
GPM: A Graph Pattern Matching Kernel with Diffusion for Chemical
Compound Classification

Aaron Smalter, Jun Huan and Gerald Lushington

Abstract— Classifying chemical compounds is an active topic
in drug design and other cheminformatics applications. Graphs
are general tools for organizing information from heterogenous
sources and have been applied in modelling many kinds
of biological data. With the fast accumulation of chemical
structure data, building highly accurate predictive models for
chemical graphs emerges as a new challenge .

In this paper, we demonstrate a novel technique called
G
¯

raph P
¯
attern M

¯
atching kernel (GPM). Our idea is to leverage

existing frequent pattern discovery methods and explore their
application to kernel classifiers (e.g. support vector machine) for
graph classification. In our method, we first identify all frequent
patterns from a graph database. We then map subgraphs to
graphs in the database and use a diffusion process to label
nodes in the graphs. Finally the kernel is computed using a set
matching algorithm. We performed experiments on 16 chemical
structure data sets and have compared our methods to other
major graph kernels. The experimental results demonstrate
excellent performance of our method.

I. INTRODUCTION
The fast accumulation of data describing chemical struc-

tures [1] and biological activity calls for the development
of efficient informatics tools. Cheminformatics is a rapidly
emerging research discipline that employs a wide array of
statistical, data mining, and machine learning techniques
with the goal of establishing robust relationships between
chemical structures and their biological properties[25].

Publicly-available large-scale chemical compound
databases have offered tremendous opportunities for
creating highly efficient in silico drug design methods.
Many machine learning and data mining algorithms have
been applied to study the structure-activity relationship
of chemicals with the goal of building classifiers for
graph-structured data. Additional applications include
protein function prediction based on structure [9] and gene
regulation networks analysis [10].

Recently Support Vector Machines (SVM) have gained
popularity in drug design and cheminformatics. A key insight
of SVM is the utilization of kernel functions (i.e. inner
product of two points in a Hilbert Space) to transform a
non-linear classification problem into a linear one. Design
of a good kernel function for graphs is therefore a critical
issue and several have been studied.

This work has been supported by the Kansas IDeA Network for Biomed-
ical Research Excellence (NIH/NCRR award #P20 RR016475), the KU
Center of Excellence for Chemical Methodology and Library Development
(NIH/NIGM award #P50 GM069663), and NIH grant #R01 GM868665.

Aaron Smalter and Jun Huan are with Department of Electri-
cal Engineering and Computer Science, University of Kansas, USA
asmalter,jhuan@ku.edu

Gerald Lushington is with the Molecular Graphics and Modeling Labo-
ratory, University of Kansas, USA glushington@ku.edu

The initial work was done by Haussler in his work of R-
convolution kernel, providing a framework of which many
current graph kernel function follow [7]. Recent progress
of graph kernel functions can be roughly divided into two
categories. The first group of kernel functions consider the
full adjacency matrix of graphs and hence measure the global
similarity of two graphs. These include product graph kernels
[6], random walk based kernels [12], and kernels based on
shortest paths between pair of nodes [13]. The second group
of kernel functions try to capture the local similarity of two
graphs by counting the shared subcomponents of graphs.
These include the subtree kernels [20], cyclic kernels [24],
spectrum kernel [4], and recently subgraph kernels [23].

In this paper, we explore the second avenue and aim
to leverage existing frequent pattern mining algorithms in
building accurate graph kernel functions. Towards that end,
we demonstrate a novel technique called graph pattern
matching kernel (GPM). We have tested our algorithm using
16 chemical structure data sets. The experimental results
demonstrate that our method outperforms existing state-of-
the-art methods with a large margin.

The rest of the paper is organized as follows. In the
remainder of this section, we give a brief survey of research
efforts that are closely related to our current work. In section
II, we provide background information about graphs. In
section III, we present the details of our graph pattern
matching kernels. In section IV we use real-world data sets
to evaluate our proposed methods and perform a comparison
of ours to the current state-of-the-art. Finally we conclude
and present our future plan in section V.

A. Related Work

We survey the work related to graph classification methods
by dividing them into two categories. The first category of
methods explicitly collect a set of features from the graphs.
Once a set of features is determined, a graph is described
by a feature vector, and any existing classification methods
such as Classification based on Association (CBA) [2] and
decision tree [19] that work in an n-dimensional Euclidian
space, may be applied for graph classification.

The second approach is to implicitly collect a (possibly
infinite) set of features from graphs. Rather than computing
the features, this approach computes the similarity of graphs,
using the framework of “kernel functions” [26]. The advan-
tage of a kernel method is that it has low chance of over
fitting, which is a serious concern in high dimensional space
with low sample size. We review these kernel functions in
the following section.

1) Kernel Functions for Graphs: In recent years a variety
of graph kernel functions have been developed, with promis-
ing application results as described by Ralaviola et al. [21].

Product graph kernels use a feature space of all possible
node label sequences for walks in graphs. Since the number
of possible walks are infinite, there is no way to enumerate
all the features in kernel computation [6]. Instead, a product
graph is computed in order to make the kernel function
computation feasible.

Rather than computing the shared paths exactly, which
has prohibitive computational cost for large graphs, Kashima
et al. [12] developed the marginalized kernel that uses a
Markov model to generate random walks of a labeled graph.
The kernel is then computed using the number of shared
walks.

Spectrum kernels aim to simplify the aforementioned
kernels by working in a finite dimensional feature space
based on a set of subgraphs (or as special cases, trees,
cycles, and paths). The kernel function is computed as the
inner product between two feature vectors, such as counts
of subgraph occurrences as in [4]. Transformations of the
inner product, such as min-max kernel [27] and Tanimoto
kernel [14], are also widely used. The subtree kernel [17] is
a variation on the spectrum kernel that uses subtrees instead
of paths.

The optimal assignment kernel, proposed by Frölich et
al [5], differs significantly from the marginalized graph
kernel in that it attempts to align two graphs, rather than
compare sets of linear substructures. The similarity between
the two graphs is computed by finding the maximal weighted
bipartite graph between the two sets of nodes.

II. BACKGROUND

In this section we discuss a few important definitions for
graph database mining: labeled graphs, subgraph isomorphic
relation, graph kernel function, and graph classification.

Definition 2.1: A labeled graph G is a quadruple G =
(V,E,Σ,λ) where V is a set of vertices or nodes and E ⊆
V ×V is a set of undirected edges. Σ is a set of (disjoint)
vertex and edge labels, and λ : V ∪E → Σ is a function that
assigns labels to vertices and edges. We assume that a total
ordering is defined on the labels in Σ.

A graph database is a set of labeled graphs.
Definition 2.2: A graph G′ = (V ′,E ′,Σ′,λ ′) is subgraph

isomorphic to G = (V,E,Σ,λ), denoted by G′ ⊆ G, if there
exists a 1-1 mapping f : V ′→V such that
• ∀v ∈V ′,λ ′(v) = λ (f (v))
• ∀(u,v) ∈ E ′,(f (u), f (v)) ∈ E, and
• ∀(u,v) ∈ E ′,λ ′(u,v) = λ (f (u), f (v))

.
The function f is a subgraph isomorphism from graph

G′ to graph G. We say G′ occurs in G if G′ ⊆ G. Given a
subgraph isomorphism f , the image of the domain V ′ (f (V ′))
is an embedding of G′ in G.

Example 2.1: Figure 1 shows a graph database of three
labeled graphs. The mapping (isomorphism) q1 → p3, q2 →
p1, and q3 → p2 demonstrates that graph Q is subgraph

(1) Graph P

a b

b

b

x

y

y

x

y

p1

p3

p2

p4

a

b

b

x

y

q2

q1

q3

(2) Graph Q

b

b

b

y

y

y
s2

s3

s1

(3) Graph S

Fig. 1. A Database of three labeled graphs.

isomorphic to P and hence Q occurs in P. Set {p1, p2, p3} is
an embedding of Q in P. Similarly, graph S occurs in graph
P but not Q.

III. GRAPH PATTERN MATCHING KERNELS

Here we present our design of a graph matching kernel
with diffusion. We start the section by first presenting a
general framework for graph matching. Then we present
the pattern based graph matching kernel. Finally we show
a technique we call “pattern diffusion” that significantly
improves graph classification accuracy in practice.

A. Graph Matching Kernel

To derive an efficient algorithm scalable to large graphs,
our idea is to use a function Γ : V → Rn to map nodes in
a graph to a n dimensional feature space that captures not
only the node label information but also the neighborhood
topological information around the node. If we have such
function Γ, we may design the following graph kernel:

Km(G,G′) = ∑
(u,v)∈V [G]×V [G′]

K(Γ(u),Γ(v)) (1)

K can be any kernel function defined in the co-domain
of Γ. We call this function Km a graph matching kernel.
The following theorem indicates that Km is symmetric and
positive semi-definite and hence a real kernel function.

Theorem 3.1: The graph matching kernel is symmetric
and positive semi-definite if the function K is symmetric and
positive semi-definite.
Proof sketch: the matching kernel is a special case of the
R-convolution kernel and is hence positive semi-definite as
proved in [16].

We visualize the kernel function by constructing a
weighted complete bipartite graph: connecting every node
pair (u,v) ∈ V [G]×V [G′] with an edge. The weight of
the edge (u,v) is K(Γ(v),Γ(v)). In Figure 2, we show a
weighted complete bipartite graph for V [G] = {v1,v2,v3} and
V [G′] = {u1,u2,u3}.

From the figure we see that if two nodes are quite
dissimilar, the weight of the related edge is small. Since
dissimilar node pairs usually outnumber similar node pairs,
if we use linear kernel for nodes, we may have a noisy
kernel function and hence loose our signal. In our design, we
use the RBF kernel function, as specified below, to penalize
dissimilar node pairs.

K(X ,Y) = e
−||X−Y ||22

2 (2)

Kn(v2,u1)

v1

v2

v3

u1

u2

u3

Kn(v1,u2)

Kn(v3,u3)

Fig. 2. The maximum weighted bipartite graph for graph matching.
Highlighted edges (v1,u2), (v2,u1), (v3,u3) have larger weights
than the rest of the edges (dashed).

where ||X ||22 is the squared L2 norm of a vector X .

B. Graph Pattern Matching Kernel

One way to design the function Γ is to take advantage of
frequent patterns mined from a set of graphs. Intuitively if
a node belongs to a subgraph F , we have some information
about the local topology of the node. Following the intuition,
given a node v in a graph G and a frequent subgraph F , we
design a function ΓF such that

ΓF(v) =
{

1 if u belongs an embedding of F in G
0 otherwise

We call the function ΓF as a “pattern membership func-
tion” since this function tests whether a node occurs in a
specific subgraph feature (“membership to a subgraph”).

Given a set of frequent subgraph F = F1,F2, . . . ,Fn, we
treat each membership function as a dimension and design
the function ΓF as below:

ΓF (v) = (ΓFi(v))
n
i (3)

In other words, given n frequent subgraph, the function Γ
maps a node v in G to a n-dimensional space, indexed by the
n subgraphs, where values of the features indicate whether
the node is part of the related subgraph in G.

Example 3.1: In Figure 3, we duplicated the figure Q in
Figure 1. We show two subgraph features F1 and F2. F1 has
an embedding in Q at {q1,q2} and F2 occurs in Q at {q1,q3}.
We depict the occurrences using shadings with different color
and orientations. For node q1, if we consider subgraph F1
as a feature, we have ΓF1(q1) = 1 since q1 is part of an
embedding of F1 in Q. Also, we have ΓF1(q3) = 0 since q3
is not part of an embedding of F1 in Q. Similarly we have
ΓF2(q1) = 1 and ΓF2(q3) = 1. Hence ΓF1,F2(q1) = (1,1) and
ΓF1,F2(q3) = (0,1). The values of the function ΓF1,F2 are also
illustrated in the same figure using the annotated Q.

C. Graph Pattern Matching Kernel with Pattern Diffusion

Here we introduce a better technique than the pattern
membership function to capture the local topology informa-
tion of nodes. We call this technique “pattern diffusion”. Our
design has the following advantages:
• Our design is generic and does not assume any domain

knowledge from a specific application. The diffusion

b

b

a ab

bb

Q
F 2

F 1

q 2

q 1

q 3

b

b

a

q 2

q 3

q 1

1, 0

0 , 1

1 , 1

A nnota ted Q

Fig. 3. An example of pattern membership functions.

process may be applied to graphs with dramatically
different characteristics.

• The diffusion process is straightforward to implement
and can be computed efficiently.

• We prove that the diffusion process is related to the
probability distribution of a graph random walk. This
explains why the simple process may be used to sum-
marize local topological information.

Below, we outline the pattern diffusion kernel in three
steps.

In the first step, we identify a seed as a starting point
for the diffusion. In our design, a “seed” could be a single
node, or a set of connected nodes in the original graph. In
our experimental study, we always use frequent subgraphs for
seeds since we can easily compare a seed from one graph to
a seed in another graph.

In the second step given a set of nodes S as seed, we
recursively define a diffusion function ft in the following
way.

The base f0 is defined as:

f0(u) =
{

1/|S| if u ∈ S
0 otherwise

We define ft+1 (t ≥ 0) with ft in the following way:

ft+1(v) = ft(v)× (1− λ
d(v)

)+ ∑
u∈N(v)

ft(u)× λ
d(u)

(4)

In the notation, N(v) = {u|(u,v) is an edge } is the set of
nodes that connects to v directly. d(v) = |N(v)| is the node
degree of v. λ is a parameter that controls the diffusion rate.

The formula 4 describes a process where each node
distributes a λ fraction of its value to its neighbors evenly
and in the same way receives some value from its neighbors.
We call it “diffusion” because the process simulate the way
a value is spreading in a network. Our intuition is that the
distribution of such a value encodes information about the
local topology of the network.

To constrain the diffusion process to a local region, we use
one parameter called diffusion time, denoted by τ , to control
the diffusion process. Specifically we limit the diffusion
process to a local region of the original graph with nodes
that are at most τ hops away from a node in the seed S. In
this sense, the diffusion should be named “local diffusion”.

Finally in the last step, for the seed S, we define the map-
ping function Γd

S as the limit function of ft as t approaches
to infinity, or

Γd
S = lim

t→∞
ft (5)

And given a set of frequent subgraph F = F1,F2, . . . ,Fn
as seeds, we design the pattern diffusion function Γd

F as:

Γd
F (v) = (Γd

Fi
(v))n

i (6)

D. Connections of Other Graph Kernels

1) Connection to Marginalized Kernels: Here we show
the connection of pattern matching kernel function to the
marginalized graph kernel [12], which uses a Markov model
to randomly generate walks of a labeled graph.

Given a graph G with nodes set V [G] = {v1,v2, . . . ,vn},
and a seed S ⊆ V [G], for each diffusion function ft , we
construct a vector Ut = (ft(v1), ft(v2), . . . , ft(vn)). According
to the definition of ft , we have Ut+1 = M×Ut where the
matrix M is defined as:

M(i, j) =





λ
d(v j)

if i 6= j and i ∈ N(j)

1− λ
d(vi)

i = j
0 otherwise

In this representation, we compute the stationary distribu-
tion (fS = limt→∞ ft) by computing M∞×U0.

We notice that the matrix M corresponds to a probability
matrix corresponding to a Markov Chain since
• all entries are non-negative
• column sum is 1 for each column
Therefore the vector M∞×U0 corresponds to the stationary

distribution of the local random walk as specified by M.
In other words, rather than using random walk to retrieve
information about the local topology of a graph, we use the
stationary distribution to retrieve information about the local
topology. Our experimental study shows that this in fact is
an efficient way for graph classification.

2) Connection to Optimal Assignment Kernel: The opti-
mal assignment (OA) kernel [5] carries the same spirit of
our graph pattern matching kernel in that OA uses pairwise
node kernel function to construct a graph kernel function. OA
kernel has been utilized for cheminformatics applications and
is found to deliver good results empirically.

There are two major differences between ours and the OA
kernel. (1) OA kernel is not positive semi-definite and hence
is not Mercer kernel in a strict sense. Non Mercer kernel
functions are used to train SVM model and the problem is
that the convex optimizer utilized in SVM will not converge
to a global optimal and hence the performance of the SVM
training may not be reliable. (2) OA utilizes a complicated
recursive function to compute the similarity between nodes,
which make the computation of the kernel function runs
slowly for large graphs [23].

E. Pattern Diffusion Kernel and Graph Classification

We summarize the discussions we present so far and show
how the kernel function is utilized to construct an efficient
graph classification algorithm at both the training and testing
phases.

1) Training Phase: In the training phase, we divide graphs
of the training data set D = {(Gi,Ti,)}n

i=1 into groups accord-
ing to their class labels. For example in binary classification,
we have two groups of graphs: positive or negative. For
multi-class classification, we partition graphs according to
their class label where graphs have the same class labels are
grouped together. The training phase is composed of four
steps:
• Obtain frequent subgraphs. We identify frequent sub-

graphs from each graph group and union the subgraph
sets together as our seed set F .

• For each graph G in the training data set, we use the
node pattern diffusion function Γd

F to label nodes in G.
Thus the feature vector of a node v is a vector LV =
(Γd

Fi
(v))m

i=1 with length m = |F |.
• For two graphs G,G′, we construct the complete

weighted bipartite graph as described in section III-A
and compute the kernel Km(G,G′) using Equation 1 and
Equation 2.

• Train a predictive model using a kernel classifier.
2) Testing Phase: In the testing phase, we compute the

kernel function for graphs in the testing and training data
sets. We use the trained model to make predictions about
graph in the testing set.
• For each graph G in the testing data set, we use Γd

F to
label nodes in G and create feature vectors as we did
in the training phase.

• We use Equation 1 and Equation 2 to compute the kernel
function Km(G,G′) for each graph G in the testing data
set and for each graph G′ in the training data set.

• Use kernel classifier and trained models to obtain pre-
diction accuracy of the testing data set

Below we present our empirical study of different kernel
functions including our pattern diffusion kernel.

IV. EXPERIMENTAL STUDY

We conducted classification experiments using six differ-
ent graph kernel functions, including our Pattern Diffusion
kernel, on sixteen different data sets. Due to space constraints
we are unable to present the entirety of our data here, but it
can be viewed in our technical report [22]. There are twelve
chemical-protein binding data sets, and the rest are chemical
toxicity data sets. We performed all of our experiments on
a desktop computer with a 3Ghz Pertium 4 processor and 1
GB of RAM. In the following subsections, we describe the
data sets and the classification methods in more detail along
with the associated results.

In all classification experiments, we used the LibSVM [3]
as our kernel classifier. We used nu-SVC with ν = 0.5. Our
classification accuracy (TP+TN/S, TP: true positive, TN: true
negative, S: total number of testing samples) is computed

Fig. 4. Average accuracy for all kernel functions and data sets.

by averaging over a 10-fold cross-validation experiment.
Standard deviation is computed similarly. To have a fair
comparison, we simply used default SVM parameters in
all cases, and did not tune any parameters to increase the
accuracy of any method.

A. Data Sets

We have selected sixteen data sets covering prediction
of chemical-protein binding activity and chemical toxicity.
The first seven data sets are manually extracted from the
BindindDB database [15]. The next five are established
data sets taken from Jorissen et al. [11]. The last four are
from the Predictive Toxicology Challenge[8] (PTC). Detailed
information for the data sets is available in supplementary
material.

1) BindingDB Sets: The BindingDB database contains
more than 450 proteins. For each protein, the database record
chemicals that bind to the protein. Two types of activity
measurements Ki and IC50 are provided. Both measurements
measure inhibition/dissociation rates between a proteins and
chemicals. From BindingDB, we manually selected 7 pro-
teins with a wide range of known interacting chemicals
(ranging from tens to several hundreds). These data sets are
AChE, ALF, EGF-R, HIV-P, HIV-RT, HSP90, and MAPK.

2) Jorissen Sets: The Jorissen data sets also contains
information about chemical-protein binding activity. In this
case the provider of the data set carefully selected positive
and negative samples and hence are more reliable than the
data sets we created from BindingDB. For more information
about the creation of the data sets, see [11] in details. The
data sets from this study are: CDK2, COX2, FXa, PDE5,
and A1A.

3) PTC Sets: The Predictive Toxicology Challenge (PTC)
data sets contain a series of chemical compounds classified
according to their toxicity in male rats, female rats, male
mice, and female mice. While chemical-protein binding
activity is an important type of chemical activity, it is not
the only type. Toxicity is another important, though different,
kind of chemical activity we would like to predict in drug

design. These data sets (PTC-FR/FM/MR/MM) are well
curated and highly reliable.

B. Kernel Functions

We have selected 6 different kernel functions for
evaluation: Marginalized[12], spectrum[4], tanimoto[14],
subtree[17], optimal assignment[5], together with our graph
pattern matching kernel.

Four kernel functions (Marginalized, spectrum, tanimoto,
subtree) are computed using the open source Chemcpp v1.0.2
package [18]. The optimal assignment kernel was computed
using the JOELib2 package, and is not strictly a kernel
function, but still provides good prediction accuracy. Our
graph pattern matching kernel was computed using our own
MATLAB code.

C. Experimental Results

1) Comparison Between Kernel Functions: Here we
present the results of our graph classification experiments
with various kernel functions. Figure 4 shows the classifica-
tion accuracy for different kernel functions and data sets,
averaged over a 10-fold cross validation experiment. The
standard deviations (omitted) of the accuracies are generally
very high, from 5-10%, so statistically significant differences
between kernel functions are generally not observed.

We can see from the data that our method is competitive
for all sixteen data sets. If we examine the accuracy of
each kernel function averaged over all data sets, we see
that our GPM kernel performs the best overall. Again, the
standard deviations are high so the differences between the
top performing kernels are not statistically significant. Still,
with 16 different data sets we can see some clear trends:
GPM kernel delivers the highest classification accuracy in
8 out of the 16 data sets, with tanimoto kernel best in 4,
marginalized best in 2, subtree in 2, optimal assignment in
1 and spectrum in none.

Although GPM does not work well on a few data sets
such as AChE, HIV-RT, MAPK, and PTC-FR/MR, overall
it performs better when compared to any other kernel for

a majority of data sets. It is better than every other kernel
function in at least 10 of the 16 data sets.

In general the GPM, spectrum and tanimoto kernels per-
form the best, with over all average accuracy of about 80%.
The subtree, optimal assignment, and marginalized also per-
form very good, in mid to high 70%. The min/max tanimoto
kernel performed much worse than the other methods, and
hence it was not included in the figure. Note that the optimal
assignment kernel is missing a prediction accuracy for the
FXa data set, this was due to a terminal error in the JOELib2
software used to calculate this kernel on this data set.

V. CONCLUSIONS

Graphs have proven to be powerful tools for modeling
complex, high-dimensional biological data; building highly
accurate predictive models for chemical graph classification
is a goal for cheminformatics and drug design. In this
paper we have demonstrated the utility of a novel graph
kernel function, graph pattern matching kernel (GPM kernel).
We showed that the GPM kernel can capture the intrinsic
connection between a chemical and its class label and has the
lowest testing error in majority of the data sets we evaluated.

REFERENCES

[1] C. Austin, L. Brady, T. Insel, and F. Collins. Nih molecular libraries
initiative. Science, 306(5699):1138–9, 2004.

[2] Y. M. Bing Liu, Wynne Hsu. Integrating classification and association
rule mining. In Proceedings of the Fourth International Conference
on Knowledge Discovery and Data Mining, 1998.

[3] C. Chang and C. Lin. Libsvm: a library for support vector machines,
2001. Software available at http://www.csie.ntu.edu.tw/ cjlin/libsvm.

[4] M. Deshpande, M. Kuramochi, and G. Karypis. Frequent sub-
structure-based approaches for classifying chemical compounds. IEEE
Transactions on Knowledge and Data Engineering, 2005.

[5] Fröohlich, J. Wegner, F. Sieker, and A. Zell. Kernel functions for
attributed molecular graphs - a new similarity-based approach to adme
prediction in classification. QSAR & Combinatorial Science, 2006.

[6] T. Gärtner, P. Flach, and S. Wrobel. On graph kernels: Hardness
results and efficient alternatives. In Sixteenth Annual Conference on
Computational Learning Theory and Seventh Kernel Workshop, 2003.

[7] D. Haussler. Convolution kernels on discrete structures. Technical
Report UCSC-CRL099-10, Computer Science Department, UC Santa
Cruz, 1999.

[8] C. Helma, R. King, and S. Kramer. The predictive toxicology
challenge 2000-2001. Bioinformatics, 17(1):107–108, 2001.

[9] J. Huan, W. Wang, A. Washington, J. Prins, R. Shah, and A. Tropsha.
Accurate classification of protein structural families based on coherent
subgraph analysis. In Proceedings of the Pacific Symposium on
Biocomputing (PSB), pages 411–422, 2004.

[10] Y. Huang, H. Li, H. Hu, X. Yan, M. S. Waterman, H. Huang, and
X. J. Zhou. Systematic discovery of functional modules and context-
specific functional annotation of human genome. Bioinformatics,
pages ISMB/ECCB Supplement, 222–229, 2007.

[11] R. Jorissen and M. Gilson. Virtual screening of molecular databases
using a support vector machine. J. Chem. Inf. Model., 45(3):549–561,
2005.

[12] H. Kashima, K. Tsuda, and A. Inokuchi. Marginalized kernels between
labeled graphs. In Proc. of the Twentieth Int. Conf. on Machine
Learning (ICML), 2003.

[13] B. K.M. and K. H.-P. Shortest-path kernels on graphs. In in Proc. of
International Conference on Data Mining, 2005.

[14] R. L, S. SJ, S. H, and B. P. Graph kernels for chemical informatics.
Neural Networks, 18:1093–1110, 2005.

[15] T. Liu, Y. Lin, X. Wen, R. N. Jorrisen, and M. Gilson. Bindingdb: a
web-accessible database of experimentally determined protein-ligand
binding affinities. Nucleic Acids Research, 35:D198–D201, 2007.

[16] S. Lyu. Mercer kernels for object recognition with local features. In
IEEE Computer Vision and Pattern Recognition, pages 223–229, 2005.

[17] P. Mahe and J. Vert. Graph kernels based on tree patterns for
molecules. Technical Report HAL:ccsd-00095488, Ecoles des Mines
de Paris, September 2006.

[18] J.-L. Perret, P. Mahe, and J.-P. Vert. Chemcpp: an open source c++
toolbox for kernel functions on chemical compounds, 2007. Software
available at http://chemcpp.sourceforge.net.

[19] J. R. Quinlan. C4.5 : Programs for Machine Learning. Morgan
Kaufmann, 1993.

[20] J. Ramon and T. Gärtner. Expressivity versus efficiency of graph
kernels. In Technical Report, First International Workshop on Mining
Graphs, Trees and Sequences, 2003.

[21] L. Ravaliola, S. J. Swamidass, and H. Saigo. Graph kernels for
chemical informatics. Neural Networks, 2005.

[22] A. Smalter, J. Huan, and G. Lushington. Gpm: A graph pattern match-
ing kernel with diffusion for accurate graph classification. Technical
report, University of Kansas, August 2008.

[23] A. Smalter, J. Huan, and G. Lushington. Structure-based pattern
mining for chemical compound classification. Proceedings of the 6th
Asia Pacific Bioinformatics Conference, 2008.

[24] S. W. Tamas Horvath, Thomas Gartner. Cyclic pattern kernels for
predictive graph mining. SIGKDD, 2004.

[25] N. Tolliday, P. A. Clemons, P. Ferraiolo, A. N. Koehler, T. A. Lewis,
X. Li, S. L. Schreiber, D. S. Gerhard, and S. Eliasof. Small molecules,
big players: the national cancer institute’s initiative for chemical
genetics. Cancer Research, 66:8935–42, 2006.

[26] V. Vapnik. Statistical Learning Theory. John Wiley, 1998.
[27] N. Wale, I. Watson, , and G. Karypis. Comparison of descriptor spaces

for chemical compound retrieval and classification. Knowledge and
Information Systems, 2007.

