive visual stimuli, a 

central fixation cross appears for 1500ms. During the 

experiment we recorded EEG (10/20 system) and Skin 

Conductance Responses (SCRs).   

B. Recording & Pre-processing 

EEG was recorded with Ag/AgCl electrodes from 

nineteen sites according to the international 10-20 system, 

with reference electrodes placed on the left and right ear 

lobe. The sampling frequency was set at 500Hz. All 

impedances were maintained at less than 20 KΩ. Vertical 

and horizontal eye movements were tracked with the same 

recording parameters as for EEG via four electrodes placed 

one above and one below the left eye and two at the outer 

canthus of both eyes. The signals were filtered of-line with a 

high-pass filter with cut-off frequency at 0.5 Hz, followed by 

a notch filter of 50Hz. Finally, a low-pass filter was applied 

with cut-off frequency at 40Hz. Then, the Infomax 

Independent Component Analysis (ICA) technique was 

applied to remove artifacts caused by eye blinks and eye or 

muscle movements. The pre-processing of EEG data was 

performed by means of the EEGLAB software coded in 

MATLAB  

Skin conductance was recorded via a pair of silver-silver 

chloride electrodes. Gel was placed on the medial phalanges 

of digits II and III of the non dominant hand. Baseline 

removal took place as a first step in order to remove linear 

trends. Then the signal was digitally filtered by means of a 

low-pass short IIR with cut-off frequency at 2.5 Hz. The 

skin conductance data were synchronized with EEG data in 

order to form epochs according to stimulus onset. Then, the 

average signal was computed for each stage. 

IV. FEATURE EXTRACTION 

A. Theoretical Foundation 

EEG analysis aimed at studying the brain mechanisms 

underlying human emotional processing by measuring 

event-related potentials (ERPs) and oscillatory activity.  

ERP analysis is focused on the detection of time-locked 

changes in the activity of large pools of neurons. The 

theoretical foundation of this type of analysis lies with the 

fact that cerebral activity induced by visual-stimuli, has an 

“almost” fixed, time-delay to the stimulus onset, while the 

rest of EEG activity can be regarded as “additive noise”. For 

the reliable detection of the ERPs components an averaging 

process takes place in order to enhance the signal-to-noise 

ratio. Then, a single peak detection algorithm applied in a 

restricted time series region in order to encounter short 

declines among subjects can identify the local maxima and 

minima of interest. 

However, the above simple theoretical model even though 

widely used, is just a rough approximation of the reality. The 

basic model assumption that an event-related potential 

representation can be made by a signal added to uncorrelated 

noise, does not hold in cases where the amplitude of the 

ongoing EEG activity is reduced due to the visual stimulus. 

The above changes are not phase-locked to the picture onset 

and may be better detected by frequency analysis of the ERP 

components. This motivated us to study the oscillatory 

activity of the averaged ERPs on the delta frequency band. 

The motivation for the analysis of the specific frequency 

band was the fact that previous studies reported increase of 

delta oscillatory activity during sexual arousal induced by 

erotic films [13]. These waves centered around 4 Hz were 

mainly located on the right parietal lobe. Furthermore, delta 

waves are associated with the P300, which is an ERP 

component observed as a response to either unexpected or 

motivationally relevant tasks. Previous studies demonstrated 

that P300 amplitude is increased during the view of arousing 

visual stimuli [14]. Due to this fact, delta oscillations were 

chosen as indicators of arousing states. 

Skin conductivity reflects the activity of sweat glands 

which are innervated by the sympathetic branch of the 

autonomic nervous system. They are located mainly on 

palmar and plantar surfaces of the human body. The electro-

dermal activity measured on these surfaces is modulated by 

emotional stimuli and can be divided into the skin 

conductance level (SCL), which is a tonic level of 

autonomic arousal and the skin conductance response 

(SCR), which is a phasic arousal indicator as a response to 

an unexpected stimulus [15]. 

B. Features based on ERPs 

 The data from frontal (Fz), central (Cz) and parietal sites 

(Pz) distributed along the anterior-posterior midline of the 

brain, were analyzed and their main ERP components were 

extracted. As shown in Figure 1 a window from 100 to 200 

ms can capture the local minimum which corresponds to the 

N100 component. This component is more pronounced for 

the negative stimuli as well as for pleasant pictures that 

cause excitation to the subjects. Subsequently, a prominent 

positive peak can be detected by means of a time window 

centered at 200 ms after stimulus onset. Then, N200 is 

observable between 200 and 300 ms. As for the late P300 

event-related potential can be detected using a time window 

between 300 and 400 msec. 



  

The described peak latencies are consistent to all three 

electrode sites that were analyzed. All the peaks were 

analyzed using the maximum and minimum values between 

the described time windows. Statistical analysis was applied 

to the obtained values in order to estimate the discrimination 

capacity with regards to the ERP components. Statistical 

analysis revealed several ERP components modulated by the 

arousal dimension of the human emotion model. The 

electrode sites found to mainly contribute to the 

discrimination task were the Pz and Cz. From the plethora of 

useful findings revealed by the analysis of variance 

(ANOVA), a selection was made according to their arousal 

discrimination. The five features selected were P300 and 

P100 recorded at the Pz electrode and P100, N100 and P300 

recorded at the Cz electrode. The p-values for the selected 

features range from 0.00457 to 0.000002, which is an 

indication of their robustness. 

C. Features Based on Delta Oscillatory Activity 

The average signals from all the electrode sites were 

digitally filtered by means of a second order band-pass 

Butterworth filter on the delta frequency band (0.5-4 Hz). As 

shown in Figure 2, the delta pattern is mainly modulated by 

the arousal dimension and could be used for discrimination 

purposes.  

The feature evaluation process indicates that there are 

more features that can discriminate arousal among pleasant 

pictures than among negative pictures. So, three features 

were selected for the arousal discrimination of unpleasant 

photographs, whereas one more was selected for the pleasant 

ones. However, for both categories the vast majority of 

features associated with the delta oscillations are found in 

parietal locations. 

D. Skin Conductance Features 

The averaged filtered signal representing the electro-

dermal activity during the experiment which was obtained 

by the pre-processing step was served as an input to a peak-

detection algorithm. This algorithm, based on derivative 

changes, was used for the computation of the skin 

conductance characteristics that may serve as features for the 

discrimination of the autonomic arousal. The computed 

features were the latency, rise time, amplitude and SCR 

duration. Latency was defined as the temporal interval 

between stimulus onset and SCR peak. As SCR amplitude 

was regarded the phasic increase in conductance from SCR 

initiation till the time of the peak response. The SCR rise 

time was set as the temporal interval between stimulus onset 

and SCR initiation. As shown in Figure 3, there are 

noticeable differences between the signals obtained from 

each one of the four different emotional categories. The 

most prominent increase in the electro-dermal activity was 

observed during the viewing of positive and excited pictures, 

which mainly are erotic photographs. Negative stimuli elicit 

great increases, irrespectively of their arousal dimension. On 

the other hand, pleasant and calm photographs elicit delayed 

responses that present significantly smaller amplitudes in 

comparison to the other categories of visual stimuli. 

Consequently, the skin conductance amplitude served as 

feature only for the arousal discrimination between pleasant 

pictures. 

 

E. Features Fusion 

The statistical analysis of variance (ANOVA) revealed 

statistically significant or marginally significant gender by 

arousal interaction for almost all the features used for the 

 
Fig.3.  Stimulus synchronized grand average skin 

conductivityresponse during viewing of emotionally evocative 
pictures selected from IAPS, separately for each one emotional 

category. 

 
 

 
Fig.1.  Stimulus synchronized grand average ERP waveform for Pz 

electrode during viewing of emotionally evocative pictures selected 

from International Affective Picture System (IAPS), separately for each 
one emotional category 

 
 

Fig.2.  Stimulus synchronized grand average delta oscillatory response 
for Pz electrode during viewing of emotionally evocative pictures  

 



  

discrimination task. Consequently, a new feature describing 

the subject’s gender was introduced.  

Summarizing, there were seven features used for the 

arousal identification among the unpleasant pictures and 

nine features for discriminating arousal among the pleasant 

ones.  

V. CLASSIFICATION & RESULTS 

After the extraction of the features, a neural network 

classifier was used for the arousal discriminating task. Two 

different networks were used according to the valence 

dimension of the visual stimulus. Avoiding, the use of the 

same features or the same network for both positive and 

negative pictures was the appropriate choice to account for 

the role of the valence effects expressed by the different 

cerebral networks used by the human brain upon processing 

fearful or pleasant stimuli. 

The two distinct networks were both multiple-layer 

consisting of an input vector, one hidden layer and a single 

output layer. The feed-forward architecture was selected.  

The type of the learning rule they both used was the back 

propagation. The target vector was 0 for low arousal stimuli 

and 1 for high arousal. Similarly, the gender feature was 

consisted of ones for female subjects and zeros for males. 

All the other features consisted of their values as obtained by 

the analysis, since no normalization process took place. Due 

to the binary output, the log-sigmoid transfer function, 

which generates outputs ranging from zero to one, was used. 

For each network there are 26 feature vectors available. 

Each vector corresponds to a single subject. Sixteen vectors 

were used for training and the remaining ten for the network 

evaluation procedure. Equal number of male and female 

subjects was used both for training and testing. The 

traditional back-propagation training algorithms were not 

preferred due to their extremely slow convergence. 

Moreover, their performance was limited at almost 70% of 

correct arousal discrimination. Consequently, the appropriate 

choice was to use faster and more robust algorithms for 

training the networks. 

The network used for the arousal detection among 

positive pictures consists of an input layer with six neurons 

and three hidden neurons. The output layer as mentioned 

above consists of a single neuron. The conjugate gradient 

algorithms search along conjugate directions and converge 

faster. However, they require a line search at each iteration, 

which is computationally expensive. The scaled conjugate 

gradient algorithm was selected for trainining this network 

because it avoids this type of search by combining the 

model-trust region approach with the conjugate gradient 

approach. The learning rate was set at 0.01 and the 

network’s goal was to achieve mean square error smaller 

than 0.00001. 

The network used to discriminate the arousal dimension 

among unpleasant photographs consisted of an input vector 

with seven neurons and a hidden layer of four neurons. The 

gradient descent with momentum was selected as the 

training algorithm for this network, because it responds not 

only to the local gradient, but also to recent trends in the 

error surface. This feature allows the network to circumvent 

shallow local minima. The learning rate in this case was set 

at 0.03. 

The network’s performance depends partially to the initial 

values assigned to the neurons’ weights. For improving the 

network’s performance an initial training took place and the 

network was evaluated using the ten vectors that were not 

used for training. In case of recognition rates greater than 

70%, the network’s weights were saved and served as an 

input to a new training.  

The classification results, which are shown in Table I, 

indicate that unpleasant and highly arousal photographs, 

related to anger, fear and threat-related stimuli produce a 

distinct neurophysiological signature. So, the discrimination 

process of these stimuli was achieved with 100% success, 

whereas the recognition of emotions such as melancholy was 

more difficult. On the other hand, pleasant pictures were 

distinguishable in a sufficient way according to their arousal 

dimension..  

VI. DISCUSSION & FUTURE WORK 

This paper has suggested that physiological patterning of 

multimodal recordings can contribute to the enhancement of 

human computer interaction providing the computers with 

the ability to recognize the user’s emotional state and adapt 

their behavior in order to interact more sufficiently and 

successfully with people. The novelty of our contribution is 

the development of a user-independent classifier instead of 

gathering physiological data from one subject over many 

weeks. Most of the previous attempts of emotion recognition 

with the use of physiological signals have mainly focused on 

collecting data from the autonomic nervous system. They 

used features obtained by first order statistics like mean 

values, standard deviation and first derivatives. These 

characteristics are mainly quantitative, whereas the features 

used in our study are mostly quantitative (e.g. skin 

conductance amplitude). In general, the use of features from 

the central nervous system has been very limited in past 

literature, thereby limiting access to the understanding of 

emotion elicitation due to fear, anger, joy or sexual lust. In 

one study [12], researchers used the fusion of EEG and 

peripheral data, acquired from only four participants. Three 

TABLE I 

CLASSIFICATION RESULTS 

Emotion Size Classification Rate 

Joy          10            80% 

Fear          10          100% 

Happiness          10            80% 
Melancholy          10            70% 

 

Classification results for pleasant and unpleasant emotionally 

evocative stimuli selected from International Affective Picture 
System (IAPS) indicates that multimodal recordings from 

peripheral and EEG data can lead to successful emotion 

recognition according to the arousal dimension 

 



  

of them were males. The EEG analysis focused only on 

obtaining the power values of the various frequency bands 

and no ERP analysis took place. The best performance 

achieved by this approach was only 72% arousal 

discrimination. Consequently, to the best of our knowledge 

no other method previously proposed the emotion 

recognition based on peripheral (Skin Conductivity) and 

central nervous system (EEG, event-related potentials and 

event-related oscillations) data collected from many subjects 

by means of emotionally evocative pictures selected from 

the IAPS and differing both in their arousal and valence 

dimension. The fusion of features which was obtained by 

three different aspects of the nervous system enhanced the 

robustness of the proposed classifier which is suitable to 

efficiently detect the subject’s level of arousal regardless of 

his/her personality.  

Our results imply successful arousal discrimination and 

are promising in terms of creating affective applications with 

adapting learning abilities. However, much further work 

needs to be done. Even if the task of adequately 

discriminating arousal is achieved, serious efforts should be 

done to distinguish between pleasant and unpleasant 

pictures. The combination of both dimensions will provide a 

physiological signature for a range of discrete human 

emotions. We expect that including recordings from other 

signals such as ECG or EMG and further analysis of the 

existing signals will lead to significant improvements in the 

machine recognition of user emotion. More sophisticated 

classification techniques based on unsupervised learning as 

well as with the use of fuzzy architectures will be adopted in 

order to enhance the method’s robustness. 

These results indicate that multimodal recordings from 

both the autonomic and the nervous system can be combined 

and discriminate subsets of discrete human emotions, which 

differ according to their arousal dimension.  
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