
  

  

Abstract—The wavelet entropy (WE) of rest electro-
encephalogram (EEG) and of event-related potentials (ERP) 
carries information about the degree of order or disorder 
associated with a multi-frequency brain electrophysiological 
activity. In the present study, WE, relative WE and WE change 
were estimated for the EEG and ERP signals recorded during a 
working memory task, from dyslectic children and healthy 
subjects. The analysis of the two groups (controls vs dyslectics) 
revealed differentiations mainly in relative WE and WE change 
that takes into account the variability of rest EEG. These 
findings indicate that the WE can be employed as a 
quantitative measure for monitoring EEG and ERP activities 
and may provide a useful tool in analyzing electrophysiological 
signals associated with dyslexia. 

I. INTRODUCTION 
HE human brain function is determined by activation 
and interaction mechanisms of the millions of neurons 

from which it is constituted. Their oscillatory activity is 
increasingly thought to get synchronized during 
physiological or pathological brain states, at stimulation or 
during the performance of certain tasks (e.g. sleep-wake 
states, increased attention tasks, optical stimulation, epileptic 
seizures, etc.) [1]. Dyslexia constitutes a specific reading 
disability, a condition characterized by severe difficulty in 
the mastery of reading despite normal intelligence or 
adequate education [2]. Electrophysiological studies have 
shown that there are physiological deficits in dyslectic 
subjects [3][4], which may affect cognitive functions of the 
brain such as selective attention, working memory, audio or 
language process. Deficits can be estimated by various time 
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and frequency domain measures or their projection in time-
frequency plane. The main advantage of the latter approach 
is that specific events and components can be localized 
simultaneously in time and frequency.  

The electroencephalogram (EEG) reflects activity of 
ensembles of intracranial generators producing oscillations 
tuned in specific frequencies. If a stimulus takes place, 
brain’s response activates generators which begin to act 
together in a coherent way producing the event-related 
potentials (ERP). This can be thought as the transition of a 
system from a general disorder to a state of increased order.  

One way to investigate this hypothesis is to evaluate the 
entropy of EEG/ERP recordings. Entropy is a physical 
measure derived from thermodynamics to describe the 
order/disorder of a physical system. High entropy values 
equal to high level of disorder of a system, whereas low 
values describe a more ordered system capable to produce 
some work. Furthermore, entropy was adapted for 
information theory by Shannon as a measure of information 
comprised in a given amount of signals. It addresses and 
describes the irregularity, complexity, or unpredictability 
characteristics of a signal. 

Spectral entropy is based on the Fourier power spectrum 
and measures how widespread or concentrated the spectrum 
is. A sinusoidal signal, for example, is depicted in the 
frequency domain by a single, narrow peak at the frequency 
of the signal and therefore its entropy has a low value. On 
the contrary, the representation of random activity (e.g. 
white noise) in the frequency domain is spread in a wide 
band area, yielding a high entropy value. Similarly, since 
ERP signals are defined as the changes the EEG undergoes 
in temporal relation to a defined event, one might consider 
that they correspond to the transition of a system from a 
disordered to an ordered state and reversely [5].  

However, the use of Fourier transform for spectral 
estimation has two main disadvantages. Firstly, it does not 
take into account the time evolution of frequency patterns 
and, thus, no time information regarding entropy values can 
be obtained. Secondly, it requires the stationarity of the 
signal analyzed, which is also not the case for ERP signals.  

In order to overcome these limitations, the estimation of 
entropy can be obtained by the use of wavelets. The wavelet 
transform, provides a time-frequency representation of the 
signal with optimal time-frequency resolution. This method 
requires no stationarity of the signal analyzed and hence, is 
suitable for the analysis of ERP. Similar to Fourier entropy, 
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wavelet entropy reflects the degree of order/disorder of a 
system, but also provides additional information about the 
underlying dynamic processes associated with the signal [6]. 
In the present work, wavelet-based entropy and other related 
quantifiers [7] that have been used in other studies 
[8][9][10][11][12][13], were used to evaluate ERP 
recordings derived from both dyslectic and control 
individuals during a memory performance test.  

II. METHODS 

A. Wavelet transform 
Wavelet transform was firstly introduced in 1984 by 

Grossmann and Morlet, as an extension of the Fourier and 
Gabor transform. Similar to Gabor transform, the wavelet 
transform uses a time window of varying width, wide for 
low frequencies and narrow for high frequencies. As a result, 
the time-frequency resolution is high and accurate for all 
frequencies revealing the time evolution of frequencies in 
the analyzed signal [14].  

Several reports have been published in order to accent the 
adequacy of wavelets on ERP processing and explication, 
however, its successful application depends on few 
considerations: the selection of the proper algorithm, the 
mother wavelet used and data preprocessing. In this study, 
the discrete wavelet transform was used since it provides a 
non redundant representation of the signal and offers the 
advantage of the multiresolution decomposition [15]. 
According to the multiresolution scheme, a waveform x(t) is 
decomposed into approximation Aj (low frequency) and 
detail Cj (high frequency) components by its convolution 
with scaling )2(2)( 2/

, ktt jj
kj −= −− φφ  and wavelet 

)2(2)( 2/
, ktt jj
kj −= −− ψψ  family functions at time 

k=1,2,…,N and level of analysis j=1,2,…J. The family 
functions are generated by dilation and translation of unique 
admissible scaling φ(t) and mother wavelet ψ(t) functions 
and constitute an orthonormal basis [16].  In signal analysis, 
scaling functions are considered as low pass filters, whereas 
mother functions as high pass filters. The wavelet expansion 
of the signal can be defined as 
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Therefore, ERP can be decomposed by levels which 
correspond to the traditional bands of physiological EEG. 

Furthermore, a compactly support biorthogonal wavelet of 
order 3, often referred as the most suitable for ERP wavelet 
analysis was used. Biorthogonal wavelets resemble the 
patterns of variation in the original ERP signal and provide 
the maximum allowed by the uncertainty principle time-
frequency resolution [17]. They are symmetrical and smooth 
and hence they do not produce phase distortion and 
discontinuities in the reconstructed waveforms. Finally, 
since they are semiorthogonal the issue of the orthogonality 

between the levels of decomposition still holds [18].  
Each ERP signal was decomposed in 7 levels and since 

the sampling frequency was 1000Hz the desirable bands 
were obtained: 16-32Hz (beta), 8-16Hz (alpha), 4-8Hz 
(theta) and 0-4Hz (delta). The data padding was set to 
periodic to cope with the boundary effects. 

 

B. Wavelet entropy 
A measure estimated by the wavelet coefficients to 

provide quantitative information about the order/complexity 
of signals is the wavelet entropy. It has also been used in 
several works concerning several issues such as the 
neurological status of the brain following global cerebral 
ischemia by hypoxic-ischemic cardiac arrest [19], EEGs 
ordering/disordering during sleep [20][21] and seizures [8] 
[21]. 

In order to calculate the wavelet entropy of the signal, the 
wavelet coefficients Cj(k) were obtained at each resolution 
level j. The energy at each time sample k can be calculated 
by equation (4) 
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and the total energy by 
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The relative wavelet energy, which defines energy’s 
probability distribution in scales is given by 
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Obviously, 1=∑
j

jp  and the distribution pj is considered as 

a time-scale density. The wavelet entropy is, in turn, defined 
as 
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As it has already been mentioned, the value of wavelet 
entropy can provide estimation of the order of the 
decomposed signal and subsequently of the order of the 
system it represents. The same differences in wavelet 
entropy value of a sinusoidal and a multi frequency signal, 
described above, are expected in a disordered EEG and a 
more ordered ERP signal (lower entropy value). 

 

C. Relative wavelet entropy and wavelet entropy change 
Relative wavelet entropy is another useful measure of 

order/disorder comparing a waveform with another. It 
depicts how similar a probability distribution pj is with 
respect to another probability distribution qj taken as a 
reference. The probability distributions pj , qj could represent 
two different signals or two different parts of the same signal 
[1]. In order to study temporal evolution, the analyzed signal 



  

is divided into temporal windows of length L and for each 
interval i, i=1,…,NT. If )(i

jE is the wavelet energy at 

resolution level j included in the time interval I, then the 
mean wavelet energy is given by  
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and the mean probability distribution qj is given by 
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The mean wavelet entropy representative for the whole 
time interval can be defined as 
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Relative wavelet entropy is calculated from the following 
equation 
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An aspect of interest is the change of entropy in relation to 
a specific mark considered to be as reference. In EEG/ERP 
analysis the relative change of the ERP against the 
background EEG activity before stimulus can give 
informative results. This change (WE change) can be 
quantified by the metric  
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for each time interval i in which Γ<0 denotes that post-
stimulus signal shows a higher degree of order than the 
reference EEG signal, and its value presents the difference 
between the two signal segments in percents. 

III. APPLICATION 

A. Subjects 
The study involved 57 children from which 38 (26 boys 

and 12 girls) were outpatient cases who had been diagnosed 
as having dyslexia according to the 10th edition of the 
International Classification of Diseases (ICD-10) and the 
rest 19 children (7 boys and 12 girls) were control sibling of 
the dyslectic group. The mean ages and the standard 
deviations for the dyslectic children and for the controls 
were 11.47±2.12 and 12.21±2.25 years, respectively. Their 
mean ages did not differ significantly (non-significant t-test). 
In each case, the following assessments were performed: 
child psychiatric examination, psychological examination 
and educational evaluation. The Wechsler Intelligence Scale 
for Children – Third Edition (WISC-III) [22] was used to 
obtain the IQ of each child. The assessment of educational 
attainment included reading, comprehension, spelling and 
arithmetic ability. Participants did not enter the study if they 

had (a) clinically notable neurological disease (including 
seizure disorder), (b) a history of head injury, (c) hearing 
difficulties and (d) attention deficit disorder and hyperkinetic 
syndrome.  

 

B. Experimental setup 
The subjects were evaluated with the digit span Wechsler 

Auditory test [23], [24]. For each trial of the experiment, rest 
EEG signal was recorded for 500msec. A single sound tone 
of either high (3000 Hz) or low frequency (500 Hz) was 
presented to the subjects through earphones, followed by the 
numbers which had to be memorized.  

 
Table 1: Outline of the experimental procedure 
 

Time period Action 
AB (500ms) Recording of EEGs. 
BC (100ms) Warning stimulus (500 or 3000Hz, 

65dB) 
BD (1000ms) Recording of ERP signal.  
DE (varies) 
(Not in scale) 

Computerized administration of the 
sequence of numbers  

EF (100ms) Repetition of warning stimulus (500 
or 3000Hz, 65dB)  

 
If the frequency of the signal tone was low, the subjects 

had to recall the numbers in the same order with that 
presented, else (high frequency tone) the subjects had to 
recall the numbers in the reverse order. The total task 
consisted of 52 repetitions for a period of about 45 min. An 
outline of the procedure is provided in Table 1. 
 

C. Data Recording and Acquisition 
The children's EEG/ERP signals were recorded at 15 

electrodes (Fp1, F3, C5, C3, Fp2, F4, C6, C4, O1, O2, P4, 
P3, Pz, Cz, Fz) according to the 10–20 international system, 
referred to both earlobes. The Ag/AgCl electrodes were 
attached to the scalp with adhesive cream in order to keep 
the electrode resistance below 5 kΩ. An electrode placed on 
the subject's forehead served as ground. The passband of the 
amplifiers was set from 0.05 Hz to 35 Hz. During the 
recordings, the subjects had their eyes closed in order to 
minimize eye movements and blinks. Eye movements were 
recorded through electro-oculogram (EOG) and recordings 
with EOG higher than 75 μV were rejected. All signals were 
sampled at frequency of 1 kHz so that for signals in the 
frequency range 0–35 Hz the Shannon theorem is over 
satisfied. Since noise (signals that are not EEG/ERP) is 
considered to be a random process with zero mean value, the 
EEG/ERP signal's SNR was improved by averaging across 
the 52 trials of the experiment. 



  

IV. RESULTS 

A. Time-dependent entropy 
The wavelet entropy was applied to EEG/ERP signals in 

order to evaluate differences in complexity between controls 
and subjects with dyslexia. The analyzed signals were 
divided into overlapping time windows with a step of 20 
samples. This enables the study of temporal evolution of 
entropy dynamics over time. The window length plays a 
significant role for the analysis and the accuracy of the 
results. In this study, we used a time window length of 128 
samples (corresponding to 128 ms) in order to contain at 
least one spectral coefficient from each frequency band. It 
was shown that such window size is appropriate for the 
analysis of EEG signals, as the entropy does not increase 
dramatically by increasing the window size [25]. A typical 
behavior of entropy over time can be seen in Fig.1.  
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Fig. 1. EEG/ERP signal (upper chart) and its corresponding wavelet entropy 
(lower chart) for a typical electrode. Vertical dashed line denotes the 
stimulus onset and the beginning of ERP signal. 

 
It can be observed that the entropy has relatively high 

values for rest EEG signal. At the stimulus onset and the 
beginning of ERP signal, there is a decrease that is ought to 
the synchronization and the dominance of a specific band of 
frequencies [26]. After the presence of ERP components, 
entropy increases again to reach values of rest EEG.  

Data were divided into the factors group (controls, 
dyslectics) and auditory stimulus frequency (high, low, all 
frequencies). The analysis was performed for each type of 
stimulus frequency separately, because stimulus affects 
electrical events in terms of EEG frequency synchronization 
or tuning [1].  

Both high and low frequency stimuli were investigated 
but differences in low frequency stimulus type were not that 
pronounced. Below, the results obtained for high frequency 
stimulus type are presented. The mean wavelet entropies, 
relative wavelet entropies and wavelet entropy changes of 

controls and dyslectics for each time window were 
calculated. The time evolution of mean entropies for both 
groups, all electrodes and high frequency induced stimulus 
are shown in Fig.2.  
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Fig. 2. Mean entropy of 15 electrodes for controls (blue line) and dyslectics 
(red line) for high frequency stimulus. 

 
Then, relative wavelet entropy (RWE) was calculated in 

order to quantify change of entropy in relation to rest EEG 
(before stimulus onset). This is of great importance mainly 
in children because it takes into account the great variability 
of EEG signals in childhood. Its mean waveforms in controls 
and dyslectics for all electrodes and for high stimulus 
frequency are shown in Fig.3.  
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Fig. 3. Mean relative wavelet entropy of 15 electrodes for controls (blue 
line) and dyslectics (red line) for high frequency stimulus. 

 
As it can be observed, controls appear to have higher 

relative wavelet entropy values than dyslectics for a short 
time interval after the onset of stimulus (around ERP 
component N100). This phenomenon is apparent mainly in 
frontal electrodes (Fp1, F3, Fp2, F4, Fz). In parietal 
electrodes (P4, P3) the difference between high values for 
controls and low values for dyslectics is maintained for a 
long period after the stimulus.  

Finally, the WE change Γ was calculated to quantify the 



  

changes in entropy in relation to mean entropy of rest EEG. 
Statistical analysis was performed in order to evaluate mean 
values of WE change that achieve statistical difference 
between groups.  
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Fig. 4. Mean wavelet entropy changes of 15 electrodes for controls (blue 
line) and dyslectics (red line) for high frequency stimulus. 

 
The null hypothesis is that there is no difference of the 

mean values of WE change between two groups (controls, 
dyslectics) in a given time-location element. In order to use 
robust parametric statistical tests, possibly non-normal 
distributions of the energy values must be taken into 
account. So, when the normality of data was not satisfied, 
the logarithmic transformation, a common and effective 
normalization transformation [27], was applied.  
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Fig. 5. WE change (Γ) time-location statistics of 15 electrodes between 
controls and dyslectics for high frequency stimulus. Red color denotes 
rejection of null hypothesis (p<0.05). 

 
The mean wavelet changes of controls and dyslectics and 

their time-location statistics are shown in Fig. 4 and Fig. 5, 
respectively. Significant differences appeared mainly in Fp2, 
F3, C3, C5, C6, C4 in the first 100 msec after the stimulus 
and in Fp1, C5, C4, Cz electrodes around the P300 peak. 
However, there were no clear trends in time-location 

statistics.   
As a general conclusion, differences appeared mainly in 

frontal and central electrodes (Fp1, F3, C5, C3, C6, C4, Cz) 
within 500 msec after the stimulus onset. 

V. DISCUSSION 
In this study, quantifiers based on wavelet entropy were 

used to reveal differentiations in EEG/ERP signals between 
dyslectics and controls. WE, relative WE and WE change 
were estimated for the EEG and ERP signals recorded from 
dyslectic children and control siblings elicited during a 
working memory task. 

 Analysis showed that there is stimulus type effect as 
regards their entropy quantifiers so the analysis was 
performed for each stimulus type separately and focused on 
high frequency stimulus type where more pronounced 
differentiations appeared. In this kind of stimulus type, 
differences appeared mainly in relative WE and WE change. 
These measures are considered to be more objective because 
they calculate entropy in relation to its background EEG 
before stimulus, so it has additional meaning taking into 
account the great variability of EEG signals in childhood. 

Compared with dyslectics, controls showed higher relative 
entropy near stimulus and in the time window corresponding 
to the N100 ERP component, in the majority of electrodes 
and in frontal-central regions. In some cases (P4, P3, C3, O2 
electrodes), this phenomenon appeared also for a prolonged 
time interval. According to this, the reaction of controls to 
the stimulus is more intense as reflected in relative entropy. 
On the other hand, signals of dyslectics don’t appear to 
change significantly their entropies’ characterististics in the 
transition from rest EEG to ERP.  

The evaluation of these changes was depicted in WE 
change. Controls demonstrated increased amendment (rapid 
alteration) as compared to dyslectics with localization on 
frontal-central leads and in the time windows corresponding 
to the N100 and P300 ERP components, achieving statistical 
significance in many leads.  

Measures of the entropic patterns of response sequences 
lead to a different level of information with regard to the 
information processing in dyslexia. In particular, two classes 
of questions arise; firstly, how the dyslectics organize the 
sequence of responses and secondly, how they process 
information as a function of naturally occurring neural 
oscillations that link distinct brain regions e.g. as they are 
presented by the obtained abductions (electrode leads) which 
correspond to significant differences between controls and 
dyslectics. 

Considering the above stated results, it is reasonable to 
hypothesize that the dyslexia-associated differences 
observed here may be related to different strategies activated 
due to dyslexia-related functional brain organization as 
indicated from psychophysiological and neurobiological 
studies [28][29]. In corroboration to this notion, there 
appears to be consistent evidence that EEG and ERP patterns 
vary systematically with dyslexia [30]. Given that the N100, 
and P300 components are conceptualized as the 



  

physiological correlates of the attentional and working 
memory operation [31][32][33], the present findings indicate 
that dyslectic children exhibit an altered and difficult 
organization process concerning the attentional working 
memory operation as they are reflected by the WE variations 
resultant in the time windows of the N100 and P300 
components of ERP. Results point also to a dyslexia-related 
deficit in recruitment of prefrontal-, frontal-, as well as 
central structures for integrating the electrophysiological 
activities associated with the N100 and P300 components of 
ERP. 

Finally, these findings indicate that the WE can be 
employed as a quantitative measure for monitoring the EEG 
and ERP activities and may provide a useful tool in 
analyzing electrophysiological signals associated with 
dyslexia. 
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