
  

  

Abstract—The discrete logarithm problem is one of the 
well-known NP problems. It has important applications in such 
fields as cryptography. The discrete logarithm problem is the 
basis for the security of many cryptosystems including the 
Elliptic Curve Cryptosystem and Diffie-Hellman protocol. In 
this paper, we proposed newly developed parallel bio-molecular 
logic computing algorithms based on bio-molecular logic 
computing model to solve discrete logarithm problem. 

I. INTRODUCTION 
iffie & Hellman [1] in 1976 proposed their key exchange 
protocol. The security of this protocol depends on the 
discrete logarithm. Like factoring problem, the discrete 

logarithm problem is believed to be difficult and to be the 
hard direction of a one-way function. These two are the basis 
for public key cryptography. The purpose of the algorithm 
lets two parties that have no prior knowledge of each other to 
jointly establish a shared secret key over an insecure 
communication channel. This key can then be used to encrypt 
subsequent communications using a symmetric key cipher.  

Public-key cryptography based on elliptic curve over 
finite fields was proposed by Miller and Koblitz in 1985. 
Elliptic curves over finite fields have been used to implement 
the Diffie-Hellman key passing scheme and also the elliptic 
curve variant of the Digital Signature Algorithm. The security 
of these cryptosystems relies on the difficulty of solving the 
elliptic curve discrete logarithm problem. If P is a point with 
order m on an elliptic curve, and Q is some other point on the 
same curve, then the elliptic curve discrete logarithm problem 
is to determine an L such that Q = LP where L is an integer 
and 0 ≤ L≤ m-1. If this problem can be solved efficiently, then 
elliptic curve based cryptosystems can be broken efficiently. 

Feynman [2] first proposed bio-molecular computations 
in 1961, but his idea was not experimented with for several 
decades. In 1994 Adleman [3] succeeded in solving an 
instance of the Hamiltonian path problem in a test tube by 
handling DNA strands. Lipton [4] demonstrated that the 
Adleman techniques could be used to solve the satisfiability 
problem (the NP-complete problem). Adleman and his 
co-authors [5] proposed sticker for enhancing the error rate of 
hybridization. 
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Through advances in molecular biology [6], it is now 
possible to produce roughly 1018 DNA strands that fit in a test 
tube. Those 1018 DNA strands can also be applied to 
represent1018 bits of information. In the future (perhaps after 
many years) if biological operations can be applied to deal 
with a tube with 1018 DNA strands and they are run without 
errors, then 1018 bits of information can simultaneously be 
correctly processed. Hence, it is possible that bio-molecular 
computation can provide a huge amount of parallelism for 
dealing with many computationally- intensive problems in 
the real world. 

The fastest supercomputers can execute approximately 
1012 integer operations per second. This implies that (128 × 
1012) bits of information can be simultaneously processed in a 
second. The fastest supercomputers can process (128 × 1015) 
bits of information in 1000 seconds. The extract operation is 
one of basic biological operations of the longest execution 
time. It could be approximately done in 1000 seconds [10]. In 
the future (perhaps after many years) if an extract operation 
can be used to deal with a tube with 1018 DNA strands and it 
is run without errors, then 1018 bits of information can 
simultaneously be correctly processed in 1000 seconds. If it 
becomes true in the future, then basic biological operations 
will perhaps be faster than the fastest super computer in the 
future. In [9], it was pointed out that storing information in 
molecules of DNA allows for an information density of 
approximately 1 bit per cubic nm (nanometer). Videotape is a 
kind of traditional storage media and its information density 
is approximately 1 bit per 1012 cubic nanometers. This implies 
that an information density in molecules of DNA is better 
than that of traditional storage media. 

II. BIO-MOLECULAR COMPUTING 

A. Biological Operations of Bio-molecular Computing 
A (test) tube is a set of molecules of DNA (a multi-set of 

finite strings over the alphabet {A, C, G, T}). Given a tube, 
one can perform the following operations: 
1. Extract: Given a tube T and a short single strand of DNA, 

“s”, produce two tubes + (T, s) and – (T, s), where + (T, s) 
is all of the molecules of DNA in T which contain the 
strand “s” as a sub-strand and – (T, s) is all of the 
molecules of DNA in T which do not contain the short 
strand “s”. 

2. Merge: Given tubes T1 and T2, yield ∪ (T1, T2), where ∪ 
(T1, T2) = T1∪T2. This operation is to pour two tubes into 
one, with no change of the individual strands. 
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3. Amplify: Given a tube T, the operation, Amplify (T, T1, 
T2), will produce two new tubes T1 and T2 so that T1 and T2 
totally a copy of T (T1 and T2 are identical) and T becomes 
an empty tube. 

4. Append: Given a tube T and a short strand of DNA, “s”, 
the operation will append the short strand, “s”, onto the 
end of every strand in the tube T. It is denoted by append 
(T, s). 

5. Append-head: Given a tube T and a short strand of DNA, 
“s”, the operation will append the short strand, “s”, onto 
the head of every strand in the tube T. It is denoted by 
append-head (T, s). 

6. Detect: Given a tube T, say ‘yes’ if T includes at least one 
DNA molecule, and say ‘no’ if it contains none. It is 
denoted by detect (T). 

7. Discard: Given a tube T, the operation will discard the 
tube T. It is denoted by discard (T). 

Read: Given a tube T, the operation is used to describe a 
single molecule, which is contained in tube T. Even if T 
contains many different molecules each encoding a different 
set of bases, the operation can give an explicit description of 
exactly one of them. It is denoted by read (T). 

B. Optimal Bioinformatics Logic Computing System 
In [12, 13], we developed a new bio-molecular logic 

computing model. We use logic true tables to optimize and 
complete logic bio-circuit operations that can construct most 
basic DNA logic circuits.  These DNA logic circuits (gates) 
work in test tubes to implement basic logic operations. These 
gates are AND, OR, XOR,… etc. Through these logic gates, 
we construct a set of parallel bio-molecular adder, subtractor, 
multiplier, and divider. In this paper, we use the new 
bio-molecular logic computing model to solve the problem of 
discrete logarithm. All operations of optimal bioinformatics 
logic computing are shown in Figure 1. 
 

 
Fig.1. Bio-molecular logic computing model 

 

III.  BIO-MOLECULAR LOGIC COMPUTING SOLUTION FOR NP 
PROBLEM: DISCRETE LOGARITHM 

A. Introduction of Discrete Logarithm Problem 
For any integer d and any positive integer n, there are 

unique integers s and r such that 0 ≤ r < n and d = s ∗ n + r. 

The value s = d / n is the quotient of the division. The value r 
= d mod n is the remainder of the division. We have that n | d 
if and only if d mod n = 0. Given a well-defined notion of the 
remainder one integer when divided by another, it is 
convenient to provide special notation to indicate equality of 
remainders. If (d mod n) = (b mod n), we write d ≡ b (mod n) 
and say that d is equivalent to b, modulo n. In other words, d ≡ 
b (mod n) if d and b have the same remainder divided by n. 
The integer can be divided into n equivalence classes 
according to their remainders modulo n. The equivalence 
class modulo n containing an integer d is [d]n = {d + h * n, 
where h is an integer}. The set of all such equivalence classes 
is Zn = {[d]n : 0 ≤ d ≤ n − 1}. One often sees the definition Zn 
= {0, 1, … n − 1} [7]. 

The greatest common divisor of two integers d and n, not 
both zero, is the largest of the common divisors of d and n; it 
is denoted gcd(d, n). Two integers d and n are said to be 
relatively prime if their only common divisor is 1, that is, if 
gcd(d, n) = 1. Because the equivalence class of two integers 
uniquely determines the equivalence class of their product, 
thus, we define multiplication modulo n, denoted *n, as 
follows: [d]n *n [h]n = [d * h]n. Using the definition of 
multiplication modulo n, we define the multiplicative group 
modulo n as (Zn

*, *n), where Zn
* = {[d]n ∈ Zn: gcd(d, n) = 1}. 

Just as it is natural to consider the multiples of a given 
element d, modulo n, it is often natural to consider the 
sequence of power of d, modulo n, where d ∈ Zn: d0, d1, d2, …, 
modulo n. Indexing from 0, its value in this sequence is d0 
mod n = 1, and the ith value is di mod n. We denote <d> as the 
subgroup of Zn

* generated by d, and we also denote ordn(d) 
(the “order of d, modulo n”) as the order of d in Zn

*. For 
example, <2> = {1, 2, 4} in Z7

*, and ord7(2) = 3. 
If ordn(M) is equal to the number of elements in Zn

*, then 
every element in Zn

* is a power of M, modulo n, and we say 
that M is a primitive root or a generator of Zn

* [7]. For 
example, there is a primitive root, modulo 7 and <3> = {1, 3, 
2, 6, 4, 5}. If Zn

* possesses a primitive root, we say that the 
group Zn

* is cyclic. If M is a primitive root of Zn
* and C is any 

element of Zn
*, then there exists an e such that Me ≡ C (mod n). 

This e is called the discrete logarithm of C, modulo n, to the 
base M. No method in a reasonable amount of time can be 
applied to solve the problem of discrete logarithm. The 
following method is used to figure out Me ≡ C (mod n) [8]. 

Procedure Encryption(M, e, n) 
(1) Let ek−1 … e0 be the binary representation of e. 
(2) C = 1. 
(3) For i = k − 1 down to 0 
     (3a) Set C to the remainder of (C2) when divided by n. 
     (3b) If ei = 1 then  
     (3c) Set C to the remainder of (C * M) when divided by 
n. 
   EndFor 
(4) Halt. Now C is the result of Me(mod n). 
EndProcedure 

Fig.2. Procedure Encryption(M, e, n) 



  

B. Bio-molecular Optimization Solution for Discrete 
Logarithm Problem 

Assume that the length of e is k bits. Also suppose that e is 
represented as a k-bit binary number, ek − 1 … e0, where the 
value of each bit ej is either 1 or 0 for 0 ≤ j ≤ k − 1. The bits ek 

− 1 and e0 represent the most significant bit and the least 
significant bit for e, respectively. The form of an expression, 
Me (mod n), can be transformed into another form: (…((1 * 

1  −keM  (mod n))2 * 2 −keM  (mod n))2 * 3 −keM  (mod n) …)2 * 
0eM  (mod n). In the Diffie-Hellman public-key 

cryptosystem, n is a prime number. Therefore, in this paper, 
we also assume that n is a prime number. Because n is a prime 
number, <M> = {M0 (mod n), M1 (mod n) … Mn − 2 (mod n)}. 
This is to say that 0 ≤ e ≤ n − 2. The following pseudo 
algorithm is applied to solve the problem of discrete 
logarithm. 
Method 1: Solving the problem of discrete logarithm. 
(1) All of the computation for M0 (mod n), M1 (mod n) … 

Mn − 2 (mod n) are simultaneously performed on a 
parallel molecular computer. 

(2) For any given C, from the result finished in Step (1), 
find Me ≡ C (mod n). 

(3) Output(“discrete logarithm is: “, e). 
EndMethod 

Fig.3. Method 1: Solving the problem of discrete logarithm. 

C. DNA Algorithm to Solve Discrete Logarithm Problem 
The procedure, Encryption(M, e, n), denoted in 

Subsection A, is used to finish computation of an exponential 
modular operation. The following DNA algorithm is applied 
to implement the procedure, Encryption(M, e, n). 
Algorithm of Discrete Logarithm: Implementing the 
procedure, Encryption(M, e, n). 
(0) T0 ← ∅; Tθ ← ∅; Tn ← ∅; T1 ← ∅. 
(1) Init(T0, k). 
(2) SelectDiscreteLogarithm(T0, Tθ, k). 
(3) MakeValue(Tn, k). 
(4) InitialValue(T0, k). 
(5) For j = k − 1 down to 0 

(5a) ModularMultiplication(T0, Tn, (2 * (k − 1 − j) )*  
       (4 * k + 1) + 1, 2 * (k − j), C, C). 
(5b) T0 = +(T0, ej

1) and T1 = −(T0, ej
1). 

(5c) ModularMultiplication(T0, Tn, (2 * (k − 1 − j)+ 1) 
       * (4 * k + 1) + 1, 2 * (k − j) + 1, C, M). 
(5d) For r = 0 to 4 * k 

(5e) ReservedValue(T1, (2 * (k − 1 − j) + 1) * (4 
       * k + 1) + r). 

EndFor 
(5f) AssignmentOperator(T1, (2 * (k − 1 − j) + 1) * (4 
       * k + 1) + 1 + 4 * k, 2 * (k − j) + 1). 

(5g) T0 = ∪(T0, T1). 
EndFor 
EndAlgorithmOfDiscreteLogarithm 

Fig.4. Algorithm of Discrete Logarithm 
Theorem 1: From those steps in Algorithm of Discrete 

Logarithm, the problem of discrete logarithm can be solved. 
Proof:  

From the execution of Step (0), tubes T0, Tθ, Tn, and T1 
are set to empty tubes. On the execution of Step (1), it calls 
Init(T0, k) to construct solution space for 2k possible discrete 
logarithms. This means that tube T0 includes strands encoding 
2k possible discrete logarithms. Next, the execution of Step (2) 
calls SelectDiscreteLogarithm(T0, Tθ) to perform selection 
of legal discrete logarithms with its range is from 0 to n − 2. 
This implies that those legal discrete logarithms are encoded 
in tube T0. On the execution of Step (3), it calls 
MakeValue(Tn) to encode a prime number, n. This indicates 
that tube Tn contains a strand encoding it. Next, the execution 
of Step (4) calls InitialValue(T0) to finish the execution of 
Step (2) in the procedure, Encryption(M, e, n). This is to say 
that the initial value for C is set to one. 

Step (5) is a loop and is mainly used to finish the function 
of the only loop (Step (3)) in the procedure, Encryption(M, e, 
n). Next, the first execution of Step (5a) calls 
ModularMultiplication(T0, Tn, (2 * (k − 1 − j) )* (4 * k + 1) + 
1, 2 * (k − j), C, C) to perform Step (3a) in Encryption(M, e, 
n). On the first execution of Step (5b), it employs the extract 
operation to form two tubes: T0 and T1. The first tube T0 
includes all of the strands that have ej = 1. The second tube T1 
consists of all of the strands that have ej = 0. This indicates 
that the execution of the step finishes Step (3b) in 
Encryption(M, e, n). Because the jth bit of e encoded in tube 
T0 is one, next, the first execution of Step (5c) calls 
ModularMultiplication(T0, Tn, (2 * (k − 1 − j)+ 1) * (4 * k + 
1) + 1, 2 * (k − j) + 1, C, M) to perform Step (3c) in 
Encryption(M, e, n). Since the jth bit of e encoded in tube T1 
is zero, Step (5d) is the loop and is mainly used to maintain 
the consistency of the intermediate value for Y. On the first 
execution of Step (5e), it calls ReservedValue(T1, (2 * (k − 1 
− j) + 1) * (4 * k + 1) + r) to copy the current intermediate 
value of Y to the next intermediate value of Y. Repeat to 
execute Step (5e) until the value of r reaches (4 * k). Next, the 
first execution of Step (5f) calls AssignmentOperator(T1, (2 
* (k − 1 − j) + 1) * (4 * k + 1) + 1 + 4 * k, 2 * (k − j) + 1) to 
perform updating of the value for C. Because the jth bit of e 
encoded in tube T1 is zero, the updated value of C is still equal 
to the previous value. 

On the first execution of Step (5g), it uses the merge 
operation to pour tube T1 into T0. Repeat execution of Steps 
(5a) through (5g) until the value of j is zero. After all of the 
steps are processed, every strand in tube T0 performs 
computation of an exponential modular operation, Me (mod 
n). This implies that Algorithm of Discrete Logarithm 
performs Step (1) of Method 1. Therefore, the discrete 
logarithm problem can be solved from those steps in 
Algorithm of Discrete Logarithm. In the following section, 
we will describe, in detail, the various modules that are 
combined to form the overall DNA-based algorithm for 
solving the discrete logarithm problem. 

D.  Solution Space for Ordern(M) 
Because Ordern(M) is equal to n − 1, suppose that n − 1 is 



  

represented as a k-bit binary number, θk − 1 … θ0, where the 
value of each bit θj is either 1 or 0 for 0 ≤ j ≤ k − 1. The bits θk 

− 1 and θ0 are used to represent the most significant bit and the 
least significant bit for n − 1, respectively. From [9, 10], for 
every bit θj, two distinct 15 base value sequences are 
designed. One represents the value “0” for θj and the other 
represents the value “1” for θj. For the sake of convenience in 
our presentation, assume that θj

1 denotes the value of θj to be 
1 and θj

0
 defines the value of θj to be 0. The following 

algorithm, SelectDiscreteLogarithm(T0, Tθ), is proposed to 
construct a DNA strand for encoding n − 1 and select legal 
discrete logarithms. 

Procedure SelectDiscreteLogarithm(T0, Tθ, k) 
(1) For j = 0 to k − 1 

(1a) Append-head(Tθ, θj). 
EndFor 

(2) For j = k − 1 down to 0 
(2a) T0

ON = +(T0, ej
1) and T0

OFF = −(T0, ej
1). 

(2b) Tθ
ON = +(Tθ, θj

1) and Tθ
OFF = −(Tθ, θj

1). 
(2c) If (Detect(Tθ

ON) = = true) then 
(2d) T0

= = ∪(T0
=, T0

ON) and T0
< = ∪(T0

<, 
       T0

OFF). 
Else 

(2e) T0
> = ∪(T0

>, T0
ON) and T0

= = ∪(T0
=, 

       T0
OFF). 

EndIf 
(2f) Tθ = ∪(Tθ

ON, Tθ
OFF). 

(2g) Discard(T0
>). 

(2h) T0 = ∪(T0, T0
=). 

EndFor 
(3) Discard(T0). 
(4) T0 = ∪(T0, T0

<). 
EndProcedure 

Fig.5. Procedure SelectDiscreteLogarithm(T0, Tθ, k) 

E. Solution Space for MODULE n 
Assume that the length of n denoted in Subsection A is k 

bits. Also suppose that n is represented as a k-bit binary 
number, nk − 1 … n0, where the value of each bit nj is either 1 or 
0 for 0 ≤ j ≤ k − 1. The bits nk − 1 and n0 represent the most 
significant bit and the least significant bit for n, respectively. 
From [9, 10], for every bit nj, two distinct 15 base value 
sequences are designed. One represents the value “0” for nj 
and the other represents the value “1” for nj. For the sake of 
convenience in our presentation, assume that nj

 1 denotes the 
value of nj to be 1 and nj

 0
 defines the value of nj to be 0. The 

following algorithm, MakeValue(Tn), is proposed to 
construct a DNA strand for encoding n. 

Procedure MakeValue(Tn, k) 
(1) For j = 0 to k − 1 

(1a) Append-head(Tn, n j). 
EndFor 
EndProcedure 

Fig.6. Procedure MakeValue(Tn, k) 

F. Solution Space for a Primitive Root M and the Result of 
an Exponential Modular Operation C 

Suppose that the length of a primitive root M for Zn
* is k 

bits. Also assume that M is represented as a k-bit binary 
number, mk − 1 … m0, where the value of each bit mj is either 1 
or 0 for 0 ≤ j ≤ k − 1. The bits mk − 1 and m1 represent the most 
significant bit and the least significant bit for M, respectively. 
From [9, 10], for every bit mj, two distinct 15 base value 
sequences are designed. One represents the value “0” for mj 
and the other represents the value “1” for mj. For the sake of 
convenience in our presentation, assume that mj

 1 denotes the 
value of mj to be 1 and mj

 0
 defines the value of mj to be 0. 

Assume that the length of C, the result of an exponential 
modular operation denoted in Subsection A, is k bits. From 
the procedure Encryption(M, e, n), C is finally obtained after 
at most updating (2 * k + 1) times of the value for C. 
Therefore, suppose that C is represented as a k-bit binary 
number, ca, k − 1 … ca, 0, where the value of each bit ca, j is either 
1 or 0 for 1 ≤ a ≤ (2 * k + 1) and 0 ≤ j ≤ k − 1. The bits, ca, k − 1 
and ca, 0, represent the most significant bit and the least 
significant bit for C, respectively. The first k-bit binary 
number, c1, k − 1 … c1, 0, is used to represent the initial value to 
C. The last k-bit binary number, c(2 * k + 1), k − 1 … c(2 * k + 1), 0, is 
used to represent the final result of C. For other k-bit binary 
numbers, they are applied to represent the intermediate 
computed form of C. From [9, 10], for every bit ca, j, two 
distinct 15 base value sequences were designed. One 
represents the value “0” for ca, j and the other represents the 
value “1” for ca, j. For the sake of convenience in our 
presentation, assume that ca, j

 1 denotes the value of ca, j to be 1 
and ca, j

 0
 defines the value of ca, j to be 0. The following 

algorithm is used to construct solution space for the initial 
value for C and the primitive root M. 
Procedure InitialValue(T0, k) 
(1) For j = 0 to k − 1 

(1a) Append-head(T0, mj). 
EndFor 
(2) Append-head(T0, c1, 0

 1). 
(3) For j = 1 to k − 1 

(3a) Append-head(T0, c1, j
 0). 

EndFor 
EndProcedure 

Fig.7. Procedure InitialValue(T0, k) 

G. Algorithm of a Modular Multiplication 
The procedure, Encryption(M, e, n), denoted in 

Subsection A, is used to finish computation of an exponential 
modular operation. In the procedure, it uses successive 
operations of square and multiplication to perform the 
exponential modular operation. We now give details of the 
ModularMultiplication(T0, Tn, f, a, α, β) module used by the 
main algorithm. The following DNA-based algorithm, 
ModularMultiplication(T0, Tn, f, a, α, β), is applied to 
perform all of the steps to a modular multiplication. This 
implies that Steps (3a) and (3c) in the procedure, 
Encryption(M, e, n), are performed through the following 
DNA-based algorithm, ModularMultiplication(T0, Tn, f, a, 



  

α, β). The two parameters, α and β, in 
ModularMultiplication(T0, Tn, f, a, α, β) represent the 
multiplicand and the multiplier of a modular multiplication. 
Assume that βj

1 is applied to represent the value of “1” for the 
jth bit of the multiplier (β). 
Procedure ModularMultiplication(T0, Tn, f, a, α, β) 
(1) InitialSet(T0, f). 
(2) For j = k − 1 down to 0 

(2a) ParallelLeftShifter(T0, f + (k − 1 − j) * 4). 
(2b) ParallelComparator(T0, Tn, T0

>, T0
=, T0

<, f + (k − 
        1 − j) * 4 + 1). 
(2c) T0 = ∪(T0

>, T0
=). 

(2d) ParallelSubtractor(T0, T0, T f + (k − 1 − j) * 4 + 1). 
(2e) ReservedValue(T0

<, f + (k − 1 − j) * 4 + 1). 
(2f) T0 = ∪(T0, T0

<). 
(2g) T0 = +(T0, βj

1) and T1 = −(T0, βj
1). 

(2h) If (Detect(T0) = = true) then 
(2i) ParallelAdder(T0, T f + (k − 1 − j) * 4 + 2, T a). 
(2j) ParallelComparator(T0, Tn, T0

>, T0
=, T0

<, 
        f + (k − 1 − j) * 4 + 3). 
(2k) T0 = ∪(T0

>, T0
=). 

(2l) ParallelSubtractor(T0, T0, T f + (k − 1 − j) * 4 +  

           3). 
(2m) ReservedValue(T0

<, f + (k − 1 − j) * 4 + 
        3). 
(2n) T0 = ∪(T0, T0

<). 
 EndIf 

(2o) If (Detect(T1) = = true) then 
(2p) ReservedValue(T1, f + (k − 1 − j) * 4 + 2). 
(2q) ReservedValue(T1, f + (k − 1 − j) * 4 + 3). 

 EndIf 
(2r) T0 = ∪(T0, T1). 

EndFor 
(2s) AssignmentOperator(T0, f + k * 4, a). 

EndProcedure. 
Fig.8. Procedure ModularMultiplication(T0, Tn, f, a, α, β) 

H. Solution Space for the Initial Value to Computation of a 
Modular Multiplication 

For any given two positive integers d and b, Blakley 
[11] proposed the fastest method to perform computation of 
(d * b) (mod n). Blakley used adder and subtractor of (4 * k) 
times to perform computation of (d * b) (mod n). Assume that 
Y ≡ (d * b) (mod n) and the length of Y is k bits. From 
Blakley’s method, Y is finally obtained after at most updating 
(4 * k + 1) times of the value for Y. From the procedure 
Encryption(M, e, n), Blakley’s method is at most called (2 * 
k) times. That is to say, at most updating (8 * k2 + 2 * k) times 
of the value for Y are completed. Therefore, suppose that Y is 
represented as a k-bit binary number, yf, k − 1 … yf, 0, where the 
value of each bit yf, g is either 1 or 0 for 1 ≤ f ≤ (8 * k2 + 2 * k) 
and 0 ≤ g ≤ k − 1. The bits, yf, k − 1 and yf, 0, represent the most 
significant bit and the least significant bit for Y, respectively. 
If updating of fth time for Y is finished through an adder, then 
two binary numbers yf, k − 1 … yf, 0 and yf + 1, k − 1 … yf + 1, 0 
represent the augend and the sum of the fth updating, 
respectively. If updating of fth time for Y is finished through a 

subtractor, then two binary numbers yf, k − 1 … yf, 0 and yf + 1, k − 

1 … yf + 1, 0 represent the minuend and the difference of the fth 
updating, respectively. 

From [9, 10], for every bit yf, g, two distinct 15 base value 
sequences were designed. One represents the value “0” for yf, 

g and the other represents the value “1” for yf, g. For the sake of 
convenience in our presentation, assume that yf, g

 1 denotes the 
value of yf, g to be 1 and yf, g

 0
 defines the value of yf, g to be 0. 

The following algorithm is used to construct solution space 
for the initial value to computation of a modular 
multiplication. 
Procedure InitialSet(T0, f) 
(1) For g = 0 to k − 1 

(1a) Append-head(T0, yf, g
 0). 

EndFor 
EndProcedure 

Fig.9. Procedure InitialSet(T0, f) 

I. Reserving the Result to Intermediate Computation of a 
Modular Multiplication 

The procedure, Encryption(M, e, n), denoted in 
Subsection A, is applied to perform computation of an 
exponential modular operation. The following DNA-based 
algorithm, ReservedValue(T2, f), is employed to reserve the 
result to intermediate computation of a modular 
multiplication. 
Procedure ReservedValue(T2, f) 
(1) For j = 0 to k − 1 

(1a) T3 = +(T2, yf, j
1) and T4 = −(T2, yf, j

1). 
(1b) Append-head(T3, yf + 1, j

 1). 
(1c) Append-head(T4, yf + 1, j

 0). 
(1d) T2 = ∪(T3, T4). 

EndFor 
EndProcedure 

Fig.10. Procedure ReservedValue(T2, f) 

J. Construction of Assignment Operator 
An assignment operator is an instruction of the first 

operand of k bits and the second operand of k bits that the 
value of the first operand is set to the value of the second 
operand. The following algorithm is applied to construct an 
assignment operator. This implies that the assignment 
operator can be used to update the value of C denoted in 
Subsection G. The third parameter, a, in the algorithm is used 
to represent the ath updating for C. 
Procedure AssignmentOperator(T0, f, a) 
 (1) For j = 0 to k − 1 

(1a) T1 = +(T0, yf, j
1) and T2 = −(T0, yf, j

1). 
(1b) Append-head(T1, ca, j

1). 
(1c) Append-head(T2, ca, j

0). 
(1d) T0 = ∪(T1, T2). 

 EndFor 
EndProcedure 

Fig.11. Procedure AssignmentOperator(T0, f, a) 

K. The Attacking Plan of Breaking the Diffie-Hellman 
Public-key Cryptosystem 

The Diffie-Hellman public-key cryptosystem can be 



  

used to encrypt messages sent between two communicating 
parties so that an eavesdropper who overhears the encrypted 
messages will not be able to decode them. Assume that the 
public key between two parties is represented as a k-bit binary 
number, c(2 * k + 1), k − 1 … c(2 * k + 1), 0, denoted in Subsection G. 
An eavesdropper only uses the following algorithm to figure 
out the corresponding secret key. 
Algorithm: The attacking plan of breaking the 
Diffie-Hellman public-key cryptosystem. 
(1) Call Algorithm of Discrete Logarithm. 
(2) For j = 0 to k − 1 

(2a) T1 = +(T0, c(2 * k + 1), j) and T2 = −(T0, c(2 * k + 1), j). 
(2b) T0 = ∪(T0, T1). 

EndFor 
(3) If (Detect(T0) = = true) then 

(3a) Read(T0). 
EndIf 

EndAlgorithm 
Fig.12. Algorithm: The attacking plan of breaking the Diffie-Hellman 

public-key cryptosystem 

L. Complexity Assessment 
Theorem 2: Suppose that the length of a secret key (discrete 
logarithm) in the Diffie-Hellman public-key cryptosystem is 
k bits. Its public-key cryptosystem can be broken with O(k3) 
biological operations proposed by Adleman [3, 9, 10] from 
solution space. 
Proof: Refer to Algorithm of Discrete Logarithm. 
 
Theorem 3: Suppose that the length of a secret key (discrete 
logarithm) in the Diffie-Hellman public-key cryptosystem is 
k bits. The Diffie-Hellman public-key cryptosystem can be 
broken with O(2k) library strands from solution space. 
Proof: Refer to Algorithm of Discrete Logarithm. 
 
Theorem 4: Suppose that the length of a secret key (discrete 
logarithm) in the Diffie-Hellman public-key cryptosystem is 
k bits. The Diffie-Hellman public-key cryptosystem can be 
broken with O(1) tubes from solution space. 
Proof: Refer to Algorithm of Discrete Logarithm. 
 
Theorem 5: Suppose that the length of a secret key (discrete 
logarithm) in the Diffie-Hellman public-key cryptosystem is 
k bits. The Diffie-Hellman public-key cryptosystem can be 
broken with the longest library strand, O(k3), from solution 
space. 
Proof: Refer to Algorithm of Discrete Logarithm. 

IV. CONCLUSIONS 
The number of steps any classical computer requires in 

order to find discrete logarithm of a k-bit increases 
exponentially with k, at least by means of using algorithms [3] 
known at present. In this paper, Our molecular discrete 
logarithm algorithm demonstrates how basic biological 
operations can be used to solve discrete logarithm problem 
with O(k3) biological operations. It can simultaneously deal 
with 21024 bit information to find the discrete logarithm of 

1024 bits used in the Diffie-Hellman public-key 
cryptosystem. Due to current technical difficulties, the 
proposed algorithm currently does not in fact find the discrete 
logarithm of 1024 bits. This implies that if a molecular 
computer is really constructed in the future (perhaps after 
many years), then our discrete logarithm algorithm has very 
high feasibility for solving the discrete logarithm problem. 
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