
  

  

Abstract—The most common radiographic manifestation of 
bacterial pulmonary infections are foci of consolidation which 
are visible as bright shadows interfering with the interior lung 
intensity. In critically-ill patients this interference can be severe 
leading to vague or invisible lung field boundaries which are 
difficultly distinguished even by experienced physicians. This 
problem is amplified if the radiographs are of low quality as 
obtained with a portable x-ray device, routinely used in 
intensive care units. This paper proposes a pioneering 
methodology that copes with lung field detection in both 
stationary and portable chest radiographs by combining 
statistical grey-level intensity information and directional edge 
maps. The boundaries of the lung fields are approximated by 
consecutive intuitively manipulated parametric curves. 
Conventional and state of the art lung field detection 
approaches address only stationary radiography, and only a 
few of them cope with pulmonary infections. The proposed 
methodology features unsupervised operation, it is not 
iterative, it is not limited by the patients’ positioning, and it is 
tolerant to the presence of consolidations and boundary 
discontinuities of the lung fields. Its performance is validated 
on various stationary radiographs and on a set of portable 
radiographs obtained from patients with bacterial pulmonary 
infections.  

I. INTRODUCTION 
ETECTION of the lung fields is usually the first and most 
critical step in computerized analysis of chest 

radiographs. Once the boundaries of the lung fields are 
known, further assessment of the condition of the lungs can 
take place.  

The first approaches to lung field detection begun to 
appear in the early sixties [1]. Since then, a variety of 
approaches have been proposed for automatic detection of 
the lung fields and approximation of their boundaries. The 
most popular methods rely on rules on the locations and on 
the intensity profiles of the anatomic structures in 
conjunction with image processing techniques such as 
contrast enhancement, edge detection, merging and splitting 
operations [6]-[10]. Other methods include machine learning 
algorithms [11]-[13], active shape models [14]-[17], and 
graph cuts [18]. 

Most of the afore-mentioned methodologies have mainly 
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been evaluated on radiographs of normal or minimally 
distorted lungs. Robustness against the presence of 
abnormalities that interfere with interior lung intensity has 
been demonstrated in [5],[15] using active shape models, 
and in [18] using graph cuts. However, the former are 
supervised, therefore they depend on the selection of a 
representative training dataset, whereas none of these studies 
provide or mention results from their application on diseased 
lungs with severe intensity distortions visible in the chest 
radiograph.      

This paper accepts the challenge to cope with automatic 
detection of the lung fields and approximation of their 
boundaries, even in severe cases of bacterial pulmonary 
infections. The most common radiographic manifestation of 
such infections are foci of consolidations, visible as bright 
shadows interfering with the interior lung intensity [2]. In 
critically-ill patients this interference can be severe leading 
to vague or invisible lung field boundaries which are 
difficultly distinguished even by experienced physicians [3]. 

Another important issue arising with the analysis of chest 
radiographs obtained from critically-ill patients is that most 
of them are acquired with a portable x-ray device in an 
uncontrolled environment. This is an unavoidable 
consequence as the patients are usually in pain and 
immobilized in bed. Therefore, portable radiographs are 
usually of low quality mainly due to misaligned body 
positioning during acquisition [3]. This fact introduces an 
additional degree of difficulty in their interpretation, 
subjecting to a higher misinterpretation rate.  

The proposed methodology is versatile, in the sense that it 
copes with lung field detection in both stationary and 
portable chest radiographs by combining statistical grey-
level intensity information and directional edge maps. The 
boundaries of the lung fields are approximated by 
consecutive intuitively manipulated parametric curves. In 
contrast to the supervised state of the art methodologies 
[5],[15], it features unsupervised operation, it is not limited 
by patients’ positioning as most other rule-based approaches 
do [6]-[10] and unlike edge-based methods [18] it is tolerant 
to boundary discontinuities which may arise from severe 
consolidations or low image quality.  

The rest of this paper comprises of three sections. The 
proposed methodology is described in Section II. Section III 
presents the results of its experimental evaluation on a 
variety of radiographs from various sources, and the last 
section summarizes the conclusions of this study.    
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II. METHODOLOGY 
Let I be a chest radiograph of size N×M pixels. 

Considering the case that the radiograph may have been 
obtained from a patient immobilized in bed, possibly in a 
skewed position, the proposed methodology assumes that 
the patient’s body may not necessarily be aligned with the x-
ray device. The lung field boundaries are determined using 
feature points efficiently detected on the surrounding 
anatomic structures, which remain unaffected by the 
presence of pulmonary bacterial infections. The feature 
points are then purified by a simple outlier removal 
mechanism, and used to control a parametric curve that 
approximates the lung field boundaries.    

A. Feature point detection 
Feature point detection is based on both statistical grey-

level intensity information extracted from the radiographic 
opacities and directional edge maps derived from I. As a 
first step the radiographic image is normalized to enhance 
the contrast of the visible anatomic structures. In the sequel, 
feature points are detected at the outer, the inner and the 
bottom boundaries of the lung fields.  

1) Spinal cord detection and feature points of the outer 
left and right lung field boundaries: The spinal cord and the 
bones of the ribcage are the densest structures visible in a 
chest radiograph [20]. Consequently they are mainly 
characterized by higher grey-level intensities than the other 
anatomic structures. The outer left and right lung field 
boundaries are defined by the ribcage sideways.  

In order to detect feature points on the spinal cord and on 
the ribcage sideways, radiograph I is uniformly sampled 
from top to bottom with sh non-overlapping rectangular 
windows of h×M, pixels, where h<N. For each sample an 
average horizontal profile, i.e. the average grey-level of its 
rows, per column, is estimated. Radiographic image profiles 
have been proved valuable in several radiographic image 
analysis tasks [1],[4],[6],[7],[10] as they provide a simple 
though effective means to navigating through a radiograph 
by using only one-dimensional information and elementary 
signal processing techniques. The proposed methodology 
utilizes horizontal profiles of subsequent image samples in 
order to obtain spatial instances of the radiograph from 
which the spinal cord and the ribcage boundaries are 
detectable even if the patient is bent. Figure 1(c) illustrates 
six of the nineteen profiles corresponding to the horizontal 
samples illustrated in Fig. 1(b). It can be easily noticed that 
the central peaks visible in profiles 1-16 correspond to the 
spinal cord. The two valleys around the central peak in 
profiles 4-16 correspond to the lung fields, whereas the 
peaks after these valleys correspond to the ribcage 
boundaries. Each profile is smoothed by following a moving 
average approach that facilitates noise insensitivity. The 
local maxima detected for each profile are illustrated as 
white points in Fig. 1(b). The localization of the maxima 
remains practically unaffected by the presence of 

consolidations, since their density, and therefore their grey-
level intensity, is generally lower than the density of the 
spinal cord and of the ribcage [1],[20].   

The next step aims to select possibly relevant maxima and 
to classify them into three sets: a) spinal cord points, b) 
points of the left side of the ribcage, and c) points of the 
right side of the ribcage. To this direction, sv non-
overlapping rectangular windows of N×w pixels uniformly 
sample the radiograph from left to right, and the average 
intensity of each sample is estimated. Considering a 
stationary or a portable chest radiograph that displays both 
the patient’s lungs, it is assumed that the spinal cord lies 
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(c) 
Fig. 1. Stationary chest radiograph from the IRMA dataset [19]. (a) 
Original image (serial no. 3166), (b) samples acquired and detected 
maxima, and (c) indicative profiles corresponding to the horizontal 
samples illustrated in Fig. 1(b).   



  

roughly somewhere in the middle of the image. This is 
implemented by assigning as candidate spinal cord points 
the ones bilaterally closer to the column with the maximum 
average intensity within columns [M/4] and [3M/4]. This 
column will be referred to as the central column C.  

Similarly, a left column L and a right column R are 
determined as the columns with the maximum average 
intensity between columns 0 and [M/4], and between 
columns [3M/4] and M, respectively. Considering the 
relative positions of the lung fields with respect to the spinal 
cord [7], the points closest to the left side of column [L+(C-
L)/2] are selected as candidate points belonging to the left 
side of the ribcage and the points closest to the right side of 
column R+(R-C)/2 are selected as candidate points 
belonging to the right side of the ribcage.  

The points assigned to the spinal cord are used by a 
selective thresholding algorithm to produce an auxiliary 
image for the detection of feature points defining the inner 
and bottom lung field boundaries. 

Selective thresholding algorithm. This algorithm aims to 
remove the intensities of the radiograph that statistically 
characterize the anatomic structures between and under the 
lungs, leaving the intensities of the lung fields 
approximately unaffected. It is based on the fact that each 
structure is characterized by a set of intensities depicting its 
density, and that many of these structures such as the bones 
and the diaphragm extend beyond the spinal cord region. 
The algorithm proceeds as follows:  

1.   For each point i of the spinal cord:  

 1.1  Acquire a sample of x2 pixels; 

 1.2 Calculate the intensity histogram 
hi of each sample and select the 
histogram components around its 
highest peak; 

 1.3  Accumulate the selected values 
from all samples into a single 
histogram H;  

2. Find the last non-zero component m of H; 

3. Generate a thresholded image T(I) from I 
as follows: 

 - Set the intensities of I that 
correspond to the non-zero components of 
H, to zero  

 - Set the intensities of I that are 
larger than m, to zero. 

The highest histogram peaks of a sample (step 1.2) 
correspond to the most representative grey-level intensities 
of that sample. This algorithm selects and removes only 
these intensities because part of the sample may contain 
intensities belonging to the lung fields. By acquiring 
samples from the whole spinal cord the most representative 
intensities of that region will be removed from the 
radiograph. It is worth noting that this algorithm removes 
also the heart and other structures of the mediastinum, since 

a significant part of them overlaps with the spinal cord. 
Consolidations that might be present in the lungs will remain 
almost unaffected as they are not likely to overlap with the 
spinal cord. 

The spinal cord points used in the sampling process as 
well as the output of the selective thresholding algorithm are 
illustrated in Fig. 2. It can be noticed that the interior of the 
lung fields remains almost intact.  

2) Feature points of the inner lung field boundaries: 
Given a thresholded image T(I), the inner lung field 
boundaries are likely to reside in the zero-intensity region of 
T(I) between the points of the spinal cord and the first non-
zero regions of T(I) in the horizontal direction. Considering 
that the spinal cord region is typically characterized by the 
highest grey-level intensities in I, the inner lung field 
boundaries will be more or less identifiable by their edges. 
These edges will be less prevalent in the region of the heart 
and in regions of consolidation that may be present next to 
the inner lung field boundaries. Moreover, in some cases, 
especially if the quality of the radiograph is low (e.g. due to 
a low dynamic range), the possibility of discontinuities in 
the edges of the inner lung field boundaries cannot be 
eliminated.   

In order to make inner lung field edges more prevalent, 
two directional edge maps are used, amplifying the left and 
right edges of I respectively. A map of vertical-left image 
edges Evl(I) and a map of vertical-right edges Evr(I) is 
obtained by convolution of I with the vertical-left 3×3 Sobel 
operator (having the negative signs on the left) and with the 
vertical-right 3×3 Sobel operator (having the negative signs 
on the right) [22]. 

The spinal cord points are linearly interpolated to form a 
continuous curve (the interpolation method is not critical at 
this step) and the feature points of the inner lung field 
boundaries are detected by the following algorithm: 

1.  For each point i of the spinal cord:  

  Move left to find the point of Evl(I) 
with the maximum intensity for which 
T(I) has zero intensity; 

2.   For each point i of the spinal cord:  

  Move right to find the point of Evr(I) 
with the maximum intensity for which 
T(I) has zero intensity. 

The thresholded image T(I) is used as a hard bound 
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Fig. 2. Selective thresholding. (a) Spinal cord points used in the 
sampling process, and (b) thresholded image T(I). 



  

protecting the feature point detection process from 
‘confusing’ the inner lung field boundary edges with the 
strong vertical edges present within the lung fields. 

This algorithm will produce many meaningful points over 
and under the lung fields, which will be filtered out during 
the parametric curve approximation process.  

Another important aspect of this algorithm is that the 
points detected lie at the inner edges of the lung fields even 
in the region overlapped by the heart. Consequently, the 
lung field boundaries approximated by the proposed 
methodology will include this heart region, behind which 
consolidations due to bacterial pulmonary infections can be 
found [2]. This is an additional feature of the proposed 
methodology over the current ones, which systematically 
exclude the overlapping heart region from the lung fields 
[1]-[13],[18]. 

3) Feature points of the bottom lung field boundaries: A 
similar approach can be applied for the detection of feature 
points at the bottom lung field boundaries. The application 
of the selective thresholding algorithm on I can lead to an 
image T(I) having most grey-level intensities below the 
diaphragms set to zero. Convolving I with the horizontal 
3×3 Sobel operator [22] a horizontal edge map Eh(I) is 
obtained. The algorithm for the detection of the bottom lung 
field boundaries proceeds as follows:  

1. For each column of I between the 
leftmost point of the left boundary and 
the rightmost point of the right 
boundary  

  Begin from row M-1 to find the point of 
Eh(I) with the maximum intensity for 
which T(I) has zero intensity. 

As with the previous algorithm, many of the points falling 
beyond the lung fields may be meaningful; however, these 
will be filtered out during the parametric curve 
approximation process.  

B. Removal of outliers 
Many of the feature points detected with the algorithms 

described in the previous subsection (Fig. 3a), are outliers 
which have to be filtered out so as to obtain a smoother and 
more accurate approximation of the lung fields.     

In order to purify the feature points of the outer left and 
right lung field from possible outliers, the grey-level 
intensity of each point is compared with the average 
intensity of the set of points assigned to the corresponding 
boundary. Only the points with grey-level intensities 
approximating the average are selected as valid. The rest are 
discarded based on the fact that the densities of the spinal 
cord and the densities of the ribcage do not vary 
significantly across the perpendicular axis of a radiograph. 

Similarly, outliers may reside within the points assigned 
to the inner and the bottom lung field boundaries detected. 
Correspondingly, a point is considered as an outlier if its 
horizontal or vertical position deviates from the average 

position of its k nearest neighbors.  
The detected feature points after removal of outliers are 

illustrated in Fig. 3(b).   

C. Parametric curve approximation 
   The feature points detected for each boundary are then 
interpolated using Bézier curves [21]. The Bézier curves are 
intuitively manipulated via a set the control points, in the 
sense that the curve is attracted by the internal control points 
without necessarily passing through them. This feature 
provides tolerance to the presence of outliers that may be 
remaining in the control points, and leads to smoother 
approximation of the lung field boundaries as compared 
with other interpolation approaches.  

Let P0, P1, …,Pn, be feature points detected for a lung 
field boundary. The boundary is then approximated 
according to equation 
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where ]1,0[∈t .  
Each lung field is approximated by three Bézier curves. 

The points beyond the intersection of each pair of the three 
curves are discarded. If the ending points are not intersecting 
they are extended so that they connect to each other. As a 
result, each lung field is approximated by three consecutive 
curves (Fig. 4).  

III. RESULTS 
The proposed methodology was evaluated with two sets 

of experiments. The first set, investigates its performance on 
various stationary radiographs obtained from a standard 
database, and a second set investigates its performance on a 
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Fig. 3. Feature points detected. (a) All points, (b) points remaining 
after removal of outliers. 
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Fig. 4. Lung field detection obtained using the proposed 
methodology: (a) before and (b) after discarding and connecting curve 
segments. 



  

harder set of portable radiographs. 
All radiographs used in the experiments have been 

digitized at 8 bits and have been downscaled to fit a 
256×256-pixel bounding box. The parameters used are: 
sampling windows of w=h, where 8≤h≤24, for local maxima 
estimation; sampling windows of x=32 for selective 
thresholding, and k=5 neighbors for outlier removal.  

The accuracy of the proposed methodology was 
quantified by the overlap between the automatically detected 
area a and a ground truth area g indicated by an expert [23]: 

     
ga
gaaccuracy

∪
∩

=  (2) 

The image processing algorithms used, as well as the 
algorithms presented in this study have been implemented in 
Java to take advantage of its cross-platform compatibility 
and the language’s ability to facilitate modular design.  

A. Stationary radiographs 
The stationary chest radiographs used for this set of 

experiments have been selected from the IRMA (Image 
Retrieval in Medical Applications) dataset. This dataset is 
often used as a reference for medical image retrieval tasks 
and contains arbitrarily selected anonymous radiographic 
images taken randomly from patients of different ages, 
genders and pathologies during medical routine. For the 
purposes of this study a random subset of 24 chest 
radiographs was selected. Radiographs in which the lung 
fields are partially absent have not been included in this 
subset.  

Provided that the appropriate parameters are set for each 
of the available radiographs the average accuracy achieved 
is approx. 98.4%. However, as fully automatic operation 
requires constant parameter settings, the average accuracy 
was measured for various values of h as illustrated in Fig. 5. 
The best average approximation accuracy achieved is 95.6% 
with h=10. Indicative output images obtained with this 
setting are illustrated in Fig. 4(b) and in Fig. 6. 

B. Portable radiographs 
Twenty four anonymous portable radiographs obtained 

from patients with bacterial pulmonary infections have been 
provided for the purposes of this study by the Chest Hospital 
of Athens “Sotiria” in the context of the European project 
DEBUGIT [24]. This dataset is quite challenging as in all 
radiographs the lung fields appear misaligned and distorted, 
they include consolidations “hiding” their boundaries, and 
contain dense external objects used for patients’ monitoring.     

The average accuracy measured using near-optimal 
settings for each radiograph reached 93.2%. The average 
accuracies measured for common values of h for all the 
available portable radiographs are illustrated in Fig. 7. The 
best average approximation accuracy achieved is 90.8% 
with h=9. An indicative output image obtained with this 
setting is illustrated in Fig. 8. It can be noticed that the 
approximation obtained is quite accurate although the 

original radiograph exhibits severe consolidations on the 
right lung field. The proposed methodology managed to 
detect the lung field boundaries without getting affected by 
the strong edges of the dark formation that corresponds to a 
non-consolidated area in the right lung field. Another 
important observation is that the region of the heart 
overlapping the lung fields has been included in the 
delineated region. Slight deviations from the correct 
boundaries can be observed only at the top of the right lung 
field where an external object attracted the curve, and at the 
bottom of the left lung field which is partially visible. 
Similar observations are valid for the rest of the dataset. 

IV. CONCLUSIONS AND FUTURE WORK 
This study presented a novel approach to lung field 

detection and boundary approximation in the presence of 
bacterial pulmonary infections, based on statistical grey-
level intensity information and directional edge maps. The 
initial results from its application on various stationary chest 
radiographs showed that its accuracy can be comparable to 
the accuracy of more complex state of the art methodologies 
without being dependent on some training data set [13].  

More importantly, the results from its application on 
portable chest radiographs validate its suitability for the 
analysis of portable radiographs, which is a challenging new 
area of research.  

In summary, the proposed methodology has the following 
features:  
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Fig. 5. Average lung field approximation accuracy obtained by the 
application of the proposed methodology on stationary radiographs 
using sampling windows of various heights h. 
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Fig. 6. Indicative results on another radiograph from the IRMA 
dataset [19]. (a) Original image (serial no. 3180), and (b) output 
images with detected lung fields. 
 



  

1) it is versatile, well-functioning on both stationary and 
portable chest radiographs, since it is not limited by the 
patient’s positioning.  

2) it is tolerant to the presence of consolidations and 
boundary discontinuities of the lung fields. 

3) it is unsupervised, in the sense that it does not require 
training;  

4) it does not exclude the region of the lung fields 
overlapped by the heart from its output, as current 
methodologies do, enabling the detection of 
abnormalities even behind the heart.  

Future work includes further experimentation with larger 
datasets and improvement of the robustness of the proposed 
methodology against factors affecting its accuracy. Such 
factors include the presence of objects used for the patient’s 
monitoring, and the absence of parts of the lung fields from 
the radiograph. The perspectives of this study extend to a 
broad spectrum of applications in computerized analysis of 
chest radiographs with special focus on robust automatic 
assessment of pulmonary infections 
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Fig. 7. Average lung field approximation accuracy obtained by the 
application of the proposed methodology on portable radiographs 
using sampling windows of various heights h. 

 

 
(a) (b) 

Fig. 8. Indicative results from the application of the proposed 
methodology on a portable radiograph with pulmonary infection. (a) 
Original image. (b) Output image with detected lung fields. 


