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Abstract— Fluorescence microscopy imaging is a constant and the smoothed image, using any adapted noise removal
trade off between signal to noise ratio, total observationime  method. The second approach, so called the block-based
and spatio-temporal resolution due to photo toxicity. In this approach, subdivides the image in blocks, and considers the
paper, we propose a method to estimate the quality of a . . .
fluorescent image acquisition, from a single image, takingnto ~ Varance of the most. homoggneous blocks in the Image as
account both signal dependent and signal independent noise an estimate of the noise. In this study, we use a combination
We propose a method for the calculation of the signal to of both methods. We used the block-based method proposed
noise ratio globally and locally. We validated our algorithm on jn [3], which is particularly efficient when additive gaussi
real experimental data and data W|tr_1 known snmula_ted noise. oise is present. We also used a smoothing based approach,
Results allow us to conclude that this fully automatic methd . . . .
provides a good quantification of the image quality. offer|ng a good estlm.atlo.n of thg global noise gnd thus of the

signal-dependent noise in the image, using discrete wavele
|. INTRODUCTION transform shrinkage to remove the noisy components. A

Fluorescence Microscopy imaging is a constant trade offodel similar to 1 is then fitted to the estimated noise to
between signal to noise ratio (SNR), total observation timeompute the level of signal dependant noise. These two
and spatio-temporal resolution due to photo toxicity [fjeT approaches were also proposed in [5] as two concurrent
purpose of our study is to provide a quantitative way oestimations of the noise.
image quality evaluation, which presents several interest In addition, we present a statistical justification of the
This value can then be used to give a quantitative feedbaokodel presented in [4]. We propose a way to estimate
to the experimentalist on the quality of the image obtainethe noise in fluorescence microscope images from a single
and in addition for subsequent experiments by determinirigiage, taking into account both signal dependent and signal
minimal requirements for automatic segmentation, or bindependent noise. Combining both approaches presented in
providing a comparison tool among several acquisitions. [b], we present a new expression of the signal to noise ratio
can also be used for compression [4] or for feeding a trackif@NR), for both global and local estimation. By estimating
algorithm [14], [15]. the SNR locally, we take into account non uniform repartitio

Previous studies of SNR in fluorescence microscopy fro®f the noise as a result of stronger signal (and thus stronger
an image processing point of view can be found in [9], [14]noise) or possibly some detector faults.

[15]. In all cases, either gaussian or poisson noise alone isIn section Il we discuss the different kinds and sources of
consider. In order to differentiate the noise components amoise as listed in the literature. A method to automatically
to give their respective levels, Bernas and co-workerg[§}], estimate the background intensity and the global noise is
fitted a quadratic model of the form presented in section Ill. Section IV describes how we derive
5 a local SNR expression from the global SNR previously

V=A+PS+MS @) calculated. In the section V, we describe the data used to
, where S is the signal corrected for backgrourid,is the evaluate the performance of our noise estimation method.

estimated noise variance, arid P and M are the variances Finally, our results are summarized in Section VI.
of the three noise components considered: additive, FmissqI
and multiplicative noise, respectively. In [4], the esttina '
of A was considered inaccurate and moreover bad resultsThe most common source of noise in fluorescence mi-
were obtained when the background value was 0. In additiof{0SCOpy is the photon detection noise [9], [5], [4], also
the parameters fitting was done on times series of 12¢0wn as shot noise or intrinsic noise [16]. Another sourfce o
images. noise is the extrinsic noise. It is composed by the dark atirre
In general, noise estimation methods follow two differentvhich follows a Poisson distribution, but also by electosni
approaches. The first is the smoothing based approach, whegise and detector-readout noise, both of which follow a

the noise is estimated by the difference between the ofigingaussian distribution, and by quantization noise which is
characterized by a uniform law [16]. Cross-talk noise may
c dz*gztgtr"”fl:fhgrf@em”y acknowledge the financial supporthefHigher  gppear by interference from other probes and in order to
P. Paul and D. Kalamatianos are with Hamilton Institute, NaT€duce t_hls noise, in this St_Udy- Images were ‘?‘Cqu'red using
tional University of Ireland, Maynooth, Irelandperri ne. paul,  the multi-track method, which generates multi-fluoreseenc
dinmitris. kal amatianos}@uimie . images without crosstalk of emission signals, by means of
H. Duessmann and H. Huber are with the Department of Phygiolo f itchi b L d A |
and Medical Physics, RCSI, York House, York Street, Dubljnirgland ast switching between excitations and quasi-simuitaseou

{hduessnann, hei nhuber }@csi.ie detection [1].

SIGNAL AND NOISE IN FLUORESCENCE MICROSCOPY



To model the noise in fluorescence images, we first need Ill. ESTIMATION OF THE GLOBAL SIGNAL TO NOISE

to consider the number of photoyiu, v) detected per pixel RATIO
(u,v), which can be expressed as [12] The global SNR is estimated in two parts. Firstly, we
F(u,0) = s(u,v) + A, v) @ compute the background noise and mean intensity, based on

the estimation of the background variance as proposed in [3]

where s(u,v) is the true number of photons sent for theSecondly, the signal dependent components are computed
region corresponding to this pixel andu, v) denotes the by wavelet decomposition, using the underlying hypothesis
difference between the true and the detected signal, i#at high frequency corresponds to noise [11], [12], and
the noise. According to [12]f(u,v) follows a Poisson identifying the level of noise by fitting the model from Eq. 9.
distribution of parametes(u, v), which means that both the

7 /o WHIAT T A. Edtimation of the background mean intensity and noise
mean and the variance of this distribution afe, v).

variance

var(f(u,v)) = s(u,v) (3) We want to estimate the background noise variamﬁg
and the background mean intensity,. For this purpose,
The corresponding pixel intensity(u,v) is the detected e have implemented the algorithm previously proposed in
number of photong (u, v) multiplied by the photo-multiplier [3]. Firstly, the image is subdivided in blocks of the same
sensitivity, also called here detector gain If we consider sjze. Each block is analyzed by computing an inhomogeneity
additional white noise and multiplicative noise, this lez&&l measure based on the convolution with 8 masks enhancing 8
to the following expression of the image intensity directions of edges. The sum of this 8 convolution gives the
[—Gsfin+msGrs @) inhomogeneity measure value for each block. To calculate
- K ’ the estimated background varianﬂ%g and mean intensity

where is a white additive noise of variancé, andm is B¢, @n average of the variance and mean is taken in the

the multiplicative noise of variancé/. The global noiseV, 20 most homogeneous blocks, i.e. those with the lowest

can then be defined as: inhomogeneity values. An example of block identified as
background with this algorithm is shown in Fig. 1b.

N =1 -G 5 L )
o(u,0) = I{u,v) * s(u,0)) ®) B. Estimation of the global noise N,

whereG + s(u,v) is the noise-free image. Combining Egs. The global noise was estimated as the lossy part of the

2 4 and 5 we can express the varianceNgf as JPEG 2000 compression. We used the codecs implemented in
JASPER version 1.900.1 [2]. The image is firstly transformed

var(Ny) =varG« A+ n+m G x s) (6) to the time-frequency domain using Discrete Wavelet Trans-

Under the assumption that the additive najs¢he photonic form with the Daubechies irreversiblg wavelet waveform
noise A and the multiplicative noise: are independent, and [11], _[1_2]' As a consequence of quantization of the quelet
considerings(u, v), also noteds, as deterministic, Eq.6 is coe_fflc!ent used for the JPE(_B 20003 a part of the signal is lost
equivalent to: which is assumed to be mainly noise. We then compute the
difference between the original imadgeand the compressed
var(N,) = G2 «var(\) + var(n) + (G = s)®> xvarim) (7) image I;p; in order to get the estimated global noise per
pixel. This global noise is represented as an image of same
As s(u,v) in Eq. 2 is considered to be deterministic, itsize as the original image, noted herely. Fig. 1c shows
follows that its variance is null and then combined with Eqa detail of the original image appeared in Fig. 1a, and
3, we can deduct the variance df Fig. 1d shows the same detail after noise removal by wavelet
variA(u, o)) = var( f(u, v)) = s(u, v) ®) shrinkage. The estimated global noise is shown in Fig. le.

C. Edtimation of the Sgnal Dependent Noise
We can then obtain the expression for the calculation of

global noise variance seen in [5], by rewriting Eq.7 as We plotted the variance of the estimated global noise

against intensity values of the estimated noise-free image
var(N, (u, v)) = Gx(Gxs(u, v))+A+Mx(Gxs(u,v))? (9) and tried to fit the model from Eq. 9. An example of fitting
‘ is shown in Fig. 2.
whereA and M are the variances of additive and multiplica- We avoided the false standard deviations due to saturation
tive noises, respectively. at maximum level of intensity in a 8 bit image by removing
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Fig. 2: Example of Model fitting on one image: (a) Fitting
of the model from Eq.9 to the variance of noi&g for each
value of the signal;,» (the noise free image) noted as red
crosses. (b) Residuals of the model fitting. (c) Number of
pixels per intensity value id;,». When there were less than
(c) (d) (e) 84 pixels, the intensity value was not taken into account for
he fitting.
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Fig. 1: Different steps of the noise estimation: (a) oricj;inat
image: record 1 of channel with stain GFP, (b) block of

pixels identified as background (in red) for estimating I is a vector of intensity from 0 to 254, in which values

andIg,, (c) detail of original image in the white square, (d)_ . : .
Fig. 1c after wavelet shrinkage with JPEG 2000 compressio\r/1vIth more than 84 pixels were removed. This threshold was

. ) ; . iven in [10] as the minimum sample size to obtain an
(¢) estimated noise per pixel as the difference betWe%stimated standard deviation into 10% of its true value with

Figs. 1c and 1d. It is interesting to underline that botré confidence in the Chi-square sense of 80%.

rt_aleased (homoger_1eous signal) and non released (punctu_a.ﬁene vectorg, was constructed as follows: for each value
signal) CyC-egfp signal were preserved by the JPEG 20(%Ofrom 0 to 254, we computed the variance of the subset of

compression. noise valuesV,(p(i)), wherep(i) was the subset of pixels
whose intensity values if;,» were equal ta.

this value. In order to estimate the parametérsand M/, D. Expression of the signal to noise ratio

we took I;,> as an estimate ofs x s (the noise-free im-  The expression of the SNR in decibel was chosen to be
age), and we usedV, as an estimate of the global noise.as follows:

We imposedA to get the value of the background noise 7. 7

variancea%g, which means that we neglicted for the fitting SNRg = 201logy, <u> (11)

the signal-dependant noise in the background. Indeed, the v/var(Ng)

background mean intensity values are very low compar = .

to the signal emitted by cells. We then solved numericalﬁlghere]jl"z-IS the mean value af;,,. As we have_cor_nputed_

. . o . Yoth the signal dependent and background noise in sections
the foIIowmg.constramgd linear Iegst—squgrg pr_oble_rngs IlI-A and IlI-C, and assumed that background noise was
the precopdmoned conjugate grgd|ent optlm|za-t|on a?gm uniformly distributed in the image, we can replace(¥éy)

[6], to estimateG the level of Poisson noise (gain esumator)In Eq. 11 by its value from Eq. 9: ‘
and the variance of the multiplicative noidé: ' T

. K =g — 7]‘1?2*759

rg}g%llag — (0%, + GIT + MI?)|3 SNR; = 20log ( N Q+G*7jp2+M*7§p2> (12)
such thatG > 0, M > 0, (10)

and with initial conditionsG =1, M =0,

IV. ESTIMATION OF THE LOCAL SIGNAL TO NOISE RATIO

To obtain local image quality information, we first divided
where the image in smaller squares and then we computed a
- |I-|l2 is the Ly-norm local SNR per sub-region. The size of the block can be



interactively changed by the user if needed. The expressigtBLE I: Microscope settings during image tests acquisi-
of the local SNR for each blocki was derived from Eq.12; tions for data set 1

SNRy,(bl) = Records 1 2 3 4 5 6
Detector gain
20 log ( Tip2(0)~Tp, ) (13) channel MTR || 750 || 750 || 850 || 850 || 950 || 1050
10 2 7 7 channel GFP || 650 || 650 || 750 || 750 || 850 || 950
bl)+G (b1)+T jpa (bl) +M (b)+1 j p2 (b1)2

Vb (PDHCEDT,p (P MO +T 328D channel H || 650 || 650 || 750 || 750 || 850 || 950

_ . ) ) . Exposure Time|| 3.2 || 3.2 || 3.2 1.6 1.6 1.6

where I;,2(bl) is the mean intensity in the block on Average Scan || 4 1 1 1 1 1

which the local SNR is calculated, and the parameters Aogfs(:]”m%) ol 20 1 20l 10l s .

2

03,(b1),G(bl) and M (bl) are computed per block. If only 488 nm 0l 10l 5 5 2 1

one image is used, then the value estimated on the whole 405 nm 3 3 15| 15| 08 | 0.3

image is used for each block too.

The quality of the image could be non uniform due to
uneven illumination fqr exam_ple. Moreover, the signal forB. Data Set 2© Simulated Noise
each cell can be of different intensity because of the focus . ) o
plan, the fluorescence stain and activity of the cell, as well Simulated noise was added to the first image of the real
as some faults from the Photo-Multiplier (PMT) detector. Iflata. For this purpose, the channel H (staining Hoechst)
order to detect these faults, we can use several acquisitiofaS used because it was the one with the least amount of
keeping the same microscope parameters in order to J¥iSe: In order to test ouralgonthm’s aplllty to |o_Ient|fp|se_
sufficient number of points for model fitting to get anc®mponents, we produced data with different kinds of noise.
estimated noise level per block rather than a global level. IN particular, Poisson, Gaussian noise, and a combinafion o
both were added to the image. To check the influence of the
number of blocks used, the same level of noise was simulated
5 times creating a test image 5 times bigger than the original

We used two data sets to study the global SNR. Thene. In the real data, the background mean value was close
first set contains real noise created by tuning the parameté® 0. However, changing the experiment set up parameters
of the microscope and the second one contains simulatéuld lead to a background value different than 0, but still
noise added to microscope image. The microscope us@8 low as possible in order to obtain maximum contrast.
for this series of experiments was a Zeiss LSM 510 witfoisson noise could also then appear in the background. To
the following objective: Plan-Apochromat 63x/ 1.4 oil DIC. test our algorithm in this case, we run the same simulation
The cells were HeLa D98 stably expressing Cytochroméifter adding an offset of 5 (for 256 gray levels) to the oragin
C-eGFP fusion protein [8]. The staining was Hoechst (100nage.
nM, 45 min), detected in channel noted H, Green Fluorescent
Protein, detected in channel noted GFP, and Mitotracker Red
(50 nM, 20 min), detected in channel noted MTR [8]. We For all performance evaluations, the computation time was

V. DATA SETS USED FOR PERFORMANCE EVALUATION

VI. RESULTS

used 8-bit gray scale images, with a size50f x 512. less than 2 seconds for5d2 x 512 8-bit image using a 2.33
GHz processor with 2 GB of RAM. The variance of the
A DataSet 1: Real Noise multiplicative noiseM was in all cases zero or less than

1075, in accordance with the results shown in [5].
The first data set consists of 6 records with 3 channels

measuring the previously staining: channel H, channel GPf» Performance evaluation on real noise

and channel MTR. The 6 records were created augmentingThe results of our estimation on data set 1 are shown
the level of noise by changing the photomultiplier (PMT)in Fig. 3. The Poisson noise is strongly signal-dependent
sensitivity, also called detector gain, the pixel dwell éim and its level is expected to be proportional to the gain of

the number of scan per image, and the acousto-optic tunaltkee microscope photon detectors. Indeed, this is evident in
filter (AOTF) expressed relatively to the initial power fdret  Figs. 3a,3c, and 3e, meaning that this kind of noise can be
different wavelength, as described in Table I. The post PMidentified. As it can be seen in Figs. 3d and 3b, the SNR

offset, the post PMT analog gain, and the different filterss also mainly influenced by the detector gain. The pixel

pinholes and resolution were not changed for the differemwell time was changed between record 3 and 4 and this had
acquisitions. a limited influence on the SNR. The SNR for the channel



MTR rapidly decreased as seen in Fig. 3f but these results are 40,
coherent with visual evaluation and with the SNR computed
using the first record as reference signal by ImageJ [13]: the
SNR indB is 7.1, 1.5, -0.24, -4.0, and -6.4 for records 2 to
6 respectively when our results for these records are 7.32,
0.99, -0.10, -2.50, and -2.94. We used no reference image to

obtain these results unlike the ImageJ plugin.
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Fig. 4: Results on data set 2: (a) Estimated variance of the
background noise and (b) estimated level of Poisson noise
parameterG against the simulated level of both Gaussian
and Poisson noise

1 16 2

noise. In this case, in addition to the added Gaussian noise,
the background presents a Poisson noise component with a
variance proportional to its mean intensity value. The roédth
used to compute the background noise gave the same results
when only one or 5 images were used. The estimated Poisson

Fig. 3: Results for data set 1: Poisson noise parameigpise is lower when estimated using 5 images, which means
G against the real detector gain for (a) GFP channel (ghat with only one image, we could slightly overestimate the
H Channel (e) MTR Channel; Poisson noise paramet@bgisson noise. Thus, the more images available the more

background noise parameter and global Signal to Noise Rafighyst will be the method, even if useful results are already
for (b) GFP channel (d) H Channel and (f) MTR Channel ypiained with a single image.

B. Performance evaluation on simulated noise

C. Misualization of the local signal to noise ratio
Using our expression 13 enhances the signal level rela-

Results from the estimation of noise on data set 2 atésely to the noise rather than the noise level as shown in
graphically presented in Fig. 4. The relative level of signaFig. 5. In order to detect a local failure of the detector, enor
dependent noise and background noise was well evaluatéidan one image is needed. Indeed, our algorithm for Poisson
When background was 0, and only the Gaussian noise levabise detection needs each pixel value to contain at least 84
was modified, the estimated Poisson noise was stable apidels and it is unlikely to be the case in each sub-block of
the estimated background noise was varying accordinglthe image. We then simulated a series of 10 images with an
When only Poisson noise was modified, then the estimatedided local Poisson noise and applied the algorithm for the
background noise was stable and the estimated Poissglobal SNR to the concatenation of 10 sub-blocks each time.
noise level was varying accordingly. The presence of a noifhe corresponding color map of the local SNR is shown on
zero background influences mainly the estimated backgroufdj. 6.



(b)

estimation of the local SNR. Our method does not remove
the noise, but instead smooths the image, comprising the
signal dependent noise and the wavelet shrinkage based on
entropy offered by JPEG 2000. Due to the limitations of this
compression, if the image is too noisy, then the estimated
noise-free image will still contain noise and the model
fitting will not give correct results. Moreover, the estimet
noise-free image can present blurred and then wider edges,
which will result in an overestimation of the variance of
noise. A possible extension could be to use more efficient

Fig. 5: Color map of the Io4ca| SNR in dB computed fromygise removal methods. However, despite these limitations
Eq. 13 for a block size ob® = 16, for (a) channel MTR  his method could be useful for experimentalists and image

record 1 and (b) channel MTR record 6.

@) (b) ©

analysts working in the field of fluorescence microscopy.
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