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Abstract— A computer aided diagnosis (CADx) system for
oral mucosal lesions has been developed using clinical cases
from India as training examples. The investigated classifiers
were Support Vector Machine (SVM) and Bayes Point Machine
(BPM), and the task was to discriminate potentially precancer-
ous lesions from non-precancerous lesions. The discriminating
features consisted of color differences and lesions’ shape prop-
erties. The overall classification accuracy was 85% (29 out of
34) for both SVM and BPM classifiers.

I. INTRODUCTION

Oral cancer is a serious condition which requires an early
detection for a successful treatment. An important part of
the clinical routine examination at the dentist is visual and
palpatory examination of the oral tissues. The goal is early
detection and discrimination of potentially precancerous le-
sions, in this way decreasing the oral cancer mortality rates.

Today the common practice at odontological clinics and
mobile registration units is the registration of human oral
cavity using still picture or video CCD color cameras. The
recorded images are stored to archive patient data, which
permits comparative follow-up of the clinical appearance of
a lesion from a longitudinal follow-up aspect.

The digital color images are not diagnostic, a biopsy is fre-
quently taken of lesional tissue and the specimen is examined
by an experienced histopathologist. The further process may
include the molecular DNA investigations [9][14]. Neverthe-
less, the recording and computerized analysis of true color
images is still important, as a cost-effective method for early
detection of suspicious lesions to be monitored.

One of the areas most suffering from oral cancer is South
Asia and in particular India, with around 100 000 oral cancer
cases each year [3]. In this work we have evaluated digital
true color images of human oral cavity, recorded on subjects
in the Indian population.

The images were evaluated with respect to color and
shape properties and we investigated supervised learning
algorithms for clinical decision making. The task was to
discriminate between potentially precancerous lesions and
the usually harmless lesions. The lesions and the results

Manuscript received July 15, 2008. This project was supported by SIDA
(the Swedish International Development Cooperation Agency), grant no.
SWE-2005-430.

A. Chodorowski is with the Department of Signals and Systems,
Chalmers University of Technology, Sweden, (e-mail: artur@s2.chalmers.se)

C. R. Choudhury is with Oral Biology and Centre for Oral Disease
Prevention and Control, AB Shetty Memorial Institute of Dental Sci-
ences, Deralakatte, Mangalore, India and International Centre For Tropical
Oral Health, Bournemouth University and Poole NHS, England, (e-mail:
cr_choudhury @yahoo.co.uk)

T. Gustavsson was with the Department of Signals and Systems, Chalmers
University of Technology, Sweden

were compared with the results of the previous study of
oral lesions among Nordic population [6]. Fig. 1 shows
examples of the recorded lesions: an Oral Leukoplakia and
Oral Submucous Fibrosis (OSMF), which are potentially pre-
cancerous lesions, and an Oral Lichenoid Reaction (OLR),
which is usually a harmless lesion. The pre-cancerous lesions
may develop into Oral Squamous Cell Carcinoma (OSCC).

Fig. 1. (left-upper) An oral squamous cell carcinoma (right-upper) oral
leukoplakia, a potentially precancerous lesion (left-lower) an oral submucous
fibrosis, potentially precancerous lesion (right-lower) an oral lichenoid
reaction, usually harmless lesion.

II. MATERIAL AND METHODS
A. Material

The material analyzed in this study was recorded at the
Institute of Dental Sciences, Deralakatte, India, and other
linked centers of the Institute. The digital true color images
were recorded using Kodak DX6490 digital still picture
camera, with typical resolution of 2304x1728 pixels. In
total, 34 images have been analyzed, 23 images of oral
leukoplakia, which is regarded as potentially precancerous
lesion, and 11 images of lichenoid reactions/lichen planus,
usually harmless lesions. The clinical diagnoses have been
histopathologically verified.

B. Image analysis

The regions of interest consisted of lesion area and the area
regarded as normal (healthy) tissue. The lesion area has been
marked semi-automatically using the live-wire technique [1].
The reason for a semi-automatic segmentation was to reduce
the delineation time and avoid inter- and intra-operator
variations. However, the fully automatic segmentation of the
lesions is still an unsolved problem due to the high variability



of the lesions’ appearance and lack of well-defined lesion
prototypes.

The local live-wire cost function C(p, q) from pixel p to
the neighboring pixel ¢ was defined as:

C(p,q) = wzfz(q) + we fela) +we fa(q) +wp fo(p, q)
ey
where fz(q), fc(q), fa(q) and fp(p,q) represent the
Laplacian zero crossing edge detection, Canny edge detec-
tion, gradient magnitude and gradient direction cost terms,
respectively, weighted by a corresponding weight constants.
The cost term for the gradient magnitude at pixel ¢ was
defined as:

falq) =1 - G(q)/max(G) )

where G(q) is the magnitude of the color gradient and
maz(@) is the highest gradient magnitude from the entire
image. The cost term for gradient direction from pixel p to
pixel g was defined as:

Dy (p)Dx(q) + Dy(p)Dy(q)
G(p)G(q)

where D, (p) and D,(p) are the eigenvectors correspon-
ding to the largest eigenvalue for the x and y gradient
directions of pixel p, respectively.

Currently, the weights wz, we, wg, and wp are set
by trial and error to the constant values 5, 3, 1, and 1,
respectively. A more advanced weight learning algorithm
is required in the future. The extracted by the live-wire
boundary corresponded to the minimum of the cost function
defined in (1).

The normal tissue area was selected manually, as it is more
difficult to decide what tissue serves as a normal (reference)
area. Fig. (2) below shows an example of the delineated
regions of interest.

Fo(p.) = acos { bimoo

Fig. 2. Regions of interest: (L) lesion area (N) normal tissue area.

The image RGB values were transformed to Hue-
Saturation-Intensity color system using the following equa-
tions: Hue = atan2(Y, X), where X = 2R—G—DB),Y =
V3(G — B), Saturation = 1 —min(R, G, B)/(R+G + B)
and the color features were calculated as differences in
mean hue values (Hy; ) and mean saturation values (Sq;fs)
between abnormal (lesion) and normal regions. As a shape
feature we have chosen area factor, AF' = A/AR, where A

is lesion’s area and Ap is area of its bounding rectangle.
The area factor is a measure of object’s compactness. In
total, the extracted feature vector F' consisted of F =
{Haifr,Sdirs, AF}. Due to the low number of training
examples we limited our feature vector to three dimensions.

C. Supervised classification

As discrimination functions we have chosen the two
competing classifiers: Support Vector Machines (SVMs) and
Bayes Point Machines (BPMs). It has been experimentally
shown [4] that for the zero training error case the BPMs
consistently outperform the SVMs on both artificial and real-
world data sets. In the soft-boundary and soft-margin case
(allowing classification errors) the improvement over SVMs
was reduced. This makes it interesting to compare these
classifiers on real-world data and low sample volumes.

The Support Vector Machines (SVMs) [2][11], have the
following decision function:

l
Fx) = sgn( D" aiik (xi,x) + ) )
i=1

where (x;,y;) are training examples, x is a sample to be
classified, [ is number of training examples, K is a kernel
function, y; = {—1, +1} are class labels, b is bias, «; are the
solutions to the associated quadratic programming problem,
0 < a; < C, and C is a penalty parameter chosen by
the user, in a non-separable case. A large C' corresponds
to a high penalty to classification errors and the SVM will
attempt to find in the parameter space a complex surface
that separates the data perfectly. The optimization criterion
is the width of the margin between classes (maximal margin
classifier) or margin distribution (soft margin optimization).
In the experiments, we have used the polynomial and radial
basis functions (RBF) kernels:

Kpoy(x,y) = (x-y+1)",de N (5)
Krpr(x,y) = exp (—(||x — y|*)/20%) (6)

The Bayes Point Machine (BPM) is a Bayesian approach
to linear classification. The decision function for the Bayes
Point Machine [4] has the same functional form as in (4).
However, the «a; coefficients are calculated differently, by
averaging all classifiers according to their posterior prob-
abilities. The solution is called the Bayes Point and the
corresponding classifier is a Bayes Point Machine. For es-
timation of the Bayes Point we have used a method called
Expectation Propagation (EP), developed by Minka [7]. The
EP algorithm uses a multivariate Gaussian approximation to
the posterior over the classifier’s weights and uses their mean
as the estimated Bayes Point. Alternative ways for estimation
of the Bayes point are the mean-field and TAP algorithms
[8] or different billiard and perceptron learning algorithms
[10][4].

In our classification experiments we first estimated (using
grid search) the best SVM with respect to kernel type and
kernel parameters and then trained the BPM with the same
kernel type and the same kernel width.



III. RESULTS

This section summarizes our experiments with SVMs and
BPMs on this two-class problem, where the two classes are
the precancerous lesions and the harmless lesions. Here,
the leukoplakia cases were labelled as +1 and lichenoid
reactions as —1. To avoid overoptimistic results we present
leave-one-out cross-validated error rates and ROC-curves.
The ROC-curves have been generated by varying the bias
term in (4).

The Table I presents the error rates for the SVM classifiers
using different kernels, with different parameter values.

TABLE I
LEAVE-ONE-OUT ERROR RATES FOR SVMS WITH DIFFERENT KERNELS.
Features = {Hdz'ff7 Sdiff7 AF}, dim(X) =3,N; =11, Ny = 23

[ Kernel type [C=01]C=1][C=10][C=102 [ C=00 ]
linear 0.32 0.32 0.17 0.20 0.20
poly d=3 0.32 0.20 0.20 0.17 0.29
RBF 0 = 0.25 0.32 0.17 0.15 0.17 0.29
RBF 0 = 0.5 0.32 0.20 0.20 0.20 0.32
RBF 0 =1 0.32 0.32 0.17 0.20 0.29

All of the kernels attended some minimum in the middle
range of the kernel and penalty parameters, with a global
minimum for the RBF-kernel with the width o = 0.25, C =
10 and error rate of 0.15.

To investigate this SVM-RBF classifier at other operating
points we have generated a Receiver Operating Characteristic
(ROC) curve, simply by varying the bias term in (4). For
comparison, we have trained a BPM using same kernel (RBF,
o = 0.25) and the Expectation Propagation as the training
method. Fig. 3 presents the ROC-curves for both the SVM
and BPM classifiers.
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Fig. 3. Receiver Operating Characteristic, Sensitivity vs. specificity for

RBF-BPM (o = 0.25) and RBF-SVM (o = 0.25, C' = 10), leave-one-out
estimation.

Both the ROC-curves have a similar shape. The BPM-
ROC has a slightly better performance in the middle range,

while the SVM-ROC outperforms at the extreme ranges
of sensitivity/specificity. The jaggedness of the ROC-curves
might be a result of low number of training examples. Also
the applied way of generating ROC-curves might contribute
to this effect. A better method for controlling sensitivity vs.
specificity could be by using different penalties for different
kind of errors, as proposed in [12]. Due to the low number
of training examples it is impossible to obtain statistically
significant differences between these two classifiers. Both
the classifiers attend the best total classification accuracy of
85% and in fact possess the same confusion matrix i.e. the
same kind of errors by wrongly classifying one precancerous
lesion and four harmless lesions (5 of 34). It is interesting
that the SVM faster than the BPM reaches the point of 100%
sensitivity (with 34% specificity).

The analysis of individual features showed that the sa-
turation difference, Sg; s, had a more discrimination power
than the hue difference, Hg;7 5. This was in contrast with the
results for Nordic population [6] for which the hue difference
dominated as the discriminatory parameter.

2D-scatterplot: Area Factor vs. Saturation difference
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Fig. 4. 2-D scatterplot: Area Factor (AF) vs. Saturation difference (Sg;  f).
Class 1 (circles) is leukoplakia, class 2 (squares) are lichenoid reactions.

Fig. 4 presents a scatterplot for two of the features:
Area Factor (AF) and Saturation difference (Sg;ys), to get
an impression of features’ distribution. The area factor is
larger for leukoplakia than for lichenoiod reactions, and
this coincides with the human perception. The leukoplakia
lesions are usually solid and compact, giving a high area
factor, while lichenoid reactions may have very irregular
borders which results in a low area factor. The second
feature, the saturation difference is much harder to detect
with a naked eye. This feature is a difference between lesion
saturation and normal tissue saturation. The results suggest
that leukoplakias, as potentially precancerous lesions, has a
lower saturation than the tissues regarded as normal. The
lichenoid reactions, usually harmless lesions, seem to be
more saturated than normal tissues.



IV. CONCLUSION

We have presented development steps toward a computer
aided analysis and diagnosis system for oral mucosal lesions.
Two common classifiers were evaluated on real-world data
obtained from an odontological domain.

The obtained overall classification accuracy around 85%
may be compared with the human performance. The diagnos-
tic performance of the human specialist is estimated at 90%,
while the diagnostic ability of dentists in general practice is
estimated at 75%, when compared to a specialist [5].

Our current oral lesion database contains some cases of
additional common lesions in Indian population, such as
erytroplakia and oral submucous fibrosis, which have also
potential to develop into oral cancer. These lesions will
be analysed as the number of cases will grow. The larger
number of examples will give more accurate estimates of
the classification performance.

The advantage of standard color imaging is its simplicity,
non-invasive character and the low cost, which is important
for spreading the technique to the South Asian countries.
However, due to the overlapping between the classes, to
improve the system’s classification accuracy we probably
need to incorporate additional imaging data from frequencies
beyond the visual spectrum of the light. Another possibility
would be to extract additional high-discriminatory features.

The developed method will be implemented as a lesion
analysis tool and decision support system to be used in the
South-Asian countries at odontological clinics and institutes.
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