
  

Abstract— With the recent high-throughput methods, large 
datasets of experimentally detected pairwise protein –protein 
interactions are generated. However, these data suffer from 
noise, reducing the quality of the information they bring 
(identification of protein complexes). This paper introduces a 
novel methodology for detecting protein complexes in a protein 
– protein interaction graph. Our method initially uses the 
Markov clustering algorithm and then filters the derived 
results in order to obtain the best set of clusters that represent 
protein complexes. The efficiency of our method is shown in 
experimental results derived from 7 different yeast protein 
interaction datasets. Moreover, comparisons with 4 other 
algorithms are performed proving that our method predicts 
known protein complexes, recorded in the MIPS database, 
more accurately. 

I. INTRODUCTION 
he study of protein interactions has been vital to the 
understanding of how proteins function within the cell. 

More specifically, protein interactions are crucial for 
forming structural complexes, for extra-cellular signalling, 
intra-cellular signalling, cell communication and several 
other aspects of cellular function [1].  

There are several experimental methods such as pull 
down assays [2] and tandem affinity purification [3] that are 
used in order to detect protein interactions in an organism. 
Today, relatively new high-throughput methods (yeast two 
hybrid systems [4], mass spectrometry [1], microarrays [5] 
and phage display [6]) generate enormous datasets of protein 
– protein interactions. However, despite the wide variety of 
experimental methods, only a small fraction of protein 
complexes have been identified due to the weakness of these 
methods to detect all the proteins composing these 
complexes [7]. Additionally, high throughput methods are 
error prone as they miss a fraction of protein interactions 
and yield several protein interactions that do not exist in 
nature.  
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Because of the unreliability of the protein interaction data, 
computational methods of data mining or knowledge 
discovery are necessary to gain valuable information such as 
the discovery of protein complexes. Usually, these methods, 
model the protein interaction datasets as an unweighted and 
undirected graph defined as G (V ,E )=  where V  

represents the set of vertices (proteins) and E  represents 
the set of edges (interactions). In these graphs, a protein 
complex generally corresponds to a dense subgraph that is 
an aggregation of vertices that are highly interactive with 
each other. 

Previous approaches use either a local search strategy or a 
hierarchical one. In the first category, the best known 
algorithm is the Molecular Complex Detection (Mcode) [8] 
A year before Mcode was published, another algorithm 
called TRIBE-MCL, which was based on MCL, was 
presented for detecting protein families [9]. Besides that, 
King et al. suggested the RNSC algorithm [10] which uses a 
cost local search algorithm based loosely on a tabu search 
meta – heuristic. Another algorithm of the local search 
approach is the Local Clique Merging Algorithm (LCMA) 
[11] which locates cliques in a graph and subsequently tries 
to expand them. On the other hand, most of the hierarchical 
clustering approaches are based on the concept of dividing 
the initial graph by removing the minimum set of edges. The 
Highly Connected Subgraph method (HCS) [12] separates a 
graph into several subgraphs using minimum cuts and stops 
when the cut is bigger or equal to the number of graph 
vertices divided by 2. Koyutürk suggested the SIdeS 
algorithm [13] which uses the HCS algorithm philosophy 
with a different stopping criterion which is based on the 
statistical significance of the derived subgraphs. 

In this paper, a new methodology, called Enhanced 
Markov Clustering (EMC), is presented. EMC detects 
protein complexes from protein – protein interaction graph 
in two steps: In the first step, the protein - protein interaction 
network is clustered by Markov clustering algorithm (MCL) 
[9] and in the second step the results are filtered based either 
on individual or on a combination of 4 different methods 
(density, haircut operation, best neighbour and cutting 
edge). Extensive experiments were performed on 7 different 
datasets which were either derived from individual 
experiments ( Ito [4], Tong [14], Krogan [15] and Gavin [1], 
[16]) or from online databases (DIP [17] and MIPS [18]). 
These datasets vary on the number of proteins as well as the 
number of interactions, composing either sparse (Ito and 
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Tong datasets) or relatively dense (MIPS and DIP datasets) 
graphs. Moreover, by using the yeast proteome, the most 
well studied organism concerning protein – protein 
interactions, EMC was compared with 4 other algorithms: 
the Mcode algorithm, the HCS algorithm, the SideS 
algorithm and the RNSC algorithm and examined the 
derived results based on 5 different metrics. As it can be 
seen in the Results section, EMC outperforms all the other 
algorithms and generates remarkable results.  

II. OUR METHOD 
To identify accurate protein complexes given a protein-

protein interaction network, we built a workflow consisting 
of a two step procedure.  Initially, a protein - protein 
interaction network is clustered by Markov clustering 
algorithm (MCL) and in the second step the results are 
filtered based either on individual or on a combination of 4 
different methods. These are density, haircut operation, best 
neighbour and cutting edge. This two step approach 
preserves only those clusters that have high probability to be 
real biological complexes. A brief description of the MCL 
algorithm and the criteria used for the filtering procedure is 
given below. 

A. Description of the MCL algorithm 
The MCL algorithm [9] is a fast and scalable 

unsupervised clustering algorithm based on simulation of 
stochastic flow in graphs. The MCL algorithm can detect 
cluster structures in graphs by a mathematical bootstrapping 
procedure. The process deterministically computes the 
probabilities of random walks through a graph, and uses two 
operators transforming one set of probabilities into another. 
It does so by using the language of stochastic matrices (also 
called Markov matrices) which capture the mathematical 
concept of random walks on a graph. 

B. Cluster Density 
Protein complexes correspond to dense subgraphs or even 

cliques in protein interaction graphs [19]. Therefore, clusters 
of high density are more likely to correspond to known 
protein complexes. The density of a subgraph is calculated 
by the formula below: 

2 | E |
|V | (|V | 1 )−

, 

where | E |  is the number of edges and |V |  the number of 
vertices of the subgraph.  

C. Haircut operation 
Haircut operation is a method that detects and excludes 

vertices with low degree of connectivity from the potential 
cluster that these nodes belong to. Proportionally, the lower 
the connectivity of a node is, the lower the probability for 
this node to belong to a protein complex is. In such a way, 

the deletion of such nodes that add noise to the cluster leads 
to protein complexes that are more likely to be present in 
nature. 

D. Best neighbor method    
In contrast with haircut operation method, best neighbor 

method tends to detect and enrich the clusters with candidate 
vertices that are considered as good "neighbors". Such a 
node is the one where the proportion of its edges adjacent to 
the cluster divided by the total degree of the vertex is above 
a threshold defined by the user:  

| adjacent edges |
| total edges |

>threshold 

 The best neighbor method is mostly suitable to detect larger 
protein complexes that offer extra information about protein 
complexes included in a protein interaction dataset. 

E. Cutting edge metric 
Analyzing the structure of a protein–protein interaction 

network, molecular modules are densely connected within 
themselves but are sparsely connected to the rest of the 
network [20].  To address these cases, a filtering criterion 
was applied, called cutting edge and is defined as: 

| inside edges |
| total edges |

, 

where | inside edges |  is the number of edges inside a 

cluster and | total edges |  is the number of edges that are 
adjacent to at least one vertex of the cluster. The clusters in 
which the cutting edge metric is below a user defined 
threshold are discarded from the filter of our method. 

III. DATASETS 

To demonstrate the use of our methodology, we used 
seven datasets derived from various small scale and high-
throughput methods. The multifaceted nature of the datasets 
enables us to perform a more “objective” comparison of the 
algorithms tested. In this section, we give a short description 
of the datasets that were used. 

A. ΙΤΟ dataset 
Based on a system that examines every possible two-

hybrid pair of protein interaction of the budding yeast 
Saccharomyces cerevisiae, this dataset consists of 4038 two-
hybrid interactions among 3279 proteins [4]. Initially, a 
single huge network linking the vast majority of the proteins 
was produced. This network was reduced by selecting 
biologically relevant interactions highlighting various 
intriguing subnetworks. Our method locates successfully 
these subnetworks and allows us to expand and improve the 
protein interaction map for the exploration of genome 
functions by finding the complexes that are biologically 
more relevant. 



B. Tong dataset 
This network consists of 7430 edges and 2262 vertices 

[14]. A genetic interaction network was mapped by crossing 
mutations in several genes into a set of viable gene yeast 
deletion mutants scoring the double mutant progeny for 
fitness defects. The interactions of this network were 
produced by predicting the functions of the interactive 
elements often produced by bringing together functionally 
related genes or components or elements that belong to the 
same pathway. The genetic network exhibited dense local 
neighborhoods; our method aims to go one step further by 
predicting these neighborhoods but also by spliting them in 
smaller groups that are functionally more significant. 

C. Krogan dataset 
This dataset consists of 7088 edges and 2675 vertices and 

contains different tagged proteins of the yeast 
Saccharomyces cerevisiae. In a previous analysis [15], the 
MCL algorithm was used to cluster and organize the 
proteins into several groups that about half of them were 
absent from the MIPS database. We observed that a small 
amount of noise was added to these data and therefore we 
applied our method to detect and filter the groups detected 
by MCL.   

D. Gavin_2002-2006 datasets 
In this case, we used two networks, the first consisting of 

3210 edges and 1352 vertices and the second consisting of 
6531 edges and 1430 vertices [1], [16]. In the first dataset, 
large scale tandem affinity purification and mass 
spectrometry were used to characterize multiprotein 
complexes in Saccharomyces cerevisiae. Extending this 
information to human genome, this dataset provides an 
outline of the eukaryotic proteome as a network of protein 
complexes. Using the whole network, we try to see how 
successfully our method isolates the network complexes. 
The second dataset comes with the first genome-wide screen 
for complexes in yeast.  

E. DIP dataset 
The Database of Interacting Proteins (DIP) is a database 

that documents experimentally determined protein-protein 
interactions [17]. We used this database to isolate a network 
consisting of 17491 edges and 4934 vertices. One of the 
reasons why we included this source for our experiments is 
because beyond cataloging details of protein-protein 
interactions, the DIP database helps us not only understand 
protein functions but the value of protein-protein 
relationships as well.  

F. MIPS dataset 
The Munich Information Center for Protein Sequences 

provides resources mainly related to genome information 
[18]. Most of the databases that contain information about a 
variety of genomes of different organisms are manually 

curated. Furthermore 400 genomes that were automatically 
annotated are also included. One of the aims of this database 
is to provide information related to interactions such as 
protein–protein interactions. In this study case we isolated a 
network consisting of 12526 edges and 4554 vertices given 
by the MIPS database. 

IV. EXPERIMENTAL RESULTS 

A. Evaluation procedure 
The benchmark that we used to evaluate the algorithms 

tested consists of known yeast protein complexes retrieved 
from the MIPS database Furthermore, MIPS protein 
complexes composed from smaller ones, also recorded in 
MIPS database, were removed. The final evaluation dataset 
comprises 220 complexes.  

In addition to the collection of MIPS protein complexes, 
we also used the same evaluation metric adopted in [8], 
called geometric similarity index. This method considers a 

predicted complex as valid if 
2I > 0 2

A B
.

*
where I is the 

number of common proteins, A the number of proteins in 
the predicted complex and B the number of proteins in the 
recorded complex. We used this measurement to evaluate 
our results.  

Moreover, 4 different matching statistic metrics, that were 
presented in [21], were used in the evaluation process of the 
algorithms tested. These are sensitivity (Sn), Positive 
Predictive Value (PPV) and Geometrical Accuracy (Acc_g). 
These metrics are typically used to measure the 
correspondence between the result of a classification and a 
reference. 

B. Results 
All the results of the experiments performed are 

demonstrated in Table 1. It is clear that EMC methodology 
outperforms all the other algorithms in the percentage of 
successful predictions in all the cases. In Figure 1, we show 
the percentage of successful predictions, where EMC 
overpasses all the other algorithms. Moreover, EMC 
achieves better approximations of real protein complexes 
than the other algorithms in almost all of the cases, 
something that is proven by the high values of the mean 
score of the valid predictions.  

Additionally, the performance of EMC following the 
classical statistics is exceptional, comparing to the other 
algorithms. Figure 2 shows the results of the algorithms 
concerning the Acc_g metric which indicates the trade off 
between the metrics of Sn and PPV 

( Acc _ g Sn* PPV= ).



  

TABLE 1. 
Summary of experimental results. The percentage of successful predictions is shown in the first column; the absolute number of valid predicted 
complexes is shown in the second column as well as the total number of predicted complexes. The mean score of the valid predicted complexes is 
shown in the third column. The last three columns present the Sensitivity (Sn), the Positive Predictive Value (PPV) and the geometric Accuracy 

(Acc_g) respectively. 

Algorithms

Percentage of 
successful 
prediction

Absolute number 
of predictions

Mean Score of 
valid predicted 

complexes
Sn PPV Acc_g

SideS 14.29% 2/14 0.292 85.19% 48.19% 64.04%
Mcode 9.09% 1/11 0.32 100.00% 64.71% 80.44%
HCS 7.69% 1/13 0.333 80.00% 40.00% 56.57%

RNSC 14.28% 1/7 0.563 100.00% 40.00% 63.25%
EMC 18.75% 3/16 0.498 100.00% 92,86% 96.36%

SideS 16.67% 4/24 0.317 89.08% 42.02% 61.18%
Mcode 10.81% 4/37 0.517 78.37% 41.89% 57.30%
HCS 13.64% 3/22 0.311 89.68% 40.48% 60.25%

RNSC 17.65% 3/17 0.432 90.00% 50.00% 67.08%
EMC 20.00% 4/20 0.620 98.30% 45.76% 67.07%

SideS 46.15% 36/78 0.519 84.29% 56.94% 70.61%
Mcode 31.94% 23/72 0.614 87.00% 70.00% 78.04%
HCS 44.44% 32/72 0.578 88.40% 56.46% 72.43%

RNSC 42.86% 33/77 0.590 90.28% 58.33% 74.31%
EMC 54.84% 17/31 0.665 98.40% 63.30% 78.92%

SideS 51.16% 22/43 0.440 78.57% 57.14% 67.01%
Mcode 35.00% 7/20 0.478 95.08% 50.00% 68.95%
HCS 55.56% 20/36 0.423 89.30% 57.93% 71.93%

RNSC 61.70% 29/47 0.512 85.71% 59.52% 71.43%
EMC 62.96% 17/27 0.539 95.24% 55.78% 72.89%

SideS 37.76% 37/98 0.545 74.86% 57.73% 65.74%
Mcode 50.00% 31/62 0.543 73.44% 51.65% 61.59%
HCS 46.84% 37/79 0.528 81.42% 54.41% 66.56%

RNSC 50.62% 41/81 0.566 74.26% 81.19% 77.65%
EMC 55.17% 16/29 0.678 95.27% 63.51% 77.79%

SideS 46.07% 41/89 0.478 75.84% 53.56% 63.73%
Mcode 31.82% 21/66 0.515 71.71% 41.47% 54.53%
HCS 47.95% 35/73 0.504 80.34% 50.57% 63.74%

RNSC 47.54% 29/61 0.553 69.23% 92.31% 79.94%
EMC 58.33% 7/12 0.747 100.00% 72.60% 85.21%

SideS 42.65% 29/68 0.597 80.11% 49.05% 62.68%
Mcode 43.10% 25/58 0.506 82.47% 44.66% 60.69%
HCS 45.00% 27/60 0.666 83.99% 47.75% 63.33%

RNSC 42.62% 26/61 0.661 86.36% 54.55% 68.63%
EMC 62.50% 20/32 0.657 100.00% 71.77% 84.72%

Krogan dataset

Tong dataset

IT0 dataset

MIPS dataset

DIP dataset

Gavin_2006 dataset

Gavin_2002 dataset
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Fig. 1.  The percentage of successful predictions of the algorithms tested 
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Fig. 2.  The performance of the algorithms concerning Acc_g metric. 



  

Going one step further, we tested the parameters of the 
filter created for the EMC methodology. We tried to achieve 
good prediction rate without minimizing the number of the 
final MCL clusters that will pass the filtering process. 
Specifically, our experiments showed that a density cutoff 
between 0.6 and 0.75 and a haircut of vertices with less than 
2 degree allows a good prediction rate and high values on 
the metrics used. The methods of best neighbor and cutting 
edge helped in the improvement of predictions but their 
values vary depending the dataset tested. Nevertheless, in 
sparse graphs, better results were obtained without the need 
of these methods.  The best neighbor method was helpful 
only in two of the denser datasets. Table 2 describes 
methods and parameters used in the filtering process.  

 
TABLE 2 

The methods used in the filtering process 
Dataset Filter 

ITO Density=0.75, Haircut=2 
Tong Density=0.75, Haircut=2 
Krogan Cutting_Edge=0.55, 

Density=0.7, Haircut=3 
Gavin_2002 Cutting_Edge=0.5, 

Density=0.6, Haircut=2 
Gavin_2006 Cutting_Edge=0.75, 

Density=0.6, Haircut=2, 
Best_neighbor =0,6 

DIP Cutting_Edge=0.5, 
Density=0.6, Haircut=3 

MIPS Cutting_Edge=0.5, 
Density=0.7, Haircut=2, 
Best_neighbor =0,75 

 
Table 3 shows the results obtained from the MCL algorithm. 
These results highlight the significance of the filtering 
process that EMC uses. 

TABLE 3. 
The results of the MCL algorithm 

Algorithms

Percentage of 
successful 
prediction

Absolute 
number of 
predictions

Mean Score 
of valid 

predicted 
complexes

Sn PPV Acc_g

MCL 5.56% 35/630 0.372 34.9% 42.66% 38.58%

MCL 4.62% 16/346 0.346 44.66% 40.79% 42.40%

MCL 22.57% 58/257 0.484 69.67% 54.45% 61.59%

MCL 33.49% 71/212 0.574 74.11% 57.01% 65.00%

MCL 31.22% 59/189 0.527 75.75% 54.26% 64.11%

MCl 10.13% 98/967 0.457 47.58% 53.25% 50.34%

MCL 9.70% 87/897 0.478 44.77% 52.40% 48.43%

IT0 dataset

Tong dataset

Krogan dataset

Galvin_2002 dataset

Galvin_2006 dataset

DIP dataset

MIPS dataset
 

C. Implementation 
The EMC methodology is implemented in C language 

same as the SideS, RNSC and HCS algorithm. The Mcode 
algorithm is implemented as a java plugin for the Cytoscape 
Tool. All the experiments were performed using an Intel 
Double Core 2.13GHz processor, with 1GB of RAM and 
Suse Linux 10.1(x86_64) operating system. Loop edges 
were not taken into account and predicted protein complexes 
containing less than 3 proteins were discarded during our 
experimental sets. 

The filter we used for the results of the RNSC algorithm 
was composed by two out of three parameters as they are 
presented in [10] (size and density). We did not use the third 
(functional homogeneity) as this kind of information was not 
available for all datasets so that the comparison with the 
other algorithms, which did not use this kind of information, 
would not be biased.  

The SideS and HCS algorithms do not take any 
parameters, whereas for the use of Mcode and MCL 
algorithms we used the optimal parameters for accuracy as 
they are defined in [21]. 

V. CONCLUSIONS AND FUTURE WORK 

In this paper, we introduced a new methodology for 
detecting protein complexes through clustering protein – 
protein interaction graphs. This methodology, called EMC, 
uses MCL algorithm and a filter composing 4 different 
methods. These methods can be uniquely chosen or 
combined depending on the study case. We tested our 
method with 7 different protein interaction datasets and 
compared it with 4 other algorithms in order to prove its 
efficiency. For the evaluation process, we used 5 different 
metrics to prove the quality of our results. The future 
prospect of our work is to use machine learning techniques 
in order to optimize the parameters used in the filtering 
process. This way, it will be reassured that the EMC 
methodology will obtain satisfactory results whatever the 
input graph instance happens to be. 

APPENDIX 
The results of our experiments are available in: 
http://www.bioacademy.gr/bioinformatics/projects/EMC 
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