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Abstract— Retrieving similar images from large repository of
heterogeneous biomedical images has been a difficult research
task. In this paper, we develop a retrieval system that uses
Haar features as its weak classifiers and builds strong training
models using the adaboost algorithm. Our system is trained for
each image category separately and the final boosted model is
stored during the training phase. In the test phase, the most
similar images for a given query image are computed using
these boosted models. The main advantages of the proposed
system are (1) cheap computation of the most relevant features
for each image category and (2) fast retrieval of similar
images for a given query image. Using performance metrics
such as sensitivity and specificity, our results demonstrate the
robustness and accuracy of the proposed system.

I. INTRODUCTION

Understanding the medical anatomical structure and ex-
tracting features for the retrieval of similar images from large
heterogeneous databases has been a challenging research
task. For expediting medical and clinical analysis, a new
approach to improve the efficiency of content-based medical
image retrieval task is developed in this paper. A typical radi-
ology department generates between 100,000 to 10,000,000
images per year [13] and the creation of the large digital
image databases increased by the recent advances in PACS
(Picture Archival and Communications System) system [15].
A comprehensive survey on this topic about the usage of
various imaging techniques and evaluation measures that are
appropriate for the retrieval task is reported in [13], [16].

From the biomedical imaging point of view, there are wide
range of applications that are being developed in image-
producing departments such as Pathology, Hematology and
Dermatology etc. In Pathology, most of the work has been
done on color changes and texture of microscopic images.
In Hematology department, machine learning techniques
have been applied for discriminating normal and abnormal
blood cells. Although, many of these applications focus on
detection and classification tasks, only a few of them have
explored the use of advanced machine learning and data
mining for image retrieval tasks. A fast retrieval system that
can help the medical experts to identify similar images and
organize massive collection of images in a systematic man-
ner, will tremendously benefit the biomedical community.
Researchers have also developed systems for specific tasks
such as retrieving similar pulmonary nodules in Computed
tomography images [9].
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In general, retrieval systems must be able to retrieve and
rank similar images (with respect to a query image) in
almost real-time. Also, such a retrieval engine can afford
to take relatively higher training time to build models that
are specific to individual biomedical image categories. One
form of additive modeling, namely the AdaBoost(Adaptive
Boosting) has proven to be one of the most efficient off-
the-shelf classifier that works fast during the query-time. In
this paper, we present a boosting based training algorithm
and demonstrate its performance on six different categories
of biomedical images. The rest of this paper is organized
as follows: Section II gives some relevant background on
medical image retrieval problem and Section III gives some
basic information about the wavelet (Haar) features which are
primary components of our algorithm. Section IV describes
the boosting framework for retrieval and ranking of biomed-
ical images. Section V gives the experimental results of our
algorithm on real-world biomedical image database. Finally,
Section VI concludes our discussion with future research
directions.

II. RELEVANT BACKGROUND

Image retrieval had been a research topic since early
80s. Some of the most popular commercial image retrieval
systems are IBM’s QBIC (Query by Image Content) [4]
and Virage [1]. A comprehensive review of existing image
retrieval systems developed till date are given in [3]. In
spite of the extensive research in image retrieval, the field of
biomedical image retrieval is still at the stage of infancy. This
is mainly due to the fact that biomedical image data is not as
profuse as standard image dataset and usually the biomedical
images pose some other inherent challenges such as being
noisy. In recent years, more developments in the field have
resulted in the availability of medical data for public usage
and standardization of such medical databases is one of
the primary goals in the near future [2]. Our training and
testing datasets were collected from IRMA (Image Retrieval
in Medical Application) database1. IRMA [7], is one of
the few frameworks which provide a partial implementation
of image retrieval in biomedical applications. This system
uniquely classifies biomedical images and allows to test and
measure the performance of the classification [10]. We used
a subset of this database for training different categories of
images and Haar-like features were used to build models for
specific categories.

1courtesy of TM Deserno, Dept. of Medical Informatics, RWTH Aachen,
Germany.



One of the main problems for the retrieval task is to pre-
cisely define the representative features that define the visual
similarity based on the anatomical structures of different
categories of biomedical images. Grey level co-occurrence
matrices (GLCM) for extracting second order statistics from
an image were used successfully by Haralick [5], [6]. Some
of the other popular techniques include signal processing
based approaches for texture feature extraction using Gabor
wavelet filters [18], [12]. In this paper, we are more inter-
ested in reducing the retrieval time taken for a given query
image and thus, we applied boosting methodology to retrieve
medical images from large-scale databases in a robust and
efficient manner. We used Haar features which were origi-
nally proposed by Viola and Jones [19] for constructing a
face detector. Later, Lienhart et al. introduced novel rotated
haar like features [11], [8]. For the task of image retrieval,
boosting framework was originally developed by Tieu and
Viola [17]. The framework proposed in this paper has two
main advantages:

• The system is generic and can be used for a wide range
of biomedical applications such as retrieving tumor
images (assuming that appropriate training images are
provided). This is a task-dependent system and it is not
sensitive to any specific set of features used.

• The retrieval time taken is significantly lower compared
to other models proposed in the literature.

Fig. 1. Block Diagram of a Bio-medical Image Search Engine.

The block diagram of our biomedical image search engine
is shown in Fig. 1. A robust training (boosting) algorithm
is used to build a trained model that can effectively classify
each category of biomedical images. For a given query image
during the testing phase, the corresponding trained model
contains the most relevant features and computes/displays
the similar images to the end-user. Finally, the system is
evaluated using standard information retrieval metrics such
as sensitivity, specificity and accuracy [20]. Performance of
this system significantly depends on the informativeness of
each feature. Also, the feature extraction module that we
used in our work is robust enough to subtle variations and
other affine transformations such as rotation and scaling.

The key steps of building a biomedical image retrieval
system developed in this paper are as follows:

1) Efficient extraction of simple wavelet (Haar) features.
2) Application of boosting based training algorithm to

model each biomedical image category.
3) Computation of the most similar images (with respect

to a query image) from the image repository using the
boosted Haar feature values and their weights.

III. BOOSTED HAAR FEATURES

One of the main reasons of using the Haar features in
the proposed system is the relatively lower computational
time taken to compute these features. This section deals with
efficient computation of these Haar features for an image.
Compared to other popularly used features such as Gabor
features, Haar features are much cheaper to compute. Recent
work in the literature has demonstrated that Haar wavelets
are powerful image features for object recognition [19]. The
two-dimensional Haar decomposition of a square image with
n2 pixels consists of n2 wavelet coefficients, each of which
corresponds to a distinct Haar wavelet. The basic Haar like
features was first presented by Viola-Jones and later on
enhanced feature set containing rotational features was pre-
sented by Lienhart and Maydt [11]. In our system, we used
Intel@OpenCV library, which is a library of programming
functions mainly aimed at real-time computer vision [14].
The library supports extensive image manipulation functions
as well as detailed implementation of Adaboost functionality.
For the sake of completion and to make this paper self-
contained, we describe in detail the features that are are used
in our work. Fig. 2 shows examples of Haar features used
in our work. These features were taken from [11] and are
given as follows:

1) Four edge features,
2) Eight line features,
3) Two center-surround features.
The computation of number of features for a feature

window of size 24X24 is given by Eq. (1) and (2) for all
of the prototypes.
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For rotated features the computations will be [11], [8]:
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Using feature prototypes in Fig. 2 and Eqs. (1) and (2),

the total number of raw features [11] within 24 X 24 image
sub-window can be calculated as shown in Table I. The
main computational advantage of using Haar features is
obtained by first computing the integral image which is an
intermediate representation of the simple rectangular features
of an image. If I(x, y) is the original image and the integral
image II(x, y) is computed by using the following equation:



(a) (b) (c) (d) (a) (b) (c) (d) (e) (f) (g) (h) (a) (b)
(1) Edge Features (2) Line Features (3) Center Features

Fig. 2. Feature prototypes of simple haar-like and center-surround features. Black areas are negative and white areas are positive weights. These features
were initially proposed in [11].

TABLE I
TOTAL NUMBER OF RAW FEATURES COMPUTED WITHIN A

SUB-WINDOW OF SIZE 24 X 24.

Feature w/h X/Y Number of
Type Features

1a : 1b 2/1 : 1/2 12/24: 24/12 43,200
1c : 1d 2/1 : 1/2 8/8 8,464
2a : 2c 3/1 : 1/3 8/24: 24/8 27,600
2b : 2d 4/1 : 1/4 6/24: 24/6 20,736
2e : 2g 3/1 : 1/3 6/6 4,356
2f : 2h 4/1 : 1/4 4/4 3,600

3a 3/3 8/8 8,464
3b 3/3 3/3 1,521

Total 117,941

II(x, y) =
∑

x′≤x,y′≤y

I(x
′
, y
′
) (3)

Fig. 3. Integral Image Computation: After integrating the pixel at (x, y), it
contains the sum of all pixel values in the shaded rectangle. The sum of the
pixel values in rectangle D is (x4, y4)− (x2, y2)− (x3, y3) + (x1, y1).

IV. BOOSTING ALGORITHM FOR FAST RETRIEVAL

We will now describe the training algorithm (see Al-
gorithm 1) which is based on the boosting methodology.
We train each category of images separately and store the
corresponding weights and the weak classifiers for each
classifier. For a given query image in the testing phase, the
system will identify the class to which it belongs to and then
retrieves the top-k ranked images from the image repository
based on these weak classifiers and their corresponding
weights for a particular category. In the standard Adaboost
framework, classification task is performed using several
weak classifiers which subsequently develop into stronger
models after certain number of iterations. We closely follow
the procedure developed in [19], where highly selective

Algorithm 1 Boosting for training
Input: Given example images (x1,y1),(x2,y2),..,(xn,yn)
where yi=0, 1 for negative and positive examples respec-
tively.
Output: Trained Model (H(x))
Algorithm:
• Initialize weights, D1(i) = 1

2m , 1
2l for yi=0,1 respec-

tively, where m=number of negatives and l=number
of positives respectively.

• For round t = 1, ........., T

1) Dt(i) = Dt(i)∑N

j=1
Dt(j)

(so that Dt is a probability distribution)
2) For each feature, j

ht = argminhj εj =
∑

i Dt(i) · I[yi 6= hj(xi)]
where

hj(x) =
{

1 if pjfj(x) ≤ pjθj

0 otherwise

3) Set αt = 1
2 log 1−εt

εt

4) Update:
Dt+1(i) = Dt(i)exp(−αtyiht(xi))

Zt

• The final strong classifier is:

H(x) =
{

1 if
∑T

t=1 αtht(x) ≥ 1
2

∑T
t=1 αt

0 otherwise

features are extracted from the pool of features by mini-
mizing the classification error. The error rate is computed
for each feature fj using the corresponding weak classifier
hj(x) based on a certain threshold value θj and polarity pj

(indicating the direction of the inequality sign) for all the
training samples (x1,y1),(x2,y2),..,(xn,yn).

hj(x) =
{

1 if pjfj(x) ≤ pjθj

0 otherwise

The feature which gives the lowest error rate amongst
all these features is selected corresponding to that weak
classifier (See Eq.(4)). A larger weight is associated with
better classification functions and a smaller weight with less
distinctive functions.

ht = argminhj εj =
∑

i

Dt(i) · I[yi 6= hj(xi)] (4)

After building the predictive models for each category, a



query image is given to the system and the algorithm will
assign a category using the H(x) value. In our implementa-
tion, we run the classifiers for each category independently
in a random order and the successive classifier is evoked
only when its predecessor assigns a negative class label to
the given query image. We also return the rank vector for the
correctly identified class, which delineates how similar the
training images are with respect to the query image using
the α values of that particular category. A rank function
calculates a complete ranking of the set containing the
training images with respect to the query image. The function
iteratively computes the similarity of the training images
from the query image and orders the training set based on
the similarity value, i.e. assigns the most similar image the
highest rank using the weights of the selected category. These
final results for each image in the particular category are
calculated by computing the summation of the product of α
and the outcome of each classifier for that particular image.

V. EXPERIMENTAL RESULTS

All our experiments were run in Visual Studio 2005 envi-
ronment on a Pentium IV 2.8 GHz machine. The evaluation
is done using metrics such as sensitivity, specificity and
accuracy. The sensitivity measures the proportion of actual
positives which are correctly identified, whereas, specificity
measures the proportion of negatives which are correctly
identified (given in Eq. (5) and Eq. (6)).

sensitivity =
True Positives

True Positives + False Negatives
(5)

specificity =
True Negatives

True Negatives + False Positives
(6)

Fig. 5. Sensitivity Analysis of Different Categories of Biomedical Images.

Our retrieval system is trained using six categories namely
chest, hand, skull, mammogram (mammo), elbow and pelvis
(see Fig. 4). During the retrieval phase, we run the query
images through a series of trained classifiers to acquire the
category to which the image belongs to. To demonstrate
the performance of our system, for each image category,

Fig. 6. Specificity Analysis of Different Categories of Biomedical Images.

we performed five-fold cross validation with 80% of images
from the repository for training and the rest of the images for
testing. We measured the system performance when trained
with only partial amounts of training data. The sensitivity and
specificity values are computed when only 20%, 40%, 60%,
80% and 100% images were randomly selected and used
for training in each category. Fig. 5 shows the sensitivity
values for all images in these categories. From this graph,
we can observe that as the number of images in the training
phase is increased, the true positive rate also increases. This
monotonically increasing behavior of the performance func-
tion denotes the fact that, as we incorporate more training
images into the system, it will become more robust and
performs better on test images. From the sensitivity graph,
we also observe that on an average 97% of the positive
images are classified as positive irrespective of the category.
Interestingly, it can be noticed that the chest and the hand cat-
egories reached 98% sensitivity after 80% of training images
whereas other categories (such as pelvis and skull) had lower
sensitivity values. Coincidentally, for these two categories,
we need relatively more images to train our system. Hence,
the sensitivity analysis will provide some valuable intuition
about the complexity of each image category. This might be
due to the fact that these categories contain noisy images
or images with either homogeneous texture. The specificity
graph (see Fig. 6) shows the percentage of total number of
negative images that have been correctly classified which is
usually around 98%.

TABLE II
PERFORMANCE COMPARISON OF SIX DIFFERENT BIOMEDICAL

IMAGE CATEGORIES.

Image No. of Training Test Accuracy
Category Features Data size Data size

Chest 63 956 239 0.981
Hand 49 389 98 0.976
Skull 188 319 80 0.954

Mammo 39 132 33 0.97
Elbow 55 188 47 0.972
Pelvis 97 201 51 0.952



(a) (b) (c) (d) (e) (f)

Fig. 4. Six different Categories of Bio-medical Images used in this paper. (a) Chest (b) Hand (c) Skull (d) Mammogram (e) Elbow (f) Pelvis

Table II gives the performance comparison of six dif-
ferent biomedical image categories. The number of fea-
tures extracted in each category during the training phase
is also reported. This gives an idea about the complexity
of the image category that is being considered. For more
complicated images (such as skull and pelvis), the number
of weak classifiers (or features) required for training is
larger. Since, we need to compute only few weak haar
features (less than 200 for any given category) during the
testing phase (compared to 117,941 features in the training
phase), the retrieval task does not consume a lot of time.
This is one of the main advantages of using this boosting
based framework compared to other traditional approaches
for biomedical image retrieval. Accuracy for each category
is also reported. One can observe that pelvis and skull
image categories have the lowest accuracy rates compared
to other categories, whereas the chest images have the best
performance compared to the other categories.

When the query image matches with the positive images
belonging to a specific class, it displays images from the
pool belonging to the retrieved category, with the highest
similar value based on our ranking function calculation.
In Fig. 7, we show top ranked chest images by using the
similarity algorithm. We also validated the classification
performance by testing the system with noisy and distorted
data and partially clipped images. These kinds of images,
if incorporated in the pool of test images, may result in
slight decline in the specificity and sensitivity values. Any
test image category that has not been incorporated in the
training pool prior to the testing phase may also trigger
false categorization of the query image. This may happen
due to substructure similarity between the query image and
the putative category of images that has been identified.
Fig. 8 shows an example of noisy and distorted skull query
image which retrieved the misclassified pelvis images from
the repository of training images. Due to space limitations,
we are unable to show the user-interface and other image
based query results of our system.

VI. CONCLUSIONS AND FUTURE RESEARCH

In this paper, we developed a novel biomedical image
retrieval system that uses boosting method for building
prediction models for different categories of biomedical
images. Haar-like features were used as weak classifiers

for the Adaboost algorithm which automatically selects the
most informative features in all the categories. Performance
measuressuch as sensitivity and specificity were used to
evaluate the efficiency of our system and more insights were
provided with respect to the images that are easy/hard to be
retrieved. As a continuation of this work, we will analyze the
features obtained by our boosting model for each category
and identify any correlation that exists between different
categories of images. A medical diagnosis system will be
developed by combining this image retrieval system the
data will be integrated with some other forms of patient
information.
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