
 
 

 

  

Abstract—Mass spectrometry technique is a revolutionary 
tool for diagnosing early stage cancer by analyzing protein mass 
spectra, and for detecting biomarkers. But because of the high 
dimensionality of the data, feature selection is a necessary 
procedure before classification and analysis. In this paper we 
present a genetic algorithm for feature selection for prostate 
protein mass spectrometry data. An elitism coupled with rank 
based stochastic universal sampling selection strategy, uniform 
crossover operation, and a uniform mutation with adaptive 
mutation rate strategy are used. Two fitness functions are 
defined for the genetic algorithm: one is a multivariate filter 
measurement and the other is a wrapper measurement. Our 
experiments show that the wrapper-based genetic algorithm 
outperforms all the other feature selection methods presented 
here. The multivariate filter-based genetic algorithm also yields 
better performance than transformed methods, sequential 
selection methods, and univariate filter methods.  

I. INTRODUCTION 
ASS spectrometry (MS) technique is a powerful tool to 
research proteomics. It can be applied to 

high-throughput biomarker identification and disease 
diagnosis. It can also assist medical experts to explore the 
pathology in addition to clinical observation. The mass 
spectra obtained by mass spectrometer can be depicted as a 
histogram with mass-to-charge ratio (M/Z) on horizontal 
axis, and ion intensity on vertical axis. The M/Z ratio is called 
feature in this paper, and the ion intensity is called feature 
value of corresponding M/Z ratio. The high-dimensionality 
and small sample size of the data pose a challenge its analysis, 
in despite of its promising applications. The protein mass 
spectra contains abundant useful and complex information, 
we should mine the specific information relating to the 
specific case and remove the redundant information. For the 
case of classification of cancer and healthy samples, several 
features are sufficient for it; thousands of features not only 
slow the classifiers seriously but also degrade the prediction 

 
Manuscript received July 5, 2008.  
This work was supported by international collaboration project of 

Shandong Province Education Department, China and research funds of 
Shandong Institute of Light Industry (12041653). 

Yifeng Li, IEEE Student Member, is with the Institute of Intelligent 
Information Processing, School of Information Science and Technology, 
Shandong Institute of Light Industry, Jinan, Shandong 250353 China 
(bolirenyifeng@yahoo.com.cn).  

Yihui Liu is with the Institute of Intelligent Information Processing, 
School of Information Science and Technology, Shandong Institute of Light 
Industry, Jinan, Shandong 250353 China (corresponding author, phone/fax: 
86-531-89631256/86-531-89631251; yihui_liu_2005@yahoo.co.uk). 

Li Bai is with School of Computer Science, University of Nottingham, UK, 
NG8 1BB  (bai@cs.nott.ac.uk). 

accuracy. So feature selection is a necessary phase for sample 
classification and searching for biomarkers.  

Feature selection aims to select a discriminative feature 
subset from the original features. This subset is the optimal 
with respect to an evaluation criterion, hence feature selection 
is an optimisation process. There are three categories of 
feature selection methods: filter, wrapper, and embedded 
methods. Filter methods are independent of the classification 
algorithm. Wrapper methods use classification accuracy as 
the evaluation criterion of feature subset under examination, 
so this technique depends on the classifier adopted. 
Embedded methods are also classifier dependent techniques, 
as the feature selection process is done within the 
classification algorithm itself. Additionally, filter methods are 
grouped into two classes in term with the number of selected 
features and the dependence among features. Univariate filter 
methods evaluate each feature separately ignoring the feature 
dependencies. Multivariate filter methods consider the 
feature dependencies and combination effects, and thereby 
can evaluate more than one feature each time.  

Many feature selection methods have been used in the 
domain of protein mass spectrometry [1]. For univariate filter 
methods, t-test [2], F-test [3], P-test [4], KS-test [4], Peak 
Probability Contrast [5], and etc. are used. For mutivariate 
filter methods, CFS [2] and Relief-F [6] are used. For 
wrapper methods, genetic algorithms (GAs) [7], nature 
inspired [8], SFS [4], SBS [4], and etc. are used. For 
embedded methods, Random forest/decision tree [9], weight 
vector of SVM [10], neural network [11], nearest shrunken 
centroid [4], boosting [4], etc. are used. Liu and Bai use 
wavelet detail [12] and wavelet approximation [13] to 
characterize the features of mass spectra. Significant 
biomarkers are then detected based on optimized features 
selected by genetic algorithm. 

A good feature subset not only helps to improve the 
prediction accuracy but also aids in finding and analyzing the 
underlying significant biomarkers of the mass spectra. In this 
paper, we define the problem of feature selection for protein 
mass spectra and present a genetic algorithm to search 
optimal feature subset. We present an adaptive mutation 
operation, and build one multivariate filter method and one 
wrapper method. The category of a feature selection method 
is determined by the evaluation criterion for a feature subset. 
Univariate filter methods are widely used in the domain of 
mass spectrometry, but multivariate filter methods are seldom 
used because developing effective evaluation criteria is still a 
problem. In this paper we present an evaluation criterion for 
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the multivariate filter method. This criterion employs a 
combination of scatter matrices and Bhattacharyya distance. 
For wrapper method we build the evaluation function using 
combination of classification error rate and posterior 
probability. The evaluation criteria are the fitness function in 
GA. In order to achieve good generalization for small sample 
size we use the linear discriminant analysis classifier.  

II. THEORIES 

A. Linear Discriminant Analysis 
In this study, we use the combination of the empirical error 

rate of linear discriminant analysis (LDA) classifier and the 
posterior probability of the classifier as the optimality 
criterion of the wrapper-based feature selection method. LDA 
is stemmed from R. A. Fisher’s classical and pioneering paper 
[14]. The key idea of LDA is that it aims to obtain an optimal 
projection direction, under which the m-dimensional feature 
vectors of samples can be projected onto a lower dimensional 
subspace (generally one-dimensional space). In this new 
space, the distances of samples from different classes are 
enlarged whereas the distances of samples in the same class 
are shortened to the best.  

LDA considers maximizing the following objective: 
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where w denotes the projection direction represented by a 
column vector, wT is the transpose of w, SB and SW stand for 
the between-class scatter matrix and the within-class scatter 
matrix, respectively. They are: 
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where P(ci) is the prior probability of class ci, c is the number 
of classes, μi is the mean of class ci, μ is the mean of all the 
data. For binary-class problem, the projection direction is 
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It can be used as the weight vector of linear discriminant 
function 
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where x is a sample and w0 is known as threshold.  

LDA classifier is computationally fast, and because the VC 
dimension of LDA classifier for m-dimension input is m+1, 
LDA classifier takes on good classification generalization on 
small-sized dataset. 

B. Bhattacharyya Distance 
In this paper, we employ Bhattacharyya distance [15] to 

build the class separability measurement of multivariate 
filter-based feature selection method. Bhattacharyya distance 
is a distance metric of two probability density functions. 
Bhattacharyya distance is defined as  
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where ( )1| ωxp  and ( )2| ωxp  are class conditional 

probability density functions of class 1ω  and class 2ω , 
respectively. Bhattacharyya Distance have the following 
properties: 0≥BJ ; If ( ) ( )21 || ωω xpxp = , 0=BJ ; If 

( )1| ωxp and ( )2| ωxp  never overlap each other, then 
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C. Scatter Matrices [15] 
We use a simple measurement to evaluation the class 

separability of two classes. This measurement does not 
consider the distribution of data under investigation and just 
uses the between-class scatter matrix and the within-class 
matrix. It is defined as 

( ) ( )WMS StraceStraceJ =                                      (8) 
where SM=SB+SW. SB, SW are defined in (2) and (3), 
respectively.  

D. Measurements for the Classification Performance 
In this paper, we employ five measurements for 

representing the performance of classification:  
 
Accuracy = (TP+TN)/(TP+TN+FP+FN) 
Sensitivity = TP/(TP+FN) 
Specificity = TN/(TN+FP)                                                  (9) 
Balanced Accuracy (BACC) = (Sensitivity +Specificity)/2 
Positive Predictive Value (PPV) = TP/(TP+FP) 
 
where TP, TN, FP, and FN stand for the numbers of true 
positive (cancer), true negative (normal), false positive, and 
false negative samples, respectively. 

III. MATHEMATICAL MODELING 

A. Problem 
Each sample is represented as a feature vector of high 

dimensionality, of which each component is a signal intensity 
value (feature value) of the ions corresponding to an M/Z 
ratio (feature). Assume each original sample is a point of 
n-dimension feature space. Our task is to develop and run GA 
to search an m-sized class-discriminative feature subset from 
the n features. The samples after feature selection are points 
in the m-dimension subspace. And the subsequent 
classification and analysis are performed on this m-dimension 
subspace. 



 
 

 

B. Encoding and Decoding 
An individual of a population represents a feature subset 

which can be encoded into an integer valued vector of length 
m. Each component of the vector is a gene. Each gene is an 
index of the original feature set. The decoding is easy. In term 
of the indices, we can reconstruct a feature subset for the best 
individual.  

C. Fitness Functions 
The fitness function is related to the classification 

accuracy. We employ a combined multivariate filter method 
and a wrapper method both with GA as the search engine to 
select discriminative feature subsets. The filter-based 
measurement is a passive method, as class separability 
measurements are used instead of classification accuracy. We 
use a combination of scatter matrices and Bhattacharyya 
distance to define the fitness function. As we view the GA as 
a minimization approach, we create the fitness function as 
follow: 
fSB (x) = 1/JS + t0 -JB                    (10) 
 
where JS and JB are defined in (8) and (7), respectively, t0 is a 
bias, and x is an individual representing a feature subset. 

A reasonable way to evaluate the classification ability of an 
individual is to use the classification accuracy as a part of a 
fitness function. In this paper, a linear combination of the 
empirical error of the LDA classifier and the a-posteriori 
probability is employed to estimate the quality of the feature 
subset under examination. Assume that two subsets s1 and s2 
yield the same empirical classification error rate, but s1 
obtains a-posteriori probability of p1, and s2 gets p2. If p1> p2, 
then we favor s1 as the fitter individual. This fitness function 
is  
fEP (x) = 100ec + ep                                                            (11) 
 
where ec is the empirical classification error rate and ep is the 
defined as 
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where ntrain is the number of training samples and P (cj|xi) is 
the posteriori probability of  sample xi belonging to class  cj. 

D. Selection and Reproduction 
We apply an elitism coupled with rank based stochastic 

universal sampling selection strategy.  
Fitness-proportional selection does not guarantee the 

selection of any particular individual, including the fittest. 
The best-so-far individual may not be selected to survive in 
the next generation, which make the outstanding genes 
thrown away, therefore the individual corresponding to the 
high-quality solution, even the global optimum solution, can 
not exist in the final population. In order to remove the effort 
of the above, the top several fittest elites in the current 
population are copied to the next generation without being 
disrupted by crossover and mutation, which is called elitism. 

Then the rest participating in genetic operations are chosen by 
the rank based stochastic universal sampling selection 
strategy. 

If GAs use raw fitness obtained by the fitness function to 
perform fitness-proportional selection and the fitnesses differ 
greatly, some super-fit individuals can predominate in the 
population after several generations as they are more likely to 
survive, while the other individuals may be wiped out in spite 
of having the potential to be the optimal solution. In order to 
avoid trapping in the suboptimal point and encourage 
exploration in a wider space, we use rank [16] strategy to 
scale the fitness of each individual based on their rank before 
conducting the selection of the individuals for participating in 
crossover and mutation. The rank of an individual is its 
position in the sorted raw fitnesses of all the individuals in a 
population. The fittest individuals have scaled fitness 1, the 
second fittest 2 etc, and the worst have scaled fitness N, N is 
the population size. Stochastic universal sampling is then 
conducted based on the scaled fitness. It allocates parent 
individuals using a roulette wheel with N slots sized 
according to expectation which is defined as 
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where e(i) is the expectation of the ith individual, 
fitnessscaled(i) is the scaled fitness of the ith individual based 
on rank, N is the population size, and Nparents is the numbers of 
parent individuals selected to do crossover and mutation. 
There are Nparents equal-sized pointers above the wheel. When 
sampling, these pointers are spun only once to allocate each 
parent from the slots the pointers land on. This stochastic 
universal sampling strategy is first introduced by Baker [17], 
and exhibits no bias and minimal spread.  

E. Uniform Crossover 
In this paper, uniform crossover is used to recombine the 

genes of parent chromosomes. Unlike one-point crossover 
and two-point crossover, uniform crossover is one child 
version genetic operation which produces one offspring 
given each pair of parents, and each gene of the offspring is 
randomly selection from the corresponding genes of its 
parents. The parameter crossover fraction Rc, population size 
N and elites count Ne determine the number of offspring 
produced by crossover operation and the number of their 
parents in the mating pool. They are Nc=Rc(N-Ne) and  2 Nc 
respectively. 

F. Uniform Mutation with Adaptive Mutation Rate 
The goal of mutation is to increase exploration. One parent 

is altered to form one offspring through mutation operation. 
The number of parents selected for mutation is N-Ne-Nc. 
Uniform mutation model is the simplest and commonly used 
in GA. For integer valued vector encoding, this method 
replaces each component in a uniform low probability that is 
called mutation rate represented as Rm. For many instance of 



 
 

 

GA, Rm is assumed as a constant. But in the natural world, the 
mutation rate is not always constant [18]. Some fine mutation 
rate tuning methods have been presented in [19]-[21]. We use 
a uniform mutation with adaptive mutation rate strategy, 
which changes the mutation parents in each generation, and 
adjust the mutation rate once for each five generation.  
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where Rmc is a very small constant value, Gc is the current 
generational counter, Gmax is the maximum number of 
generations, and Δ  is an interval. Assume Rmc=0.02, 5=Δ , 
the mutation rate is Rms for generation 5, 10, 15,…, otherwise 
is Rmc, namely 0.02, for the other generations. Rms is defined 
in the followings.  

This strategy automatically tunes Rms based on the 
population diversity or similarity. The similarity of 
chromosome i and chromosome j is defined as 

m
L

s ij
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where m is the number of genes of a chromosome, Lij is the 
number of different genes in chromosome i and chromosome 
j. For example, if i=(20, 257, 698, 710), and j=(45, 332, -419, 
698), then Lij= 7. The domain of sij is 10 ≤≤ ijs . The 

similarity of chromosome i to the population is defined as 
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The scope of si is Nsi ≤≤1 . The similarity of a population 
is defined as 
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The range of s is 2NsN ≤≤ . The mutation rate is defined 
as 
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where Rmax and Rmin are the man-defined upper bound and 
lower bound, respectively. Generally we designate Rmax=0.5, 
Rmin=0.02. Rms is a monotone increasing function for s. If the 
similarity of the last population is high, then the mutation rate 
Rms is increased in the current generation, so the diversity of 
the next generation is increased, and so the similarity of the 
next generation is decreased. Higher diversity means more 
search potential. Hence, this adaptive mutation rate model 
tends to keep the population diversity and encourages GA to 
explore more potential areas. In the intervals when Rm= Rmc, 
GA can sufficiently search these areas exploited by Rms.  

G. Population Size 
Large population size can improve the search capability of 

GA. However, the larger the population size, the longer the 
genetic algorithm takes to compute each generation. So we 

make the number of the overall genes in a population 
approximately equal to the number of the original candidate 
features by compromise. 

H. Termination Criteria 
The simplest and widely used criterion is that if the current 

generation counter meets the maximum number generation, 
GA will stop after the last genetic operations. Additionally, 
we use an adaptive criterion to halt the evolution when the 
weighted average change in a sliding window is less than a 
predefined threshold constant. 

( ) ( )
( )∑

=

=

−

+

−+
⎟
⎠
⎞

⎜
⎝
⎛=

wi

i

iw

ibest
ibestibest

wavg
1 1

1
2
1                (19) 

where w is the width of the window, best(w+1) is the fittest 
chromosome of the current generation, best(1) is the fittest 
chromosome of the farthest generation among the window to 
the current generation. The biased weights are used because 
the changes near the current generation are more important 
than those far from the current generation.  

IV. EXPERIMENTS, RESULTS, AND ANALYSIS 
We used the GA on a prostate protein mass spectra dataset 

acquired from FDA-NCI Clinical Proteomics Program 
Databank. The spectra were collected utilizing the H4 protein 
chip, prepared manually using the recommended protocol, 
and a Ciphergen PBS1 SELDI-TOF mass spectrometer. This 
dataset is named PC-H4 dataset in [4] and [22]. PC-H4 
contains 322 total samples. Each sample is composed of 
15154 feature values corresponding to 15154 features. 26 
samples with prostate cancer with prostate-specific antigen 
(PSA) levels 4-10 and 43 samples with prostate cancer with 
PSA levels greater than 10 were combined into cancer class, 
while 190 samples with benign prostate hyperplasia with PSA 
levels greater than 4 and 63 samples with no evidence of 
disease with PSA level less than 1 into normal class.  

We divided the experiment into two parts: feature selection 
and classification, as shown in Fig. 1. We first run GA to 
select discriminative 20-sized features subsets. For 
multivariate filter methods, we used (10) to define the fitness 
functions. For wrapper method, we employed (11) to evaluate 
the fitness of chromosomes. In each generation, elitism 
selection is performed to copy top two of the fittest 
chromosome of the current generation to the next without 
change, then parents for crossover and mutation are selected 
by the rank based stochastic universal sampling selection 
strategy. Each pair of parents participating in uniform 
crossover produce one child for the next generation. We use 
uniform mutation operation with adaptive mutation rate 
strategy to alter the parents selected for mutation. 



 
 

 

 
Fig. 1.  The procedures of feature selection and classification for mass spectra. 

TABLE I 
THE PERFORMANCES OF CLASSIFICATION FOR 20-SIZED FEATURE SUBSETS SELECTED BY GA AND THE OTHER FEATURE 

SELECTIONS EVER USED ON PC-H4. STD STANDS FOR STANDARD DEVIATION. 
 Accuracy(std) Sensitivity(std) Specificity(std) PPV(std) BACC(std) 
Filter GA 0.9270(0.0174) 0.8792(0.0287) 0.94(0.019) 0.8025(0.0492) 0.9096(0.0189) 
Wrapper GA 0.9775(0.0084) 0.9616(0.0225) 0.9819(0.0063) 0.9355(0.0218) 0.9717(0.0131) 
PCA [4] 0.530 (0.20) 0.493 (0.21) 0.540 (0.24) 0.248 (0.11) 0.516 (0.18) 
PCA/LDA [4] 0.692 (0.15) 0.623 (0.33) 0.710 (0.22) 0.431 (0.17) 0.667 (0.14) 
SFS [4] 0.885 (0.05) 0.725 (0.36) 0.929 (0.03) 0.728 (0.03) 0.827 (0.17) 
SBS [4] 0.773 (0.03) 0.652 (0.27) 0.806 (0.11) 0.498 (0.07) 0.729 (0.09) 
P-test [4] 0.813 (0.02) 0.580 (0.28) 0.877 (0.08) 0.572 (0.07) 0.728 (0.11) 
T-test [4] 0.816 (0.04) 0.522 (0.31) 0.897 (0.05) 0.575 (0.07) 0.709 (0.14) 
KS-test [4] 0.826(0.04) 0.710 (0.35) 0.857 (0.08) 0.579 (0.05) 0.784 (0.14) 
NSC(20) [4] 0.850 (0.06) 0.638 (0.31) 0.833 (0.12) 0.529 (0.07) 0.736 (0.10) 
BoostedFE [4] 0.960 (0.01) 0.812 (0.07) 1.000 (0.00) 1.000 (0.00) 0.906 (0.03) 

TABLE II 
SOME FREQUENTLY EMERGED FEATURES AND THEIR NEIGHBORS (N(*)) FOR FILTER-BASED GA 20 RUNS. F IS THE NUMBER OF 

TIMES THE FEATURES EMERGE IN THE 20 FEATURE SUBSETS. 
N(65.4754) f N(68.0681) f N(81.1128) f N(125.6354) f N(501.2661) f N(6909.6737) f 

65.3244 4 67.1473 1 81.1128 10 125.0085 4 500.0132 1 6908.1223 2 
65.4754 5 67.4535 1 81.4493 2 125.2173 14 500.8483 2 6909.6737 2 
66.3847 3 67.9142 6 81.9555 1 125.4262 12 501.2661 6   
  68.0681 6   125.6354 14 502.5206 4   
  68.2221 1   125.8447 2 502.9391 1   
  68.9952 1   126.0541 3     
      126.2638 3     
      127.3146 5     
      127.5253 7     
      127.7362 1     

TABLE III 
SOME FREQUENTLY EMERGED FEATURES AND ITS NEIGHBORS (N(*)) FOR WRAPPER-BASED GA 20 RUNS. F IS THE NUMBER OF 

TIMES THE FEATURES EMERGE IN THE 20 FEATURE SUBSETS. 
N(125.6354) f N(362.8249) f N(478.9542) f N(501.2661) f N(4013.4641) f N(6132.2857) f 

125.0085 2 362.4694 1 475.6919 2 497.096 1 4090.3226 1 6132.2857  3 
125.2173 1 362.8249 6 478.5458 3 497.5122 2 4092.7104 3   
125.4262 1   478.9542 5 497.9286 3 4096.2934 3   
125.6354 12   479.3628 2 498.3452 1 4098.6829 1   
126.0541 4     500.4307 1 4099.8779 1   
126.2638 2     500.8483 3 4101.0731 3   
127.3146 6     501.2661 15 4102.2685 1   
127.5253 2     501.6841 1 4103.4641 4   
128.1584 3     502.1022 1 4104.6598 2   
      502.5206 1 4105.8557 1   
      502.9391 1     

TABLE IV 
THE ACCURACIES OF SOME DISCRIMINATIVE FEATURES USING LDA CLASSIFIER 

Feature 68.0681 81.1128 125.6354 362.8249 478.9542 501.2661 4013.4641 6132.2857 6909.6737 
Accuracy 0.7789 0.7762 0.8315 0.6509 0.6416 0.8547 0.6076 0.6590 0.6162 

After feature selection, 3-fold cross validation is executed 
100 runs for LDA classifier. For each run, LDA classifier is 
performed 3 times for different training and testing splits. The 
averaged classification performance over the 100 runs is used 
to represent the performance of the feature subset selected by 
GA. To evaluate the performance of GA for feature selection 
more impartially we rerun the above two steps, as depicted in 

Fig. 1, for 20 times and show the result in the top two rows of 
Table I. The performance of GA for feature selection is 
determined by the fitness measurement. The wrapper-based 
GA is better than the multivariate filter-based GA for feature 
selection on PC-H4 dataset. 

Other methods and their performances using 3-fold cross 
validation on PC-H4 listed in Table I are from [4], we find 



 
 

 

that transform methods like PCA and PCA/LDA have poor 
performances. Furthermore these methods cannot harvest 
concrete features from the original features but transformed 
features, which are not competent for searching biomarkers. 
Sequential selection methods like SFS and SBS work better 
than transformed methods, but are still not effectively 
enough. Univariate filter methods can only achieve an 
accuracy of 0.800. Multivariate filter method as presented in 
this paper obtains an accuracy of 0.927 which is better than 
the transformed methods, sequential selection methods, and 
univariate filter methods. The performance of wrapper-based 
GA outperforms all of the other methods in accuracy, 
sensitivity, and BACC respects. GA achieves higher 
sensitivity than others. Table II and III listed some frequently 
emerged features and their neighbors. The accuracy of these 
features is shown in Table IV. We observed that 125.6354, 
501.2661 are two significantly discriminative features. 

V. CONCLUSION AND FUTURE WORKS 
In this paper, we present a genetic algorithm for mass 

spectra feature selection. We use elitism section coupled with 
rank based stochastic universal sampling strategy, and a 
uniform mutation with adaptive mutation rate strategy. We 
develop a multivariate filter measurement and a wrapper 
measurement to build the fitness function. The multivariate 
filter-based GA achieves an accuracy of 0.9270, and 
wrapper-based GA 0.9775 which outperforms the other 
methods. We find two features frequently emerging in the 
subset selected by the GA: 125.6354 gives an accuracy of 
0.8315, and 501.2661 yields 0.8547. In future research, we 
aim to develop more effective fitness functions for the GA, 
and introduce more intelligent search algorithms into feature 
selection for protein mass spectra. The discriminative 
features selected by these algorithms should be investigated 
in the context of proteomics.  
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