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Abstract— With the development of highly efficient chemin-
formatics data collection technology, classification of chemical
structure data emerges as an important topic in cheminfor-
matics. Towards building highly accurate predictive models for
chemical data, here we present an efficient feature selection
method. In our method, we first represent a chemical structure
by its 2D connectivity map. We then use frequent subgraph
mining to identify structural fragments as features for graph
classification. Different from existing methods, we consider the
spatial distribution of the subgraph features in the graph data
and select those ones that have consistent spatial locations.

We have applied our feature selection methods to several
cheminformatics benchmarks. Our experimental results demon-
strate a significant improvement of prediction as compared to
the state-of-the-art feature selection methods.

I. INTRODUCTION

A new challenge for bioinformatics is to develop com-
putational techniques to elucidate the roles of small organic
molecules in biological systems. Such successful delineation
will lead to better drugs, improved chemical tools to study
biological systems, and more effective environmental preser-
vation strategy. Traditionally the computational analysis of
chemicals was done mainly within pharmaceutical compa-
nies for therapeutics discovery [6]. This situation, however,
has been changed dramatically in the last few years. With
the Chemical Genetics Initiative and the Molecular Library
Initiative (started by NIH in 2002, [20], and 2004, [1],
respectively), digitalized data about chemical structures and
their biological activities (e.g. interactions with biological
systems) grow exponentially fast.

A major challenges in building structure-activity rela-
tionship models for chemicals lies in the large number of
structural features of the molecule structures. The objective
of this paper is to derive an automated way to construct a
low-dimensional vector representation for graph represented
chemical structures through developing a highly effective
feature selection methods. Finding a proper vector repre-
sentation of graphs and graph represented chemicals may
lead to more accurate models, reduced computational time,
and better explanations of the real relationship between
biomolecules and their functions, and hence worth a careful
investigation.

Current solutions for feature selection problems can be
roughly divided into two categories: feature extraction and
feature selection [2]. Principle Component Analysis (PCA)
projects data to a eigenvector space to reduce the dimen-
sionality and hence to obtain a small number of features
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[12], [16]. Similar methods include Linear Discriminative
Analysis LDA [23], Local Linear Embedding LLE [17] and
Isomap [19]. Using Kernel PCA, investigators have designed
algorithms to embed a graph to a vector space and achieved
good empirical results in classification [21], [18].

Current feature selection methods include feature filtering
methods that select individual features whose distribution
correlates the distribution of the class labels. Such methods
include term frequency thresholding, mutual information,
information gain, χ2, and Pearson Correlation as studied in
[22]. In contrast to filtering method, which do not consider
the dependency between features and may select redundant
features, wrapper methods search through the feature subset
space and identify highly informative features by using a
classifier to score the subsets of features [14], [15].

Adapting existing feature extraction and feature selection
methods to cheminformatics is non trivial. First, chemical
structures are discrete structures. There is no obvious choices
of features in chemical structures to start the feature selection
method. Second, kernel functions map chemical structures
to a Hilbert space implicitly and thus avoid the problem of
direct feature extraction. Though theoretic appealing, limited
progresses have been made in reality in applying graph ker-
nel functions to extract useful features in cheminformatics.
This is due to several reasons: (i) design a kernel function for
molecular structures is not easy, (ii) the connection of kernel
space and the original structure space is not clear and (iii)
it is hard to explain the physical meaning of the identified
features using kernel PCA techniques.

In this paper we have developed a novel strategy for fea-
ture selection in chemical structures. In our method, we first
represent a chemical structure by its 2D connectivity map
where nodes represent atoms and edges represent chemical
bonds in a chemical. We then use frequent subgraph mining
to identify structural fragment features. Our main thrust of
the paper is that rather than using a simple postprocessing
technique to select features, we consider the spatial distri-
bution of the features and use that information to guild our
feature selection process. We illustrate our intuition with the
following example.

On the top portion of Figure 1, we show the structure
of a chemical structure and its graph representation. At the
bottom of the same figure we show a graph database of three
graph represented chemicals and three subgraph patterns. We
see that subgraph features F1 and F2 occur in every graph
with a consistent relative spatial distribution. In contrast to
F1 and F2, subgraph feature F3 has quite different spatial
distribution as compared to F1 and F2. In regular feature
selection, F1, F2, and F3 occur in the same set of graphs and
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Fig. 1. The top: a chemical structure and the right is its corresponding
graph representation; The middle and the lower: spatial distribution of three
frequent fragments in a chemical structure graph database

hence may have the same classification power. Clearly this
is not the case in this example. Based on intuition, we have
designed an integrated approach of two existing approaches:
graph kernels and subgraph mining by designing a feature
selection method working on graph spectrum kernels to
gain deeper understanding of graph data. Our comprehensive
experimental study of the designed algorithms using real-
world data sets revealed the power of the novel feature
selection method.

We formally define our feature selection problem using
graphs and graph features below:

A. Problem Statement

Given a set of graph represented chemicals G, each graph
in G has an associated labels c, and a set of subgraphs F
extracted from G, the graph feature selection problem is
to select a subset of features Fs ⊂ F , to give a better
classification accuracy for the graph data set.

B. Related Work

Extracting features, in the form of subgraphs, from graph
data has been well studied in graph database mining methods.
In this methods, the goal is to extract highly informative
subgraphs from a set of graphs. Typically some filtering
criteria are applied, among those the most widely used is
the frequency of a subgraph. For example, Huan et al. de-
velop a depth-first search algorithm: Fast Frequent Subgraph
Mining (FFSM) [10]. This algorithm identified all connected
subgraphs that occurs in a large fraction of graphs in a
graph data set. Majority of the frequent subgraph feature
extraction methods are unsupervised, meaning that there is
no class labels information available (or such information are
deliberately ignored) with a few exceptions. For example,
an odd ratio is used to select subgraphs that is highly
informative to build classifier in [9].

On the other hand, many existing feature selection meth-
ods are supervised, determining the relevance of a feature

through computing the correlation of feature value distribu-
tion and class label distribution. Traditional feature filtering
methods select features independent of any classifier. In
contrast to filtering method, which do not consider the
dependency between features and may select redundant fea-
tures, wrapper methods search through the subset space and
identify highly informative features by using a classifier to
evaluate the classification power of subsets of features and
identify optimal subsets [14].

Kernel methods are now widely used in supervised learn-
ing and feature selection as well. For example, in the method
of Support Vector Machine Recursive Feature Elimination
(SVM RFE)[8], SVM RFE selects features via a greedy
backward feature elimination. SVM RFE first build a linear
classifier, it then uses the weight vector of the hyperplane
constructed by the training samples to rank features. During
each iteration, lower ranked features were removed and new
hyperplane is constructed and so on so forth. The limitation
of SVM RFE is that it works only with linear kernel.

Spectral feature selection [24], as a filtering method,
explored an uniformed frame for feature selection in both
unsupervised and supervised learning. It first constructed an
object graph, where each node is corresponding to an object
of training data; then ranked features using graph spectral
decomposition and selected a subset of features based on
their rank. Since spectral feature selection is a filtering
methods, the feature dependency information is ignored. Cao
et al. recently developed a method for feature selection in
the kernel space rather than the original feature space based
on Maximum Margin concept. Without tracing back into
original feature space, they could select features in Kernel
space.

Maximum Margin Feature selection (MMRFS) [4] is a
wrapper method. In this method MMRFS uses information
gain to weigh the correlation between each feature and class
labels. MMRFS then selects a feature with less redundancy
and covering new training samples.

Though feature selection have been developed for a long
time, none of the existing method considers the special
characteristics of graph data and hence may not provide
the optimal results for graph feature selection. The objective
of this paper is to develop a highly effective graph feature
selection methods.

II. METHODOLOGY

Our structure based feature selection method has two
steps: (1) feature extraction and (2) feature selection. In
the feature extraction step, we mine frequent subgraphs in
the training samples as features. We then apply a feature
selection method, as outlined below and discussed in details
in [7], to select a smaller set of features to build graph
classification model.

A. Notation

In this paper, we use capital letters, such as G, for a
single graph and upper case calligraphic letters, such as G
= G1, G2, . . . , Gn, for a set of n graphs. We assume each
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Fig. 2. Left: Three subgraphs and three embeddings of the subgraphs. This
figure is duplicated from Figure 1 for clarity. Right: The feature consistency
map for the three subgraphs shown in Figure 1

graph Gi ∈ G has an associated class label ci from a label
set C. We use F = F1, F2, . . . , Fn for a set of n features.
Given a set of n features F and a graph G, we create a
feature vector for G, denoted by GF , indexed by features
in F and with values indicate whether the related feature
is present (1) or absent (0) in the graph G. In other words,
GF = (GFi)n

i=1 and

GF =
{

1 if F ⊆ G
0 otherwise

B. Feature Consistency Map

Here we present a way to measure the consistency in
a set of features without the class label information. Such
measurement is clearly unsupervised, meaning that we do
not take class label distribution into consideration. Our main
source of information is the spatial distribution of subgraph
features. To quantify the information, we propose a data
structure called feature consistency map, whose nodes are
features and whose edges indicating the consistent relation-
ship of features. Formal definition of the feature consistency
map is presented below:

Definition 2.1: (Feature Consistency Map) A feature
consistency map is a graph G = (V, E) where the vertex
set V and arc set E are specified below:
• Each vertex in V represents a feature
• Two vertices are connected by an arc in E if the two

vertices are ”consistent”
To avoid confusion of the feature consistency map and a

regular graph that we specified before, we use vertex and arc
to denote commonly used term “node” and “edge”. The key
point in the definition is how we define the consistency of
two features. In Figure 1, intuitively we see that F1 and F2

are consistent but F1 and F3 are not consistent. To make the
intuition more clearly, we introduce the following definitions:

Definition 2.2: Embedding Distance: Given two frequent
subgraphs features Fi and Fj and their embeddings of ei ej

in a graph G, the embedding distance, denoted by dG(ei, ej)
is defined as:

dG(Fi, Fj) =

∑
u∈ei

∑
v∈ej

d(u, v)

|ei| × |ej | (1)

Where d(u, v) the shortest distance between node u and node
v.

In Figure 2, subgraph feature F1 has an embedding
{N, N} in G1. F2 has an embedding {C, O} in G1. Hence,

the embedding distance between pattern F1 and F2, denoted
by dG1(F1, F2) is 2+3+3+2

2∗2 =2.5.
Based on the embedding distances, we define two features

are consistent, if the standard variance of the set of embed-
ding distances is less than some threshold max var. We refer
interested readers for further details of the “consistency”
relationship, including the handling of multiple occurrences
of embeddings to [7].

Below we show how we use feature consistency map to
perform feature selection.

C. Kernel-Target Alignment Framework

In this work we consider selecting features whose distri-
bution is consistent with the distribution of the class labels.
Towards that end, we compute the object kernel matrix ξ as
defined below.

ξ = ((ci == cj))n
i,j=1 (2)

where (X == Y ) = 1 if X = Y and otherwise 0. ci is the
class label of the ith object.

Given a set of features F , we define a feature kernel matrix
SF as

SF = (K(GFi , GFj ))n
i,j=1 (3)

In the formula, K can be any kernel function. For
simplicity in our experimental study we use linear kernel
K(X, Y ) = X × Y .

With the feature kernel function and object kernel func-
tion, we use the following formula to measure whether the
feature kernel is “consistent” with the object kernel. Toward
that end, we introduce a binary function · : M ×M → R to
compute the inner product of two matrices as

X · Y = trace(XT × Y ) (4)

where M is the set of all n by m matrices.
Based on the function ·, we define the similarity between

two matrices is the inner product of the two matrices X and
Y , normalized by the norm of the X and Y , or

S(X,Y ) = X · Y/(||X|| × ||Y ||). (5)

where ||X|| = 2
√

X ·X .
Geometrically the similarity function S measures the

cosine value of the angel between two kernel matrices.
This measurement is first used in [5] to automatically select
kernel functions. We adapt it here for the purpose of feature
selection. Before we proceed to our feature selection method,
we present an important data structure, which we call feature
consistency map.

D. Feature Ranking and Forward Structure Based Feature
Selection

Once we compute the Feature Consistency map G, we
use a simple way to rank the features by sorting the features
according to their degree (number of edges incident on the
feature) in G in descending order. We sort features according
to their node degree in the feature consistency map and select
to top k features. We call this method SFS Filtering.



In forward structure based feature selection, we sort the
features using the same procedure from the feature filtering
method. Different from the feature filtering method, we use
the Equation 5 and select feature in the context of selected
features. Specifically, we evaluate the similarity between the
resulting kernel function (may contain several features) and
the object kernel function and make sure when we select a
feature, the similarity value monotonically increases.

The following is the algorithm for forward selection,
where S measures the similarity between two matrices, ξ is
the object kernel matrix, and F is a set of subgraph features
as we discussed before.

Algorithm 1 SFS FS(F , ξ)
1: Fs = ∅, T0 = 0
2: sort F according to the node degree in the related feature

consistency map
3: n ← |F|
4: for i = 1, . . . , n do
5: T ← S(Fs ∪ Fi, ξ)
6: if T > T0 then
7: Fs ← Fs ∪ Fi

8: T0 ← T
9: end if

10: end for
11: return Fs

Finally, we notice that we may augment a weight to each
node in the feature consistency map. A straightforward way
to assign a weight to a node is to compute the Pearson’s
Correlation Coefficient between the feature and the class
labels in the training data set. Many other choices are
available, such as mutual information [22] and odd ratio
[11]. It is hard to enumerate all possible choices and we
use Pearson Correlation simple empirically it gives us good
results. Without special explaining, the feature consistency
map that we use in this paper is always node-weighted
where the weight of the node is computed using Pearson’s
Correlation Coefficients.

III. EXPERIMENT

In this section, a comprehensive study of the performance
of our feature selection method is performed using 5 real-
world chemical structure graph data sets. We compared our
method with 3 state-of-the-art feature selection methods:
SVM Recursive Feature Elimination (SVM RFE) [8], Spec-
tral Feature Selection [24], and Maximum Margin Feature
selection (MMRFS) [4].

For each data set, we apply the FFSM algorithm [10]
to extracting frequent subgraph patterns from the data sets
and use the LibSVM package [3] to train a Support Vector
Machine (SVM) for classification. Performance is measured
via classification accuracy.

A. Data Sets

In the paper, We use data sets from drug virtual screening
experiments [13]. In a data set, the target values are drugs’

binding affinity to a particular protein. For each protein, the
data provider selected 50 chemical structures that clearly
bind to the protein (“active” ones). The data provider also
listed chemical structures that are very similar to the active
ones (judged with domain knowledge) but clearly do not bind
to the target protein(“negative” ones). This list is known as
the “decoy” list. We randomly sample 50 chemical structures
from the decoy list. Refer to [13] for further details regarding
the nature of the data set. To reiterate, each of these 5
data sets contains 100 compounds with 50 positives and 50
negatives.

After removing Hydrogen atoms in our graph representa-
tion of chemicals, as commonly done in the cheminformatics
field, we follow the same procedure [10] to use a graph to
model a chemical structure: a node represents an atom and
an edge represents a chemical bond. The characteristics of
data sets is shown in Table II.

TABLE II
DATA SET: THE SYMBOL OF THE DATA SET. S: TOTAL NUMBER

OF SAMPLES IN THE DATA SET. P : TOTAL NUMBER OF POSITIVE

SAMPLES, N : TOTAL NUMBER OF NEGATIVE SAMPLES, V :
AVERAGE NUMBER OF NODES IN THE DATA SET, E: AVERAGE

NUMBER OF EDGES IN THE DATA SET

Data set S P N V E
A1A 100 50 50 26 28

CDK2 100 50 50 22 25
COX2 100 50 50 22 24
FXa 100 50 50 27 29

PDE5 100 50 50 26 28

B. Experimental Setup

For each data set, we first represent chemical structures
by its 2D connectivity map. Using the FFSM algorithm [10]
with min support = 50% and with at least 5 nodes and
no more than 10 nodes, we mine frequent subgraphs. We
treat each subgraph as a feature and create a binary feature
vector for each graph in the data set, indexed by the mined
subgraphs, with values indicate the existence (1) or absence
(0) of the related subgraphs. All feature selection methods
that we compared with are based on the same feature sets.

We implement our own version of the spectral feature
selection method, which is a filtering method with no
additional parameters. SVM RFE executable is obtained
as the one included in the spider machine learning tool-
box http://www.kyb.tuebingen.mpg.de/bs/people/spider/. H.
Cheng kindly provided us with MMRFS executable, and
we use the default parameter (coverage threshold δ=1 and
min sup = 0.5). To compute the feature consistency map
that is used in the Pattern SFS method, we set max var to
be 0.5.

To have a fair comparison, we select a fixed number of
k features using each method and compare the classification
accuracy of the selected features. In our experiments, we set
k = 25. Empirical study shows that there is no significant
classification accuracy change if we replace the fixed value
25 with a relatively wide range of values.



TABLE I
AVERAGE AND STANDARD DEVIATION FOR PRECISION AND RECALL OF FOUR METHODS ON 5 DATA SETS. STARS (∗) DENOTE THE

HIGHEST PRECISION OR CALL AMONG ALL COMPETING METHODS FOR A DATASET.
Pattern SFS MMRFS Spectral FS SVM RFE

Data set Precision Recall Precision Recall Precision Recall Precision Recall
A1A 0.890±0.012∗ 0.939±0.033 0.652±0.029 0.842±0.093 0.879±0.023 0.951±0.039∗ 0.857±0.027 0.882±0.040

CDK2 0.843±0.065 0.707±0.080 0.945±0.057∗ 0.613±0.076 0.875±0.040 0.724±0.072 0.819±0.020 0.809±0.040∗
COX2 0.884±0.034 0.700±0.030 0.825±0.065 0.662±0.066 0.932±0.039∗ 0.670±0.015 0.812±0.024 0.804±0.033∗
FXa 0.932±0.029∗ 0.904±0.054 0.667±0.020 0.958±0.081∗ 0.899±0.055 0.845±0.051 0.838±0.037 0.823±0.027

PDE5 0.901±0.042∗ 0.859±0.023∗ 0.702±0.030 0.675±0.070 0.881±0.044 0.823±0.063 0.867±0.014 0.847±0.012
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Fig. 3. Experimental workflow for a single cross-validation trial.

After feature selection, we use SVM with RBF kernel
and default parameters (C=1, γ=0.5) to obtain accuracy
in all the experiments. We perform standard 5-fold cross
validation to derive training and testing samples. For each
cross validation, we compute precision as (TP/(TP+FP)),
recall as (TP/(TP+FN)), and accuracy as (TP+TN/S) where
TP stands for true positive, TN stands for true negative and
S stands for the total number of samples. For each data set,
we repeat the 5-fold cross validation 10 times and report the
average precision, recall, and accuracy. Figure 3 gives an
overview of our experimental setup.

C. Experimental Results

1) Performance: In this section, we show the performance
of our method compared with three additional methods
mentioned before on five real-world datasets. The accuracy
is shown in Figure 4 and the precision and recall are shown
in Table I.

Fig. 4. Comparing the classification accuracy of 4 feature selection
methods on 5 data sets.

From the figure, it is clear that Pattern SFS outperforms
MMRFS in all the 5 data sets, outperforms the SVM RFE
method and the spectral feature selection method in 3 out
of the 5 data sets. Overall, Pattern SFS is the best method

in 3 out of the 5 tested data sets. The results confirm
our hypothesis that considering the spatial distribution of
subgraph features results in better selection of discriminative
features.

2) Comparison of Variations of Structure Based Feature
Selection: Here we compare seven variations of the basic
Structure Based Feature Selection methods, including:

• forward feature selection (SFS FS),
• backward feature elimination (SFS BE),
• filtering (SFS Filter),
• forward feature selection with un-weighted

feature consistency map (SFS FS NPC),
• filtering with un-weighted

feature consistency map (SFS Filter NPC).

Besides, we present results without any feature selection
(Pattern all) and results with features selected by Pearson
Correlation Coefficient Selection (PCCS). The results are
shown in Table III. From the table, we observe that Pat-
tern All often achieves the worst result, which demonstrates
that redundant features will result in over-fitting problem and
diminish the classification accuracy. Although PCCS takes
correlation between a single feature and label, it neglects
dependence of features and hence usually do not select the
optimal feature subsets. The performance of PC weighted
forward selection is the best overall. In the paper, we use
PC weighted forward selection to compare with other three
state-of-the art methods.

Overall, our structure based feature selection method is
effective and achieves good accuracy. Since feature selection
can be viewed as a data preprocessing step, any other feature
selection method can be combined with our framework and
our method is applicable to any current start of art classifiers.

IV. CONCLUSIONS

In this paper, we presented a novel feature selection
method for chemical classification. By using structural frag-
ment as features and ranking features based on their spatial
distribution and their contributions to classification, we have
designed a feature selection method (and several variations)
called structure based feature selection method. Compared
with current state-of-the-art methods as evaluated on 5 real
world data sets, our method outperforms the 3 state-of-the-
art methods on majority of the tested data sets. In the future,
we plan to extend structure feature selection to kernel space.



TABLE III
CLASSIFICATION ACCURACY OF DIFFERENT IMPLEMENTATIONS OF THE STRUCTURE BASED FEATURE SELECTION METHODS.

Data set Pattern All SFS Filte SFS FS SFS BE SFS Filter NPC SFS FS NPC PCCS
A1A 0.626 0.809 0.912∗ 0.488 0.812 0.821 0.898

CDK2 0.668 0.679 0.766 0.535 0.666 0.776 0.850∗
COX2 0.756 0.817∗ 0.802 0.475 0.783 0.793 0.788
FXa 0.714 0.892 0.921∗ 0.576 0.891 0.918 0.865

PDE5 0.602 0.904∗ 0.885 0.574 0.902 0.888 0.849
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