
  

  

Abstract—Here we describe a model-based approach to 
predict cis-acting RNA elements which regulate tissue-specific 
alternative splicing. The model facilitates the identification of 
cis-acting elements (or CAE) and the estimation of their 
activities, considering the splicing variants between two 
different tissues as the combinatorial functions of multiple 
elements. We implement this model on a set of differentially 
expressed exons, between heart and liver, derived from 
Affymetrix GeneChip® Human Exon 1.0 ST Array sample data. 
Focusing on hexamers, we select top 15 motifs with greatest 
cumulative exon inclusion (EIC) scores as the potential 
cis-acting elements. Eight of the total 15 hexamers are validated 
based on known exonic splicing regulators (ESRs) and predicted 
ESRs (PESRs). Permutation test demonstrates that the 
predicted EIC scores are statistically significant. Based on the 
prediction, we propose that PTB, hnRNP-B, SRp40, as well as 
other unknown factors are involved in the tissue-specific 
alternative splicing between heart and liver. 

I. INTRODUCTION 
lternative pre-mRNA splicing is the major mechanism 
for expanding the protein coding capacity of human 

genes. Current estimates suggest that every gene produces, on 
average more than 5 different mRNA isoforms. Recent 
surveys of transcript diversity indicate that alternative 
splicing plays an important role in regulating tissue-specific 
patterns of gene expression [1, 2]. Selection of alternative 
splice sites is governed by the coordinated interactions of 
trans-acting RNA binding proteins with cis-acting RNA 
elements. The serine and arginine-rich family of RNA 
binding proteins are essential, ubiquitously expressed 
splicing factors whose relative expression levels can vary 
across tissues [3]. SR proteins function at an early stage of 
spliceosome assembly and are believed to play a general role 
as activators of splice site recognition [4]. By contrast, the 
expression of many RNA binding proteins is restricted to 
specific tissues or developmental stages. Nova proteins are 
the crucial factors regulating brain-specific alternative 
splicing to form synapse [5, 6]. The Fox-1 family and SUP-12 
coordinately regulate the tissue-specific alternative splicing 
of fibroblast growth factor receptor gene egl-15 in vivo [7]. 
Tissue-specific RNA binding proteins may bind to specific 
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RNA elements and regulate tissue-specific splicing [8, 9]. For 
example, the RNA element UGCAUG is over-represented in 
the proximal downstream intronic regions of many 
brain-specific exons, and plays a critical role in mediating 
tissue-specific splicing events [10]. 

Biological experiments are limited to a handful of model 
RNA transcripts and trans-acting RNA binding proteins, 
which provide important mechanistic insight but often leave 
the relevance to general tissue-specific splicing unanswered. 
It is also difficult to discover the potential factors which 
might be involved in tissue-specific splicing regulation. 
Model-based methods, integrating genome-wide microarray 
technologies designed for splicing variants detection, give us 
opportunities to discover the tissue-specific splicing code. 
Das and co-workers presented a computational model to 
identify cis-regulatory elements for tissue-specific alternative 
splicing [11]. Their model is based on the idea that the 
correlation of motif parameters with gene-level normalized 
exon expression signals can be used to identify splicing 
regulatory motifs. However, the combinatorial effect of 
different splicing factors is not considered, which may fail to 
model the true biological process. On the other hand, their 
model only focuses on upstream and downstream intronic 
regions. As a matter of fact, exonic splicing enhancers (ESE) 
and silencers (ESS) probably take part in alternative splicing 
regulation as well. 

Here we introduce a new model to predict the potential 
cis-acting RNA elements which regulate tissue-specific 
splicing. This model is based on the idea that the variations of 
gene-level normalized exon intensities between two different 
tissues are controlled by the combinatorial actions of a set of 
tissue-specific splicing factors. The combinatorial effects of 
splicing factors are determined by their functional levels (or 
FL), which express whether and how strong the factors inhibit 
or enhance the expression of exons, and their corresponding 
occupancy frequencies in splicing regulatory regions. 
Platforms such as Affymetrix GeneChip® Exon Array 
designed for monitoring alternative splicing can be used in 
this model, as long as the exon-level intensities are available 
or can be evaluated. For a studied alternative exon, the 
potential regulatory regions consist of intronic region 
upstream of 3’ss (splicing site), exonic region downstream of 
3’ss, exonic region upstream of 5’ss and intronic region 
downstream of 5’ss. Each candidate regulatory motif is 
mapped to the sequence of its regulatory region to compute 
the occupancy frequency. According to the occupancy 
frequency and factors’ functional levels, a linear model is 
then constructed to fit the splicing index (SI), which is 
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calculated by the log ratio of gene-level normalized exon 
intensites of two samples. The functional level parameters are 
estimated by linear least squares approach. This process is 
repeated for many times with different random sets of all 
candidate motifs. Cumulative Exon Inclusion (EIC) Score is 
introduced to define the relative contribution of each motif to 
the inclusion of alternative exons. Providing differentially 
expressed exons between two tissues, the model can predict a 
group of cis-elements with top EIC scores. 

In this article, we test the model using exon array data 
retrieved from Affymetrix GeneChip® Human Exon 1.0 ST 
Array sample database [12] including a collection of 11 
human tissues. Although we only focus on heart and liver in 
this study, it is very straightforward to compare any two of 
these tissues and evaluate their corresponding tissue-specific 
cis-elements. We pick out top 15 motifs with highest EIC 
scores from all candidate motifs as the potential cis-acting 
elements. More than half of the predicted cis-acting elements 
are validated either by known exon splicing regulators 
(ESRs) or predicted exon splicing regulators (PESRs). 
Computational validation—permutation analysis also clearly 
shows that the predicted EIC scores are significantly greater 
than randomized data. The results indicate that PTB, 
hnRNP-B, SRp40, as well as other predicted elements whose 
corresponding trans-acting binding proteins are not known 
currently, may be critical for the tissue-specific alternative 
splicing of heart and liver.  

II. METHOD 
Our model is designed based on a very important 

hypothesis that pre-mRNA splicing is regulated by the 
combinatorial effects of multiple trans-acting RNA binding 
proteins. Since there’re different kinds of alternative splicing 
such as cassette exons, alternative 5’ splicing, alternative 3’ 
splicing, retained intron etc, the regulatory regions and 
patterns may vary in different splicing patterns. For 
convenience, this study only focus on cassette exons—exons 
skipped or retained under different regulatory conditions. 
However, the essential idea can be extended to other sorts of 
splicing very easily.  

A.  Identification of RNA cis-regulatory regions 
Cis-acting elements consist of enhancers (enhance 

splicing) and silencers (inhibit splicing) which could be 
located within exonic or intronic regions. Most of the 
cis-acting elements exist in the splicing junctions. To model 
different regulatory patterns, we focus our searching of 
functional cis-acting elements in intronic region upstream of 
3’ss (splicing site), exonic region downstream of 3’ss, exonic 
region upstream of 5’ss and intronic region downstream of 
5’ss. The four regulatory regions are illustrated in Fig. 1.  

It has been biologically validated that the splicing factors 
will absolutely lose their regulatory functions when they are 
placed in intronic regions more than 300bp away from 
splicing sites [13-15], so we focus the searching in 300bp 
within intronic regions and 150bp in exonic regions. If the 

exon is less than 150bp, the entire region will be considered. 
For each array-detected differentially expressed splicing 
variant under two different biological conditions, sequences 
of RNA regulatory regions, as specified in Fig. 1, will be 
extracted from the UCSC genome browser. Hexamers are 
widely used in studying exon splicing enhancers and 
silencers. Therefore, we select potential binding sites of 
splicing regulatory factors from a pool of all the 6-bp motifs. 
This results in a total of 40964 6 = candidates in each 
putative regulatory region. 
 

 
 

Fig. 1.  Regulatory regions for cassette exon 
 

B. Modeling the expression levels of cassette exons 
We use “Splicing Index” [16] to compare the different 

inclusion rates of exons relative to gene expression level 
under two conditions. It is calculated by taking the 
logarithmic ratio of the normalized exon intensities (NI) in 
two samples (1).  
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The quantitative relationship between the expression levels 

of splicing variant k and the occurrences of binding sites of 
splicing regulatory factors is formulated as: 
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where: 

SIk: logarithmic ratio of the expression levels of the 
pre-mRNA regions where the k-th splicing variants reside 
between two different conditions, as defined in (1); 

nr: number of regulatory regions; 
Sk,i,r: number of binding sites of splicing regulatory factor i 

in the r-th regulatory region of the k-th splicing events;   
Sk,r: all the functional binding sites of splicing regulatory 

factors having occurrences in the r-th regulatory region of the 
k-th splicing events; 

xi,r: functional levels of i-th binding sites of splicing 
regulatory factor in the r-th regulatory region  

It is clearly demonstrated in (2) that the measured 
differential expression level of splicing variants (SIk) is 
regulated by a combinatorial effect (Σ and Sk,i,r) of multiple 
splicing regulatory factors (xi,r) binding in different splicing 
regulatory regions (nr), as marked in Fig. 1. In this equation, 
SIk can be measured using Affymetrix Exon Array data. 
Given a set of binding sites of splicing regulatory factors, Sk,i,r 
can be calculated based on the splicing regulatory sequences 
retrieved from regulatory region defined in Fig. 1.  Once these 



  

two parameters are considered as known, the function of each 
splicing regulatory factor (xi,r) can be estimated 
mathematically by fitting K equations using nr parameters (nr 
<<K). 

C. Least square estimation 
Given the expression variation (SIk) and the number (Sk,i,r) 

of binding sites of a set of splicing factors in different 
regulatory regions, least-squares estimation is performed to 
estimate the function of each splicing factor.  
 

SISSSX TT 1)(ˆ −=                              (3) 
 
where X, S and SI are matrix forms of xi,r , Sk,i,r and  SIk  in (2). 
For a given set of splicing factors X, S and SI contain ∑Sr x 1, 

K x ∑Sr and 1 x K elements, respectively. This estimation is 
achieved by minimizing the sum of square error of the 
differences between the observed and predicted expression 
alteration of studied splicing variants: 
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where K is the total number of differentially expressed exons. 

D. Motif selection 
The linear model and least-squares estimation (2 and 3) 

aim at estimating the functions of a known set of splicing 
regulatory factors and their binding sites that contribute to the 
differential splicing patterns in two different conditions. In 
normal practice, however, this set of splicing regulatory 
factors is unknown. In this step, we intend to design a 
procedure to evaluate the influence of each hexamers on the 
splicing regulation by calculating the sum of square error (4) 
of predicting expressional alteration of splicing variants using 
the hexamer being evaluated in cooperation with others. The 
procedure is completed in N iterations. In each iteration, n 
candidate motifs are selected from a pool of 40964×  
hexamers. Model errors based on the random set of selection 
will be calculated based on (4). Since a smaller model error 
implies a more influential binding site, an exon inclusion 
contribution score (or EIC) is assigned to each selected 
candidate according to the following formulations: 
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where SS is the model sum square error derived in (4); Cn,r,i 
represents all the combinatorial selections (having n binding 
sites) that include the i-th hexamer; and α is a power factor 
that influences the effect of single selections (α > 1). A larger 
α value usually amplifies the effect of motif selections in each 
iteration (here, we will use α = 5). 

Similarly, cumulative functional level of each binding site 
is calculated: 
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where x̂  are the estimated functional levels of selected 
hexamers in each iteration (3). Overall, the proposed motif 
selection procedure can be summarized as: 
1) Randomly pick out n elements from a pool of all 

hexamers. 
2) Calculate the predicted model sum square error SS (4). 
3) Calculate the current exon inclusion contribution score 

for each selected binding site candidate as reciprocal to 
SS, and their functional levels (x). 

4) Add the current contribution score and individual 
functional level to the cumulative exon inclusion 
contribution score (EIC) and functional levels (X) (6). 

Repeat the procedure 1) to 4) for N times. The motif 
(hexamer) candidates with the highest overall exon inclusion 
contribution (EIC) score is considered as the putative binding 
sites of splicing regulatory factor that are responsible to the 
splicing alteration between two biological conditions. N is 
selected so that each motif candidate is being evaluated 
10,000 times.   

III. RESULT 

A. Identification of differentially expressed exons based on 
Exon Array data 
Affymetrix GeneChip® Exon 1.0 ST Array is designed for 

the study of transcript diversity and alternative splicing. More 
than 1.4 million Probe Selection Regions (or PSRs) and 1 
million exon clusters are integrated in a single chip to monitor 
the splice variants. We use exon array sample dataset 
(published on Affymetrix website) which contains 11 human 
tissues, with 3 replicates for each tissue. Without losing 
generality, here we only focus on the comparison of heart and 
liver.  
 

 
 

Fig. 2.  Affymetrix Exon Array data processing flow chart 
 



  

We firstly apply a series of processing procedures 
introduced in Affymetrix Technique Note [17] to find the 
differentially expressed PSRs. These PSRs are mapped to 
UCSC known gene annotation to identify their corresponding 
exons. As we only consider cassette exons in this study, exons 
containing multiple PSRs are filtered out. The data processing 
flow chart is summarized in Fig. 2.  
 

TABLE I 
Exon array analysis 

  Number 
PSR 1404903 
Core gene 17800 
Present PSR 489804 
Present core gene 4160 
Present PSR in present core gene 98839 
Differentially expressed PSR (MiDAS 
p-value<0.05 and |SI|>=2) 998 
Exons containing only 1 PSR 326 

 
Three versions of transcript annotations are supplied by 

Affymetrix—core (RefSeq transcripts and full-length 
mRNAs), extended (Core + cDNA-based annotations) and 
full (Extended + ab-initio gene predictions) [17]. We use core 
transcript annotation which is claimed to be much more 
significant and important compared with the other two. Only 
7% of the total 1.4 million PSRs are identified as present 
(p-value<0.05). MiDAS [18] calculate the gene-level 
normalized PSR intensities and test the hypothesis that the 
gene-level normalized expression levels of the PSRs of heart 
and liver are the same. We filter the PSRs based on the 
strategy that p-value<0.05 and |SI|>2. Data in each processing 
procedure are listed in TABLE I. 
 

 
Fig. 3.  EIC Score Distribution 

B. Modeling results for 6-bp motif prediction 
Since we focus on 6-bp RNA motifs in this study, there are 

1638444 6 =×  potential motifs which could be the cis-acting 
elements theoretically. Considering that some of the motifs 
seldom appear in the differentially expressed exons, we do a 
filtering of these motifs to speed up the searching of binding 

sites. Exon occupancy frequency (EOF) is calculated for each 
motif. Only 6389 retained when we filtered out the motifs 
with EOF less than 5%. Then, we implement the model using 
these motifs and their corresponding SI values.  

The EIC score distribution is illustrated in Fig. 3. We 
selected top 15 motifs with the highest EIC scores as the 
regulatory elements which contribute to the tissue-specific 
splicing of exons in heart and liver (TABLE II). Interestingly, 
about half of the motifs (Fig. 4, 7 motifs with red diamonds) 
enhance the expression levels of exons in heart. Another half 
of the motifs (8 motifs with blue diamonds) prevent the 
expression of heart exons and favor liver exons. Only one of 
the top 15 motifs is located within exon, while other motifs 
are intronic regulators. 
 

 
 

Fig. 4.  (A) Spectrum of EIC scores;  (B) Spectrum of Motif functional level 
scores. (Red diamonds stand for selected CAEs with FL>0, while blue ones 
are selected CAEs with FL<0) 
 

TABLE II 
Selected top CAEs and validation 

Regulatory 
region CAE EIC Functional 

level Validation 

4 CUCUUG 3.43E-04 -1.47E+05 hnRNP-I  
1 AUAUUU 3.37E-04 8.35E+04 PESR 
1 UGAUAU 3.35E-04 1.75E+05  
4 ACUGCA 3.31E-04 1.38E+05 SRp40 
1 UAUGGA 3.30E-04 1.92E+05 PESR 
1 GAAACA 3.30E-04 1.71E+05 PESR 
4 UGAACC 3.29E-04 -1.69E+05  
4 AACCAG 3.29E-04 -1.55E+05 PESR 
4 CUGUCU 3.29E-04 -1.11E+05  
2 AUAAAA 3.29E-04 1.90E+05  
4 AAUUUA 3.28E-04 1.09E+05 hnRNP-B 
4 UGGUCU 3.28E-04 -1.45E+05  
4 AUUCCU 3.28E-04 -1.25E+05  
1 ACAGCU 3.27E-04 -1.96E+05 SRp40 
4 AGUGGG 3.27E-04 -1.22E+05   

 
To elucidate the regulatory interactions of selected motifs 

and the exons, we plotted a regulatory network (Fig. 5) using 
Cytoscape [19]. The regulatory relationship between motif 
and exon is called “up-regulate” if the motif’s functional level 
is greater than 0; otherwise, we call it “down-regulate”. Very 
clearly, most of the exons regulated by motifs with FL>0 have 
positive SI scores, while exons regulated by motifs with FL<0 
have negative SI scores.  



  

C. Validation of selected motifs 
1) Computational validation—Permutation analysis 
Permutation analysis is performed to test the significance 

of the results of modeling. Basically, we shuffle the SI scores 
and rerun the model. Significant lower EIC scores are 
obtained for the randomized SI scores (Fig. 6). We also did 
wilcoxon test between EIC scores of experimentally- 
determined and randomized data, and we saw a very 
significant result (p-value<2.2e-16). The permutation 
analysis tells us that the modeling results are statistically 
significant. 
 

 
 

Fig. 5.  Predicted CAE regulation network 
 

2) Validation using known ESRs and PESRs 
Due to the complexity of alternative splicing and the 

limited number of known cis-regulatory elements, we are not 
able to know all of the cis-acting RNA motifs related to their 
corresponding proteins at current stage. So it is very 
challenging for us to validate our predicted top CAEs based 
on biologically validated cis-acting RNA elements 
systematically. Fortunately, we still can evaluate the model’s 
results using the collected known ESRs and PESRs provided 
by some research groups [20-23]. Surprisingly, of all the top 
15 selected CAEs, 4 motifs are mapped to known ESRs, and 5 
motifs are hit by PESRs. In total, a little more than half of 
seleted motifs can be validated. 
 

 
Fig. 6.  Histograms of EIC scores of predicted 6-bp motifs based on SI with 
original orders (red histogram) and randomized orders (blue histogram) 

IV. DISCUSSION 
This article presents a new model-based approach to 

identify cis-acting elements for tissue-specific alternative 
splicing. The model is based on the hypothesis that the 
splicing variants between two tissue samples are determined 
by the combinatorial activities of cis-acting elements. Using 
heart and liver sample data from Affymetrix GeneChip® 
Human Exon 1.0 ST Array database, we demonstrate that the 
predicted EIC scores of 6-bp motifs are of statistical 
significance. Eight of the selected top 15 motifs are validated 
by known ESRs and PESRs, although the other seven motifs 
have no corresponding targets. As the research on RNA 
binding proteins goes further, the cis-acting RNA element 
database will become more established (like today’s 
transcription factor database), and hopefully we will be able 
to validate more predicted motifs.   

From the predicted top 15 hexamers listed in TABLE II, 
we notice that 14 of them are located in upstream or 
downstream intron. This result is consistent with previous 
conclusion that tissue-specific cis-elements are enriched in 
the flanking intronic regions [10, 24-26]. We identified 3 
known splicing factors: hnRNP-I, SRp40, and hnRNP-B. 
HnRNP-I protein, also known as PTB, is expressed 
throughout heart development, and both CELF and PTB 
activities are required for appropriate splicing in 
cardiomyocytes [27]. The predicted functional level of PTB is 
positive, indicating that PTB is a very important splicing 
factor contributing more exon inclusion in heart than in liver. 
We also found that SRp40 are targeted twice by the top 15 
hexamers, but the functional levels are opposite, which seems 
to be contradictory. However, some articles have proved that 
SR proteins usually function as enhancers, but interestingly, 
can also be inhibitors in some splicing systems [28-32]. 
SRp40 can not only bind on intronic splicing enhancer (ISE) 
[33], but also intronic splicing silencer (ISS) [34].  

SR proteins and hnRNP proteins are two of the most 
important and largest RNA binding protein families which 
regulate alternative splicing. Previous studies show that both 
the alternative splice site choice and the inclusion/exclusion 
ratio of selected alternative exons can be controlled by the 
changes in the relative amounts of hnRNP A/B proteins and 
SR proteins [35-39]. Consistent with this point, our results 
demonstrate that hnRNP proteins, SR proteins, as well as 
other unknown factors contribute to the splice variation 
between heart and liver. Understanding the combinatorial 
effect of splicing factors systematically probably will be very 
difficult at current stage. Computational models, however, 
can help us discover more potential factors, their functions 
and combinatorial regulations on tissue-specific alternative 
splicing.  

Despite the success of our approach, we feel the model is 
still in an early stage of development. Our future work will be 
focused on improving this model by adding two additional 
parameters—RNA secondary structure and sequence 
degeneracy of candidate motifs. We believe these 
considerations will increase the accuracy and specificity of 



  

our predictions and ultimately facilitate deciphering of the 
splicing code.  
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