
  

  

Abstract—With the unprecedented growth in the size of 
sequence and structure databases, knowledge-based methods 
have become increasingly feasible for protein structure 
prediction. We developed a branch-and-bound method for 
structlets-based protein structure assembly. We explore the 
effectiveness of this approach by examining its capability to 
reconstruct the 3D structure of some proteins with known 3D 
structures. Although our algorithm involves exhaustive search, 
our BestFirst implementation of a branch-and bound strategy 
is able to eliminate around 2/3 of the total search space in order 
to find the optimal 3D assembly for a protein of interest. 

I. INTRODUCTION 
he prediction of the three-dimensional structure of a 
protein, when only the amino acid sequence is known, 

has been a problem of considerable interest for many years. 
During the past several years, several entire genomes have 
been sequenced, ranging from those of short prokaryotes to 
the three billion base pair human genome. The genome 
projects generate huge amounts of biological sequence data 
which include sequence of complete genomes, sequence of 
complete sets of proteins (proteomes) [1]. It is reported that 
using only sequence information can help to assign function 
to only about 17% of all protein sequences in complete 
genomes [2]. In contrast, exploiting structural information to 
the largest possible extent could yield assignments of 
function to up to 50% of the proteins [3]. Currently, the rate 
of new protein sequences is growing exponentially with 
respect to the rate of protein structures being solved by 
experimental methods such as x-ray diffraction and nuclear 
magnetic resonance (NMR). It is a daunting task to 
determine the 3D structures of all sequenced proteins. In 
many cases, even a crude or approximate model can 
significantly help an experimentalist in guiding his/her 
experiments. The role of protein structure prediction is to 
predict unknown protein structures approximately and 
efficiently, so that we can roughly assign biological 
functions to the proteins [4].  

Approaches to predict protein structure have ranged from 
purely ab initio methods [5] that are based on physical and 
chemical properties, to knowledge-based methodologies, 
such as homology modeling [6-8] or threading methods [9, 
10], which depend on the presence of sequentially or 
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structurally homologous proteins in the databases.  
Knowledge-based protein structure prediction is 

becoming increasingly significant with the fast expansion of 
sequence and structure databases. The strategy is to use the 
knowledgebase to guess possible substructures (structlets) 
for subsequences of the given protein sequences and to then 
assemble it into a complete 3D protein structure. The 
problem is that subsequences can have several alternate 
substructures (structlets) in the knowledgebase. In this 
paper, we describe a branch-and-bound approach for 
knowledge-based protein structure assembly from the 
structlets. 

II. METHODS 
First, we would like to include some important terms used 

in this method.  
Seqlet: A sequence pattern appearing frequently (two or 
more times) in a given sequence database.  It is a string of 
the form (Σ∪{[ΣΣ*Σ])(Σ∪{‘.’}∪{[ΣΣ*Σ]})*(Σ∪{[ΣΣ*Σ]), 
where Σ={A,C,D,E,F,G,H,I,K,L,M,N,P,Q,R,S,T,V,W,Y}.  
Strings such as M..E.A.P.[AD].L and R.A.. 
L[LR]AADM.F..E..I..GK are examples of seqlets. We 
assume that the average length of seqlets is about 20 [11]. 
Structlet: A sequence of 3D coordinates retrieved from 
PDB, which matches a seqlet. 

1D biodictionary: A collection of frequently occurring 
amino acid combinations, referred to as seqlets. 

3D biodictionary: A collection of seqlets and their 
corresponding 3D structlets. 

Seqlets can be produced using pattern discovery 
techniques such as the one used in TEIRESIAS [12]. Seqlets 
provide a comprehensive finite set of descriptors for protein 
sequence space. A 3D biodictionary is obtained by 
intersecting 1D biodictionary with a structural database such 
as protein data bank (PDB).  Fig.1 shows the major steps in 
this approach. 

Once seqlets and corresponding structlets are generated 
from the target protein, we need to assemble these structlets 
in a way that gives the minimum total RMSD (root mean 
square distance) in the regions of overlapping seqlets. 
Suppose n seqlets are generated from the target protein, and 
the average number of structlets matching each seqlet is m, 
then we will have to search from a tree of height n with up 
to mn total nodes. For a protein of medium size (~500 
residues), we tend to get about 50 overlapping seqlets. If the 
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Fig. 1. The process of structlets-based protein structure assembly. 
 
average number of matching structlets is 5, we will have to 
find an optimal solution from a search space of 550 nodes. 
Every time a node is visited, an RMSD calculation is 
required. Computing the RMSD between two 3D structures 
is adapted from Schonemann’s solution for orthogonal 
Procrustes problem [13]. The details of finding RMSD 
between two 3D structures A and B are shown in Fig. 2. 

 
Input: Matrix A, B 
Output: Root mean square distance between A and B 
Procedure RMSD(A, B) 
begin 
  Move mass center of A to origin 
  Move mass center of B to origin 
  C := B'A 
  Compute the SVD: [U, S, V]:= svd(C) 
  Q := U*V'  
  ||A-BQ||2:=trace(A'A)+trace(B'B)-trace(Q'B'A) 
  RMSD:= SQRT(||A-BQ||2/N) 
  Output RMSD 
end 
 

Fig. 2. RMSD computation of two 3D structures. 

Since computation of RMSD of two structures is quite 
intensive, an exhaustive search without any constraints is 
prohibitively impossible, we adopted the concept of branch-
and-bound and incorporated it into our searching strategy. 

Branch-and-bound algorithms solve discrete optimization 
problems by examining the space of all combinatorial 
solutions (Branch), while using heuristics to eliminate 
possibilities that cannot lead to an optimal solution (Bound).  
In our case, optimization is a minimization process where 
solving the problem means finding a feasible solution with 
minimum cost. The total cost is computed as the total 
RMSD value of all the overlapping structlets in the potential 
solution chosen so far.  A minimum total cost found so far is 
called global upper bound in our algorithm.  Suppose we are 
currently visiting an internal node with a cost larger than the 
global upper bound, it is not necessary to visit the nodes 
branching from the current node based on elimination rule.  
The global upper bound is updated whenever a better 
solution is found. Details of the algorithm are given in Fig.3.



  

  
 

 
Input: a sequence of SN seqlets with matching structlets 
Output: an optimal assembly of SN structlets to assemble the protein of 
interest 
 
Initialization: 
minScore := infinity 
score := infinity 
choices := ∅ 
result := ∅ 
sort seqlets based on their location and length 
 
procedure assemble(seqlets[SN]) 
begin 
  N := number of structlets for the first seqlet 
  for a := 1 to N do 
   visit(seqlets[1].fragments[a], 1, 1) 
  end 
  combine the set of structlets from the result set 
end 
 
procedure visit(seqlets[i].fragments[j], i, k) 
begin 
  Compute score for node seqlets[i].fragments[j] 
  Update the ith choice in the list of chosen fragments 
  if i > SN then 
    if score<minScore then 
      minScore := seqlets[i].fragments[j].score 
      result = choices[] 
      return 

end 
return 

  end 
  else 
    N := number of structlets for the ith seqlet 
    for a := 1 to N do 
      Compute RMSD value for node seqlets[i+1].fragments[a] 
      if (seqlets[i+1].fragments[a].score < minScore) then 
        visit(seqlets[i+1].fragments[a], i+1, k+1) 
      end 
    end 
  end 
end 
 

 
Fig. 3. The branch-and-bound algorithm for structlets-based protein structure assembly. 

 
 

We implemented both the naïve version and a BestFirst 
version for the above algorithm. In the naïve version, 
branches are visited sequentially in the order in which 
they are encountered. However, in the BestFirst version, 
the branches are sorted based on the child’s alignability 
with its parent node. The branches are visited in the 
ascending order of their RMSD values of alignment with 
its parent node. The method is justified with the hope that 
a global upper bound will be reached earlier and more 
nodes will be eliminated during the searching. Therefore, 

it will make the searching faster and more efficient. 

III. SIMULATION EXPERIMENTS 
Currently this work is still in the prototype stage. We 

evaluate its effectiveness through simulated data sets. To 
construct simulated data, the 3D coordinates of alpha 
carbon atoms of a chosen protein are first extracted from 
Protein Data Bank data files. To simulate seqlets, 
overlapping amino acid sequences are randomly 
generated. The lengths of seqlets are chosen uniformly at 



  

random from the range 5 through 35. The subsequences 
were generated to cover all the sequences in the protein. 
For each subsequence generated, we randomly (either 
from uniform distribution, or normal distribution or a 
combination) perturbed the 3D coordinates of the original 
protein to generate structlets at different degrees of 
perturbation. Then the fragments were randomly rotated 
(rotation angles along X, Y and Z axes were generated 
uniformly at random) to simulate the real 3D 
biodictionary searching results. Simulation data was also 
generated for proteins of varying lengths. A preliminary 
study shows that BestFirst implementation is up to 30 
times faster than its naïve counterpart. Therefore, the 
BestFirst algorithm was used in the main experiments.  

We ran our experiments on the proteins 1rhd, 3hsc, 
2cro and 2yhx. We first wanted to know if our algorithm 
is able to recover the 3D structures for the proteins of 
interest. We also wanted to know how our algorithm 
scales as the number of seqlets increases. We chose a 
series of values for the number of seqlets ranging from 4 
to 64. Due to the random nature of the simulation 
experiments, seven experiments were conducted for each 
assembly job. The total running time and the average 
depth of the nodes were recorded for each experiment. 

IV. RESULTS AND CONCLUSION 
From simulated data sets, our algorithm is able to 

recover the 3D structures for the four experimented 
proteins (Table 1). 

Table 1. 3D protein structure assembly simulation results 
through branch-and-bound. (RMSD: root mean square 
distance between original structure and assembled 
structure). 
 

PDB ID # of residues RMSD (Å) 
1rhd 293 0.2577 
3hsc 386 0.3436 
2cro 69 0.0814 
2yhx 457 0.7816 

 
In general, we were able to reassemble the structures of 
the four experimented proteins in an acceptable manner. 
The deviation from original structure is less for smaller 
proteins and more for larger proteins.  

The total running time for assembling different number of 
seqlets is shown in Fig. 4. 

 

 

 

Total Time = 198.04e0.0962(Number of Seqlets)

R2 = 0.8457
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Fig. 4. Regression plot and functions of total running time versus the number of seqlets to be assembled 

 



  

As seen in Fig. 4, the total running time increases 
exponentially with respect to the number of seqlets to be 
assembled. The average depth of nodes visited is shown 
in Fig. 5.  
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Fig. 5. The average depth of nodes visited versus the number of seqlets 
to be assembled. 

The average depth of nodes visited was generally less 
than 1/3 of the height of the tree which is the number of 
seqlets (Fig.5). It is especially the case for larger number 
of seqlets. This indicates that our BestFirst 
implementation of the algorithm generally visited at most 
a cube root of the total number of nodes in the search tree. 

V. CONCLUSIONS AND FUTURE WORK 
In this paper, we introduced a branch-and-bound 

algorithm to perform structlets-based protein structure 
assembly. Based on the simulation results, our method is 
by and large capable of assembling the structure 
fragments (structlets) into corresponding original protein 
structures. However, the computation is intensive and our 
current implement is generally feasible for small scale 
protein structure assembly. For large scale protein 
structure assembly, a parallel implementation is needed. 
Since the assembly problem is essentially embarrassingly 
parallel, a Master-Slave paradigm will be an obvious 
choice. A hierarchical Master-Slave paradigm might be 
necessary for massively parallel processors. Currently the 
program is implemented in Java and available upon 
request. Our future work will involve rewriting the source 
code in C and MPI and porting the application to cluster 
environments and supercomputers.  
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