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Abstract— Mid-IR spectral imaging is an efficient method to
analyze biological samples. Several research studies showed its
potential to diagnose cancerous tissues. However, some limi-
tations appear when formalin-fixed paraffin-embedded tissues
are studied due to the intense IR contribution of paraffin,
unless to perform a time-consuming and aggressive chemical
dewaxing. We propose in this paper to analyze the efficiency
of two digital dewaxing methods developed to remove the
paraffin influence on IR images acquired on a cancerous skin
sample. The first method is the Extended Multiplicative Signal
Correction (EMSC), which is a preprocessing step applied to
neutralize the IR contribution of paraffin. The second one,
previously developed for Raman spectroscopy of paraffined
tissues, is based on the Independent Component Analysis (ICA)
and the Nonnegatively Constrained Least Squares (NCLS).
ICA+NCLS permits to remove the IR spectral signature from
tissue spectra. Both preprocessing methods are compared on
the basis of K-means-clusterized IR images in respect to a
conventional histopathological staining. In conclusion, these
preliminary results show the efficiency of the preprocessing
methods; however ICA+NCLS has to be improved to get more
relevant outcomes.

I. INTRODUCTION

Mid-IR or FTIR (Fourier Transform IR) spectroscopy is

an optical technique based on the interaction between an

incident light beam and matter. If the energy of an incident

photon is near from the energy of a vibrational mode of

the sample, this photon is absorbed by the sample and the

transmitted light will present a decrease of its intensity at

the wavelength of the incident photon. An IR spectrum is a

recording of this transmitted light for a range of incident light

wavelengths and thus gives information about the vibrational

modes of the analyzed sample. The vibrational modes of a

sample depending on its molecular composition, the analysis

of an IR spectrum thus gives information about the molecular

composition and structure of the analyzed sample. This

technique has been applied in different fields, especially

in biomedical research for the identification of different

cancerous tissues [1].
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Since few years, IR spectroscopy has been extended with

an imaging system that provides hyperspectral images (e.g.

datacube). One image is reconstructed for each recorded

wavelength. In cancer research, this technical improvement

is used as a tool to localize precisely tumoral nests in the

surrounding normal tissue and could thus be developed as a

diagnostic tool in clinical oncology [2].

Due to subtle IR spectral differences between normal and

tumoral tissue, this task can not be easily realized by a visual

analysis. This is the reason why digital multivariate analy-

sis methods such as Principal Component Analysis (PCA),

which extracts the biological signal of interest, combined

with clustering or classification methods such as Hierarchical

Cluster Analysis (HCA), K-means or Fuzzy C-means (FCM)

[2] have been applied to IR images in order to automatically

discriminate the tumor.

However, when formalin-fixed paraffin-embedded biopsies

are studied, the paraffin signal has a huge contribution and

can lead to the failure of clustering methods. A recent study

[3] has demonstrated that a preprocessing of IR spectral

images based on the chemometric tool named Extended

Multiplicative Signal Correction (EMSC) [4], [5] neutralizes

the paraffin intensity variability. This method constrains the

spectral bands of paraffin to the same amplitude, meaning

that the paraffin spectral signature is not taken into account

in the K-means clustering process. Though the IR bands of

paraffin are still present in the recorded spectra, this method

can be assimilated to a digital dewaxing.

Recently, a digital dewaxing method based on the com-

bination of Independent Component Analysis (ICA) and

Nonnegatively Constrained Least Squares (NCLS), which is

here denoted as the ICA+NCLS method, has been developed

in order to efficiently remove the paraffin signal from Raman

spectra acquired on paraffin-embedded human skin tissues

[6]. This methodology has not yet been tested on IR spectra.

In this paper we analyze the effects of the ICA+NCLS

preprocessing method on the K-means clustering of IR spec-

tral images acquired on a human skin Basal Cell Carcinoma

(BCC) sample and compare the results to those obtained after

the application of the EMSC method.

The remaining of this paper is organized as follows.

Section II presents the raw dataset and the conventional

Hematoxylin-Eosin (H&E) -stained tissue section used for

histopathological diagnosis. Section III describes the pro-

posed ICA+NCLS preprocessing method initially developed



for Raman spectroscopy and the reference EMSC prepro-

cessing method. Section IV outlines the K-means clustering

algorithm. The clustering results obtained on the raw dataset

and after the application of the EMSC and ICA+NCLS pre-

processing methods are described and discussed in Section

V. We show that both methods give similar results, we

explain the reasons of such results and we propose some

future extensions of the ICA+NCLS method in order to

be adapted to FTIR spectroscopy. Finally, the last Section

concludes the paper.

II. RAW DATASET

The study has been performed on a ten micron-thick sec-

tion of formalin-fixed paraffin-embedded superficial human

skin BCC provided by the Pathology Department of Reims

University Hospital (Reims, France). An adjacent section has

been H&E-stained for histopathological recognition and a

visible image of this stained section is shown in Fig. 1.

Visual morphology reveals two tumoral areas (outlined) and

the normal tissue which is composed of the epidermis (*)

and the dermis (+).

Fig. 1. H&E-stained section of a superficial human skin BCC sample (∗
epidermis, + dermis, BCC is outlined).

An IR spectral image has been collected with a Spectrum

Spotlight 300 FTIR Imaging System coupled to a Spectrum

One FTIR spectrometer (Perkin Elmer Life Sciences, France)

using the transmission mode. This system provides a spectral

resolution of 4 cm−1 and a spatial resolution of 6.25 µm.

Each spectrum composing the spectral image (e.g. the dat-

acube) has been recorded in the wavelength region 900-1800

cm−1 since it is the most informative region. As acquisitions

are made in the XY-plane defined by the sample, the datacube

is composed of 104 spectra along the x-axis and 61 along the

y-axis at 451 different wavenumbers. Then, the datacube is

unfolded into a matrix format since the spatial vicinity is not

taken into account by preprocessing or clustering methods.

The initial transmittance (T ) spectra were converted in

absorbance (A) using the following formula: A = − log
10

T .

Characteristic IR spectra of paraffin and paraffin-embedded

BCC are shown in Fig. 2. The paraffin IR spectrum is

composed of three main bands (labeled ’p’) localized at

1378, 1463 and 1471 cm−1 with an overlapping of the two

last ones. The tissue spectrum is mainly composed of two

large bands localized around 1540 and 1650 cm−1.
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Fig. 2. Example of absorbance IR spectra acquired on the superficial BCC
sample. Solid line: from a region where there is paraffin and BCC tissue.
Dashed line : from a region where there is only paraffin. The characteristic
bands of paraffin are labeled with ’p’.

III. PREPROCESSING

All acquired IR spectra were preprocessed by two different

methods in order to digitally remove or neutralize the paraffin

signal from each recorded spectrum. The preprocessing is

necessary to take into account only the underlying human

tissue IR spectrum in the clustering K-means step. The first

method, EMSC, does not remove the paraffin spectrum but

neutralizes its contribution in each recorded spectrum. The

second method [6] developed for Raman spectra extracts the

paraffin contribution. This method is based on the successive

application of preprocessing steps and source separation

techniques such as ICA and NCLS.

A. EMSC

Commonly, the EMSC method [4] is used to separate

and to characterize physical and chemical information in

spectra from IR microspectroscopy. This method is useful

for applications in FTIR spectroscopy [5] where the scatter

(physical) variance in spectra changes with the chemical

variance in the sample set. In our study we adapt the EMSC

model for correcting mid-IR spectra from the contribution

of the paraffin signal [3]. The dataset estimation for the

spectral image was chosen as the average spectrum within

the image. Light-scattering effects were modeled by a fourth-

order polynomial function. This choice gives the best result

in terms of K-means clustering for our dataset. Due to the

paraffin heterogeneity, the paraffin contribution was modeled

by PCA to keep the maximum variance in the paraffin dataset

while reducing the amount of data. The 10 principal compo-

nents with the highest eigenvalues were then introduced in

the EMSC model [3]. The result given by EMSC followed

by a clustering step will be considered here as the reference

since this result has already been inspected by pathologists

and confirmed by the biomedical community [3].

B. ICA+NCLS

The ICA+NCLS method can be summarized by the fol-

lowing preprocessing steps:



1) Baseline removal: In IR spectra, the background, or

baseline, can be due to a scattering of IR beam caused

by heterogeneities in the solid, the external light or the

source of non-specific absorption. Subtracting the estimation

of the background from the raw spectrum leads to a more

interpretable signal. This step also allows the application of

source separation methods such as ICA since the dataset can

be modeled as a linear mixing of spectra of constituents [7].

In our study, the background was estimated and modeled

by a polynomial function of order O. The coefficients

were estimated by the minimization of a non-quadratic cost

function [7], [8]. The choice of the polynomial order depends

on the considered application. In our case, the order O =

7 provides the best K-means clustering result. Then, the

estimated backgrounds were removed from the raw data.

2) Correction of peaks misalignment and width hetero-

geneity: Due to the limited spectral resolution of the spec-

trometer, the position of each IR peak of paraffin is affected

by a shift that is different from one recorded IR spectrum

to another. Note that the shifts are random and usually

smaller than the spectral resolution. A method based on

the computation of the intercorrelation function between a

reference peak and a peak to be aligned has been used to

correct these nonlinearities [6], [7].

In addition, a variability of the width of each intense

IR paraffin peak from one acquisition point to another is

observed. A method based on a convolutive transformation

of peaks [6], [9] was used to homogenize the peak width.

Once the IR spectra peaks were corrected from these mis-

alignments, the ICA+NCLS method was applied.

Note that these corrections are not required by EMSC

since this method does not remove the paraffin spectrum but

neutralizes its influence on the recorded data. However, these

corrections are mandatory for source separation techniques

such as ICA or NCLS. These methods are based on a linear

mixing of spectra of constituents meaning that each spectrum

exists at different concentrations in the recorded dataset. A

shift in position or a width deformation of the peaks of paraf-

fin will influence the result of source separation techniques

and, consequently, the result of a K-means clustering.

3) ICA: The ICA method was used to estimate the

paraffin spectrum from the spectral image [10], [11]. The

aim of ICA is to estimate unknown sources (spectra in our

case) from observations by supposing that these sources are

independent and mixed linearly. A first step, assimilated to

the well-known PCA, is used to extract decorrelated spectra

from the observations. This is used to reduce the dimension-

ality of the dataset by keeping only the first decorrelated

spectra, which can be viewed as a denoising of the data.

In a second step, independent spectra are estimated from

the decorrelated ones. Different approaches can be used to

carry out this step [11]. We have chosen here the Joint

Approximate Diagonalization of Eigenmatrices (JADE) algo-

rithm [10], which consists in jointly diagonalizing cumulant

matrices extracted from the fourth-order cumulant tensor

of the decorrelated spectra. The ICA method was applied

uniquely on pure paraffin spectra extracted from tissue-free

regions of the paraffin-embedded BCC section. These spectra

were automatically selected by computing the relative energy

of the human tissue band around 1650 cm−1 in respect to

the global energy of recorded spectra (see Fig. 2). A low

value of this relative energy at a specific acquisition point

means that there is only paraffin on the biopsy at this point.

One independent source was finally estimated by ICA. It

is important to notice here that three different independent

components are necessary to model the paraffin signal in

Raman spectroscopy since it is composed of 7 thin and

intense peaks. In IR spectroscopy, the paraffin signal is less

complex since it is composed of only one small band and

two overlapping bands and only one independent source is

thus required to model it. The spectrum of paraffin estimated

by ICA on a region that does not contain any information

related to the human tissue is represented in Fig. 3(a).
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Fig. 3. The paraffin (a) and human tissue (b) spectra, extracted by ICA
and by NCLS respectively.

4) NCLS: Once the signal of paraffin is estimated by ICA,

it must be subtracted from each spectrum of paraffined tissue.

We have chosen here to use the NCLS method [12], which

is a spectral unmixing technique that aims at estimating

the concentrations of known spectral signatures in measured

linear mixings. A spectrum of the human tissue estimated

by NCLS on a zone that contains the tissue embedded in

paraffin is represented in Fig. 3(b).

IV. K-MEANS CLUSTERING

K-means clustering is a nonhierarchical and non-

supervised clustering algorithm [13]. It is also a ”hard”



clustering method because the membership value of each

datum to its cluster center is either zero or one. The aim

of the K-means algorithm is to minimize a squared-error

objective function, based on the Euclidean distance between

the datum and its center. In our study, for the first iteration,

k spectra (k being the number of clusters selected by the

user) were chosen randomly and the algorithm computed the

distance between those k spectra (initial cluster centers) and

the remaining dataset. Spectra closest to a particular cluster

center were grouped into the same cluster. Then the new

cluster centers were computed by averaging spectra for each

cluster and a new reassignment was processed. The algorithm

stopped when no more spectra changed clusters.

K-means clustering has been preferred to other techniques

such as hierarchical clustering or fuzzy C-means [2], [3]

because it is the computationally fastest, easiest and most

popular clustering method. K-means maps were calculated

several times after the EMSC and ICA+NCLC preprocess-

ings to make sure that a stable solution was reached indepen-

dently of the k initial spectra. The number of clusters was

set to 11 in agreement with previous studies [2], [3].

V. RESULTS AND DISCUSSION

Data processing was realized with programs written in

Matlab 7.2 (Mathworks, Natick, MA) running on a AMD

Athlon 64 (2.23 GHz) with 1 GB of RAM. The EMSC and

ICA+NCLS preprocessing steps followed by the K-means

clustering require around 2 and 10 minutes respectively.

These different computational times are due to the different

methodological principles of these methods. The ICA+NCLS

method is unsupervised as only the recorded IR image and

the wavenumber position of paraffin bands are required to

construct the paraffin model. On the contrary, the EMSC

method is supervised because an IR image of a pure paraffin

block must be recorded independently from the considered

experiment in order to model the paraffin signal with PCA.

Furthermore, the ICA+NCLS method is based on succes-

sive non-linear corrections of the recorded spectra, which

are computationally expensive. On the contrary, the EMSC

method is based on a linear model of recorded spectra. A

final difference between the two preprocessing steps is that

the EMSC-like method neutralizes the paraffin signal by

roughly imposing the same paraffin contribution to every

recorded spectra. On the opposite, the ICA+NCLS method

removes the paraffin signal from each recorded spectrum in

order to have access to the underlying skin signal, which

is computational more expensive since the contribution of

paraffin must be estimated in each recorded spectrum.

We present here the results of K-means clusterings ob-

tained on the raw dataset and after the two preprocessing

steps. The cluster map obtained on the raw dataset is depicted

in Fig. 4. As we can see, it is not possible to dissociate the

different parts of the human skin: epidermis and dermis. The

use of the non-preprocessed spectra leads to an unexploitable

cluster map. A preprocessing step is thus mandatory.

On the superficial BCC human skin section, satisfactory

results of the K-means clustering after the EMSC prepro-
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Fig. 4. K-means clustering on the raw dataset of the superficial BCC
without any preprocessing.

cessing were obtained (Fig. 5). The efficiency of the EMSC

model was already shown in previous studies [3]. Indeed,

the spectral clusters correspond to the main histological

structures visible on the H&E-stained section (see Fig. 1). We

can identify two tumor sites represented by yellow and dark

blue colors (Fig. 5), but also the epidermis (dark red) and

the dermis (green, orange and cyan colors) layers. The red

and light blue clusters correspond to the stratum corneum.
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Fig. 5. K-means clustering on the BCC after the EMSC preprocessing. The
SEMSC point out the positions of 4 spectra preprocessed by this method
that are depicted in Fig. 7(a).

The first step of the ICA+NCLS method is a removal of

a background modeled by a polynomial function from the

raw dataset. The best estimation of the background has been

obtained for a polynomial order of O = 7. The corresponding

K-means map is shown in Fig. 6.
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Fig. 6. K-means clustering on the same BCC after the ICA+NCLS
preprocessing (baseline removal by a polynomial function of order O =

7 and completed by the correction of peaks misalignment and width
heterogeneity). The SICA point out the positions of 4 spectra preprocessed
by this method that are depicted in Fig. 7(b).



Compared to the cluster map obtained on the raw dataset

(Fig. 4), the ICA+NCLS method improves the K-means

clustering results (Fig. 6). Two tumor sites (yellow and dark

blue clusters) and the skin layers such as epidermis (dark red

color), dermis (cyan, green and orange color) and stratum

corneum (light blue color) can be distinguished.

From a general point of view, the two K-means clustering

images obtained after the EMSC (Fig. 5) and ICA+NCLS

(Fig. 6) preprocessings are equivalent because the same

biological structures (i.e. stratum corneum, epidermis, dermis

and cancerous tissues) can be extracted. A more detailed

analysis reveals however minor differences between these

two images. The tumor regions are differently represented by

the two clusterings. The left tumor region on the ICA+NCLS

K-means clustering image (Fig. 6) is larger than the one

preprocessed by EMSC (Fig. 5), and the opposite can be

observed for the right tumor region. Furthermore, the left

tumor region is composed of two imbricated clusters (yellow

and dark blue) and the right tumor region is mainly repre-

sented by only one cluster (yellow) on the ICA+NCLS K-

means clustering image (see Fig. 6). On the contrary, on the

EMSC K-means clustering image (see Fig. 5), the both tumor

regions are roughly composed of two juxtaposed clusters

(yellow and dark blue). In our opinion, imbricated clusters

give a more realistic model of the tumoral growth. However,

the EMSC clusters have a quite better spatial homogeneity

and better defined boundaries than the ICA+NCLS clusters

which give a more pixelized image. The shapes and struc-

tures of the tumoral clusters are thus different from one

preprocessing method to another.

The same remarks about the spatial homogeneity and

boundaries of the EMSC image (Fig. 5) and about the

heterogeneity and pixelization of the ICA+NCLS image (Fig.

6) can be made for the epidermis (dark red color) and dermis

(cyan, green and orange colors) clusters.

Another difference can be noticed for the stratum corneum.

It is represented by two distinct clusters (red and light blue

colors) on the EMSC K-means clustering image (Fig. 5),

while only one is necessary for the ICA+NCLS image (light

blue color, Fig. 6). A decomposition of the stratum corneum

into two clusters can be also obtained by increasing the

number of clusters. In our opinion, one cluster is sufficient to

describe this single part of the human skin, as it is obtained

after the ICA+NCLS preprocessing.

The most important difference between images depicted in

Fig. 5 and Fig. 6 is visible in their right top corner. For the

EMSC image (Fig. 5), the stratum corneum (light blue color),

the epidermis (dark red color) and the tumoral tissue (dark

blue and yellow colors) boundaries are well separated, while

only one red cluster is attributed to this gathering region

for the ICA+NCLS image (Fig. 6). This problem can be

explained as follows: paraffin is more concentrated in this

region and the IR bands of paraffin are much more intense

than in the other parts of the biological tissue. In spite of

the significant decrease of the paraffin signal, the digital

dewaxing by the ICA+NCLS method is not perfect and a

residual trace of paraffin still remains around 1465 cm−1 as

can be seen in Fig. 3(b). This trace is certainly a consequence

of the paraffin peak shape since around 1465 cm−1 there are

two adjacent superimposed peaks (see the zoomed window

of Fig.3(a)). Thus, in the red region of Fig. 6, the remaining

paraffin intensity is higher than in other parts of the tissue and

results in the estimation of one cluster specifically affected

to this region. This effect is not observed with the EMSC-

based preprocessing since the paraffin bands are fixed to the

same intensity and shape for the entire dataset.

We will now compare human skin spectra preprocessed

by the EMSC and ICA+NCLS methods. Four preprocessed

spectra depicted in Fig. 7, which belong to the different tu-

moral K-means clusters, have been extracted at the positions

pointed out by the arrows in Fig. 5 and Fig. 6.

(a)

(b)

Fig. 7. Spectra preprocessed by (a) the EMSC method (SEMSC ) and (b)
the ICA+NCLS method (SICA). S1 is in solid line, S2 - in dotted line,
S3 - in dashed line and S4 - in dash-dotted line.

The tumoral spectra from the EMSC model (SEMSC) are

very similar and the paraffin intense peaks have the same am-

plitude (Fig. 7(a)). On the contrary, the ICA+NCLS method

results in spectra that present spectral differences between the

tumoral clusters (SICA in Fig. 7(b)), especially in the 1100

cm−1 and 1550 cm−1 spectral ranges, where the differences

between two tumoral spectra are more significant (see the

two zoomed regions in the 1100 cm−1 and 1550 cm−1

spectral ranges in Fig. 7). Note that the same observation

can be done between other structures of the skin (results not

presented here).



In comparison to the EMSC step, it may seem contradic-

tory that the ICA+NCLS step increases the spectral differ-

ences between human tissues while the k-means clustering

results are not improved. It can be explained by some limita-

tions of the ICA+NCLS method when applied to IR spectra,

as visible on Fig. 7(b). First, edge effects due to the imperfect

baseline estimation and correction by a polynomial function

can be observed at lower and higher wavenumbers. Second,

a residual paraffin contribution remains in the preprocessed

spectra. These imperfections introduce errors which reduce

the weight of the spectral discriminant informations between

tissues during the K-means clustering step.

Future studies will focus on the correction of these effects

in order to improve the K-means results and keep the dis-

criminative spectral features highlighted by the ICA+NCLS

method. To correct these limitations and to separate prop-

erly the two adjacent superimposed paraffin peaks (see the

zoomed 1460-1470 cm−1 range in Fig. 3(a)), a derivative

preprocessing method should be tested in further experi-

ments. In addition, ICA may be replaced by a Bayesian

Positive Source Separation (BPSS) method [14]. Contrary

to ICA, BPSS is capable to estimate positive spectra that

might have a non-vanishing correlation, which means in IR

spectroscopy overlapped IR bands.

Another possible way of analysis is to consider the appli-

cation of the K-means algorithm to the spectra preprocessed

by the ICA+NCLS method in the 1100 cm−1 and 1550 cm−1

spectral ranges. Since this preprocessing method increases

the spectral differences between different spectra in these

spectral ranges, the clustering results should be improved.

Pathologists traditionally work on the H&E-stained image.

However, even for an expert, it is quite difficult to precisely

define the boundaries of the tumoral tissue. This may be due

to the existence of a transitional tissue between the tumor and

the normal tissue. In order to take into account the notion

of transition, it may be interesting in a future work to study

the application of fuzzy clustering methods.

VI. CONCLUSION

IR spectral imaging combined with digital data analysis is

a powerful tool to diagnose tumoral tissues. When the ana-

lyzed samples are formalin-fixed and paraffin-embedded, the

paraffin IR signal can interfere with a correct discrimination

of cancerous tissues. The influence of paraffin thus must be

neutralized or eliminated from recorded IR images. In this

paper, we have compared two digital dewaxing methods.

EMSC is a chemometric tool that neutralizes the paraffin

variability. A numerical dewaxing method based on ICA and

NCLS that has been especially developed for the dewaxing of

Raman spectra acquired on paraffin-embedded human skin

biopsies has been tested in this paper. After each of these

two different preprocessing steps, a K-means clustering has

been applied in order to discriminate the tumoral parts of the

BCC sample. The results show that EMSC is a well adapted

method to analyze IR images of paraffin-embedded tissues

even if it does not remove the paraffin signal. The method

based on ICA and NCLS is also very efficient even if the

clusters are less structured and homogeneous due to an im-

perfect removing of the paraffin signature from the recorded

spectra. Moreover, this preprocessing method increases the

spectral differences between clusters compared to the EMSC

method. The preliminary results are very promising, however

improvements of the ICA+NCLS method appear necessary

to get more relevant outcomes.
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