
  

  

Abstract—A population level model of the basal ganglia has 

been shown to reliably reproduce the local field potential (LFP) 

activity recorded from subthalamic nucleus (ST ) during 

typical microelectrode recording sessions. The purpose of the 

present work is to investigate optimization methods that can be 

used to fit that model to actual recorded LFPs. For that, we 

utilize data derived from seven parkinsonian subjects prior to 

the permanent implantation of the deep brain stimulation (DBS) 

electrode. For the fitting, five optimization methods are used, 

combined with two methods for estimating the error between 

the actual recorded and the model predicted LFP signals in the 

frequency domain. The procedures are focused on re-generating 

the characteristic beta peak of the ST  LFP. The results 

indicate that the model is able to reproduce the beta peak in 

various frequencies in the range of both low and high beta, 

while at the same time, the values of the critical parameters 

bringing the model in that area of behavior reveal the crucial 

role of the synaptic strengths in Parkinson’s disease 

pathophysiology. 

I. INTRODUCTION 

ICRO- electrode recordings (MERs) are routinely 

acquired during typical electrode implantation 

procedures for the deep brain stimulation (DBS) of the 

subthalamic nucleus (STN) in Parkinson’s disease [1]. 

Neurologists empirically assess the resulting recording at 

each point anticipating the properties of the underlying 

tissue. The acquisition takes place prior to the final fixation 

of the stimulating electrode’s tip and after overnight removal 

of anti-parkinsonian drugs. Usually, the recording session 

consists of moving the micro-electrode along a predefined 

line grid of points that includes the theoretical target. The 
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latter is the Posterior part of the STN, having been 

approximately defined by analysis of patient’s MRI data.  

The MERs gathered in that way are information rich, 

containing both local field potentials (LFPs) and spiking 

activity [2]. It is thought that the former is contained in the 

low range of the frequency spectrum, whereas the latter 

appears in the high frequencies [3]. That’s why the usual cut-

off frequency used for separating these two kinds of activity 

via low-pass filtering is 100 Hz [4]. 

Both LFPs and spiking activity carry a wide spectrum of 

activity patterns, most of which remain to be identified and 

established. However, in what particularly concerns the 

content of the LFPs, an established pattern observed in the 

LFPs of the STN of parkinsonian subjects is the dominant 

high, sharp peak in the beta band [5]. This is thought to 

reflect the pathological behavior of the basal ganglia and the 

STN in particular, in Parkinson’s disease. Functionally, it is 

associated with the kinetic problems characterizing 

parkinsonian subjects, as it is thought to be produced by the 

mechanisms generating the characteristic kinetic stiffness. 

Moving from the facts about the LFPs towards a modeling 

perspective, these mechanisms are simulated in order to 

reproduce the beta peak in various frequencies, providing 

insights about both the signals and the underlying 

functionality. This is described in a recent work [6], where 

the authors present a biologically plausible population level 

model of the basal ganglia that generates LFPs of the STN. 

The model has provided indications concerning the role of 

the duration and the amplitude of the post-synaptic potentials 

(PSPs) in the pathophysiology of Parkinson’s disease. At the 

same time, the simulations have revealed the conditions 

under which the LFPs of the STN express a high peak in the 

beta band and the root mechanistic cause for that. 

Using this model, the present work aims at taking 

advantage of actual recorded LFP data to constrain the 

model’s critical parameters of PSP amplitude and duration. 

This is performed in order to fit its reproduced LFPs of the 

STN to the recorded ones, which express the characteristic 

beta band peak. To achieve that, five different optimization 

algorithms are combined with two distinct measures of 

distance (error objective functions) between LFPs. The 

actual recordings have been derived from seven parkinsonian 

subjects having undergone the DBS surgical procedure. In 

the following sections, we first describe in detail the 

acquisition procedure and the selected recorded signals for 

the fitting. Then, a brief presentation of the population level 
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model of the basal ganglia is given, followed by the fitting 

methodology used. Finally, the results and the conclusions of 

this work are summarized. 

II. RECORDED LOCAL FIELD POTENTIAL SIGNALS 

The recorded signals that we used to fit the output of the 

model to have been derived by the typical recording 

procedure generally outlined in the introduction. 

Specifically, the signals are acquired by means of an array of 

five microelectrodes in cross formation (known as Ben Gun) 

[7], entering in parallel into the brain tissue. The different 

electrodes are referenced by an anatomical term indicating 

position, namely Central, Anterior, Posterior, Lateral and 

Medial. The distance between the tips of the peripheral 

electrodes from the central is 2 mm. The original sampling 

frequency of the recordings is 24 KHz and their duration 10 

s. The line grid of the points in the brain where recordings 

actually take place varies for each subject, but there is a 

general pattern that dictates a range between -4 mm and +2 

mm (the reference is the pre-determined theoretical target 

inside the STN considered to lie at 0 mm). The usual 

intermediate stops of the electrode tips are at -3, -2.5, -2, -

1.5, -1, -0.5, 0, +0.5, +1, +1.5 mm points. At each of these 

positions, usually 2 recordings are performed. Therefore, a 

total of 24 recordings are generated for each one of the five 

electrodes in the array, providing a total of about 120 

recordings for each subject.  

For each set of recordings, not all of the acquired signals 

are originated from the STN. In practice, the exact 

distribution of the brain sources producing the signals 

depend both on the specific line grid used for the recordings 

and on the insertion angle of the electrodes. The electrode 

that produced the recording matters as well, because the 

labeling of the points follows the Central electrode’s course. 

Finally, the individual anatomy of each subject plays 

important role as well. In spite of these, it is expected that 

the probability of a recording to origin from the STN gets 

higher when it corresponds to points closer to the 0 mm 

point. Thus, since in this work we are interested in 

recordings from the STN that exhibit a dominant beta peak 

in their power spectral density (PSD) function, we limit our 

exploration to the recordings from the Central electrode in 

the range of -2 to +2 mm points, analyzing them in terms of 

their PSD function. Eventually, we end up in selecting one 

representative recording from each subject (denoted by s33, 

s36, s42, s50, s51, s52, s54), acquired from the Central 

electrode in positions that are summarized in the legend of 

Fig. 1. In that figure, the PSD functions of all the seven 

selected recordings are depicted. It is interesting to observe 

that each recording exhibits the characteristic peak in 

different frequency points, though all lying in the beta range 

(from low beta: 15 Hz, to high beta: 35 Hz). Also, although 

not presented here due to space limitations, from the overall 

available recordings we have noticed that the beta peak, 

when present, persistently appears at the same frequency 

point for all the recordings from the same subject. That 

indicates a quite interesting personalized pattern for the exact 

point of the peak. 

III. THE POPULATION LEVEL MODEL OF THE BASAL 

GANGLIA 

The full description of the population level model of the 

basal ganglia, on which the present fitting approach is 

based, is out of the scope of this work. However, we 

provide a brief report, focusing on the properties of the 

model that are mostly relevant to the fitting to LFP data. 

The modeling formulation is based on the early works 

of Lopes Da Silva [8], [9], Freeman [10] and Zetterberg 

[11]. They have suggested a methodology with which 

rhythms of the cortical structures can be modeled and 

explained. Recently, Wendling et al. [12], [13] have also 

used that methodology to generate depth-EEG signals in 

epileptic states. In our previous work, we have adapted the 

methodology to model the basal ganglia’s LFP generating 

mechanisms, incorporating all major nuclei and an 

extensive set of pathways [6]. A block diagram of the 

model is presented in Fig. 2.  

The primary output of the model is the LFP activity 

from the STN, while at the same time the firing rates of 

the nuclei over time are obtained. The model is governed 

 
Fig. 1.  PSD functions of the seven selected LFP recordings, one from 

each subject. Subject’s identifier is presented above the corresponding 

trace. These PSD functions are the targets for model fitting. The 

respective position of the central electrode for each recording is: s33 0, 

s36 -1, s42 0, s50 0, s51 -0.5, s52 +1, s54 -0.5 (all in mm).  

 

 

Fig. 2.  Block diagram of the population level model of the basal 

ganglia that is fitted to the PSD of the recorded LFP recordings. 

 



  

by a total number of 52 parameters, 17 of which control 

the excitability of the populations, 11 are synaptic 

constants and 24 are related to the amplitudes and the 

durations of the post-synaptic potentials (PSPs) of each 

synaptic pathway. The latter are considered to be the 

critical parameters, being affected by the lack of dopamine 

taking place in Parkinson’s disease [14]. Under that 

condition, the desensitization of dopamine receptors leads 

to intensification (D2 receptors) or dampening (D1 

receptors) of the PSPs. Through the simulations of the 

model, it is shown that it is this modification of the values 

of all the synaptic parameters that consists the critical 

alteration leading to the parkinsonian state. The latter is 

identified by the expressed beta peak in the model 

generated LFPs and the consistent to clinical observations 

firing rates of all the nuclei. 

 Because of this significance of the synaptic parameters, 

we have chosen these to be the set of free parameters for 

fitting the model’s output to the recorded LFPs. The 

model is mathematically equivalent to a set of 24 

differential equations, thus fitting to 24 free parameters is 

a feasible task. 

IV. FITTING METHODOLOGY 

The fitting approach is based on the measurement of the 

error between the recorded and the predicted signals from 

the model. This error is normalized in the [0, 1] range and 

corresponds to a distance estimation, which is attempted 

to be minimized by means of several optimization 

algorithms. As error measures, we have selected two 

different objective functions: the Root Mean Squared 
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of the signals (thus, both methods work in the frequency 

domain). The PSD functions of both actual and simulated 

LFPs are obtained by the Welch’s modified periodogram 

method. Also, because we focused our approach at 

reproducing the beta band peak, we only considered the 

range of frequencies up to 45 Hz.  

The optimization algorithms used are a mesh-adaptive 

direct search algorithm [15]-[17], the classic genetic 

algorithm [18]-[21], simulated annealing [21]-[23], and 

two combinations of the genetic algorithm and simulated 

annealing with the direct search algorithm. Bound 

constrains were used for all methods, reflecting the 

plausible physiological values of the free parameters. 

Details about the algorithms and the parameters used for 

each are summarized in Table I. The optimal set of values 

for the parameters of each method was decided by 

extensive performance evaluation trials. The fitting results 

obtained by different sets of parametric values were 

compared and the best set in terms of minimum and mean 

fit error was chosen for each method. The trials were 

performed twice, for both objective functions. Thus, some 

parameters had different values for RMSE and PCC 

methods. 

The constraining of the parameter of the allowed 

maximum function evaluations (or the maximum number 

of generations for GA) is referred as the computational 

budget of the methods. That is used to control the 

necessary time for the methods to be completed, according 

also to the time needed for the evaluation of the objective 

function. 

All the fitting procedures were performed in the Matlab 

7.5 environment and run in a standard desktop PC, with an 

Intel Core 2 Duo processor and 2 GB of RAM. Because of 

the stochasticity of the fit for each trial (imposed either by 

the algorithm and/ or the random selection of the initial 

point), we repeated each method 40 times, in order to 

increase the possibility of obtaining the best possible fit 

result. Every trial needed about half an hour to complete, 

so each case (determined by the optimization algorithm, 

the error estimation method and the specific LFP target 

used) took about 20 hours. Since there were 70 cases (5 

optimization algorithms x 2 error estimation methods x 7 

possible target signals), a total of 1400 computational 

hours were necessary, divided in two parallel threads, 

because of the use of the two-core processor.  

TABLE I 

FITTING METHODS 

METHOD PARAMETERS REFERE CES 

Direct-

Search  

Mesh 

Adaptive 

Algorithm  

(DS) 

Accelerate Mesh: Off (RMSE),  

On (PCC) 

Scale Mesh: On 

Mesh Tolerance: 10-4 

Function Tolerance: 10-5 

X Tolerance: 10-4 

Function Evaluations: 3000 

[15]-[17] 

Genetic 

Algorithm 

(GA) 

Populations: 2x50 (RMSE),  

1x100 (PCC) 

Selection: stochastic uniform  

Mutation: adaptive feasible 

Crossover: 80%, scattered, 5 elite 

individuals  

Migration: 10% both directions, 3 

generations 

Function Tolerance: 10-5 

Generations: 30 

[18]-[21] 

 

Simulated 

Annealing 

(SA) 

Initial Temperature: 1000 (RMSE), 

5000 (PCC) 

Temperature and Annealing 

Function: Fast 

Function Tolerance: 10-5 

Function Evaluations: 3000 

[21]-[23] 

 

GA+DS 

Parameters of the single algorithms 

with half function evaluations each 

(3000 total) 

 

SA+DS 

Parameters of the single algorithms 

with half function evaluations each 

(3000 total) 

 

 



  

V. RESULTS 

 The overall fitting results are initially concentrated 

according to the specific targeted LFP recording and the 

objective function used. Then, for each LFP, the set of 

parametric values giving both the best RMSE and PCC 

errors is selected. Table II summarizes the best fit result 

for each of the seven LFP recordings used, regarding the 

best error achieved and the method that led to that. Table 

III presents the methods’ mean errors of all trials for all 

cases considered. 

It turns out that the DS method produces most of the 

best fits (5/7). The rest two are given by the GA and the 

combination of SA with DS. Regarding the mean error of 

all trials, DS is the best for the RMSE, but is suffers a 

large error for the PCC objective function. The best in the 

latter case is the GA, which is not significantly worse than 

DS in the RMSE case. SA is second best for both RMSE 

and PCC. The combinatory schemes are worse in all cases. 

In order to further analyze the performance of the 

optimization methods and probably select one of them, we 

must take into account the factor of computational budget 

with which we performed the fitting trials. The reason of 

using it was on the one hand to benchmark the methods 

with strict computational requirements, implying an 

importance for this factor in selecting the best method. On 

the other hand, computational budget had a practical 

meaning, allowing all the series of trials not to need too 

much time to complete.  

Because of the special characteristics of each 

optimization algorithm, it is expected that the GAs are 

more likely to perform better if the budget is allowed to be 

increased. That is because DS follows a path towards a 

local minimum that is in most cases adequately 

approached by the given budget. No escape from that 

minimum is then feasible for DS. SA on the other hand 

follows the drop of the temperature parameter, which is 

always completed with the given budget. In contrast, GAs 

may continue seeking for a best local minimum throughout 

the evolution of generations, broadly covering the error 

hyper-plane with a diversity of different individuals. So, 

since GAs are good enough (if not best) for the given 

computational budget, they are more probable of giving 

even better results by loosening it. Considering also the 

ability of DS to find good fits (exhibiting a rather best-or-

nothing behavior), maybe the combination of GAs with 

DS could also be more productive with increased 

computational budget. 

Regarding the objective functions, PCC is more 

efficient, giving 4/7 best fits, although RMSE has been 

also proven capable of providing successful fitting results. 

GAs are the best with PCC, with GA+DS combination 

closely following, so it seems that the methods of GA with 

PCC and GA+DS with PCC are those that we will select 

for further work in trying to find the best possible fits. 

Regarding the present fitting results, the best fitted LFP 

PSDs for all subjects are depicted in Fig. 3. Despite some 

inaccuracies, fitting the model to every signal’s beta peak 

is successful, irrespectively of the exact frequency point of 

the peak in the beta range. That enables us to consider the 

model as being capable of reproducing the characteristic 

parkinsonian signs in a personalized fashion.  

Fig. 4 summarizes the sets of values of the parameters 

that produce the best fit to each of the seven selected 

actual recordings. Twenty-four (24) subplots are included, 

one for each free parameter that varies during the fitting. 

Any single subplot contains 7 distinct points, reflecting the 

value of the corresponding parameter for the best fit to 

each of the seven signals. Overall, it is evident that several 

parameters are driven to the range of pathological values 

for each subject. In fact, if we specifically consider the 

strength of the pathways by co-examining for each both 

the amplitude and duration parameters, in most cases at 

least one of these parameters is driven to pathological 

values. Therefore, since only the amplitude or the duration 

is enough for any pathway to be characterized 

pathological, most pathways do seem to turn pathological 

for the best fit to be achieved. 

In order to establish this tendency of the critical 

parameters, we also performed two extra series of trials 

where we bounded either the amplitude or the duration of 

the synaptic pathways within the range of normal values. 

Using only the best fitting method in each case, as derived 

by the full approach, it turned out that in this way the 

model is never getting successfully fitted. The final errors 

of the trials kept being high and the traces were far from 

expressing any match to the actual PSDs.   

TABLE III 

METHODS PERFORMANCE 

LFP 
Mean RMSE 

(0-100, 40 trials) 

Mean PCC  

(0-100, 40 trials) 

 DS GA SA 

GA 

+ 

DS 

SA 

+ 

DS 

DS GA SA 

GA 

+ 

DS 

SA 

+ 

DS 

s33 4 3.7 10 5.3 12 76 10 22 13 33 

s36 23 21 22 21 22 56 45 49 53 51 

s42 2.7 2.8 8.2 3.5 10 57 1.6 12 2.6 18 

s50 9.8 9 15 11 17 43 9.7 32 25 46 

s51 7.6 7.9 11 8.7 12 65 13 23 17 29 

s52 5.2 5.4 10 5.8 11 55 7.5 18 8.6 24 

s54 8.3 12 15 12 16 51 22 30 34 41 

Avg 13.5    14     13.8   14.6   14.3 58 23 27 28 35 

 

TABLE II 

FITTING PERFORMANCE 

LFP 

BEST FIT 

RMSE 

ERROR 

BEST FIT 

PCC 

ERROR 

BEST FIT 

METHOD 

s33 0.0284 0.0165 DS RMSE 

s36 0.2284 0.3919 SA+DS PCC 

s42 0.0240 0.0084 GA PCC 

s50 0.054 0.0279 DS PCC 

s51 0.0664 0.0741 DS RMSE 

s52 0.0317 0.0166 DS PCC 

s54 0.0588 0.0684 DS RMSE 

 



  

 

 

 
Fig. 3.  The fitting results for all seven selected LFP PSD functions. Solid lines correspond to the simulated best fitted PSDs. Dotted lines are the 

actual recorded LFPs’ PSDs. Subject identifier is noted on the top of the traces. 

 

 
 

Fig. 4.  The values of the 24 free parameters after fitting to each LFP PSD function. For each subject, the best achieved fit is considered. In the 

subplots’ titles, A stands for amplitude and D for duration. The limits of the vertical axes correspond to the bounds of the values of each parameter 

during fitting. The middle value is considered to be the transition point from the normal to the pathological range. In all but the two D1 subplots, the 

lowest value is the normal one, while the highest is the extreme pathological. Seven points are drawn in each subplot, each one giving the best fitted 

value of the presented parameter for the corresponding LFP.  

 



  

VI. CONCLUSIONS AND FURTHER WORK 

The importance of this work lies at the direct linking of 

neurophysiological data from a relatively high level of 

description, such as the LFPs, with a biophysically 

plausible model that can reveal indications about the 

pathophysiology of the basal ganglia. So far, from what is 

presented in this work, we can conclude the following: 

• The utilized population level model of the basal 

ganglia is able to reproduce the characteristic beta band 

peak. 

• The reproduction can be achieved for various 

frequency points in the beta range, suggesting that the 

model can be used for personalized approaches. 

• The beta band peak can only be expressed if the 

critical parameters are allowed to take values within the 

assumed pathological range. That is determined by 

modifying the normal values of amplitudes and 

durations of the PSPs, according to the hypothesized 

effect of dopamine depletion.  

• The modification of the synaptic parameters is 

therefore crucial for the model to function in a 

parkinsonian-like behavior. This indication 

physiologically suggests a pivotal role of synaptic 

strength in Parkinson’s disease. 

Technically, further elaboration is necessary in order to 

finalize the obtained results, by driving the fitting 

procedures to their best potential. That was not the 

primary goal of this work, since the investigation of the 

approaches presented here demanded the exploration of 

several possible tools and algorithms. Concluding about 

the methods used, we can note the emergence of some 

best guidelines: 

• Both RMSE and PCC error estimation methods are 

efficient, but PCC is preferable. 

• Genetic algorithms are on average the most efficient 

optimization method, but direct-search algorithm 

provides most of the best fit results. 

• The combination of genetic algorithms and direct 

search bears the best potential for leading to the best 

possible fits. 

Further work will be consisted of loosening 

computational budget’s requirements and narrowing the 

selection of algorithms. That will enable the finding of the 

best possible fit to each LFP signal, making more reliable 

the final best fitted values of the parameters and the 

analysis of their specific contributions to the position of 

the beta peak in frequency. Another way that remains to 

be explored is the fitting in the time domain, which may 

extend and complete current approaches’ conclusions.   
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