
 

 

 

 

Abstract—Non-proline cis peptide bonds have been quite 

underrated for many years, due to the limited amount of 

structural information available. There is now significant 

evidence that non-proline cis peptide bonds occur more 

frequently than previously thought, and that they are often 

located at or near important sites of the protein molecule. In 

this work, we employ a combinatorial pattern discovery 

algorithm in order to identify simple and specific amino acid 

patterns, associated with the occurrence of non-proline cis 

peptide bonds in proteins. The derived patterns after careful 

validation help in gaining insight into the factors that influence 

the formation of non-proline cis peptide bonds. 

I. INTRODUCTION 

ecause of the partial double bond character of the 

peptide bond, two isomers are energetically preferred, 

cis and trans (Figure 1). In protein structures, the trans 

conformation is overwhelmingly preferred, whereas the cis 

conformation occurs rarely because of its higher intrinsic 

energy. A survey conducted by Weiss et al. [1] in a non-

redundant set of 571 proteins, reported that 0.03% of the 

Xaa-nonPro (where Xaa denotes any of the 20 amino acids 

and nonPro is any amino acid except Proline) and 5.2% of 

the Xaa-Pro peptide bonds are in cis conformation. It is 

noteworthy that the resolution of the protein structure is 

indicative of the number of cis peptide bonds detected. This 

is due to the fact that the distance between two adjacent 

alpha carbons in cis conformation is nearly 1Å shorter than 

in the trans conformation [2]. The correlation between the 

resolution and the cis conformation content may have left 

many cis nonPro peptide bonds unrecognized, especially in 

experiments at medium or low resolutions. 

Despite the low frequency of occurrence, cis nonPro 

conformation bears great importance in a variety of 

biological processes. It has been suggested that, cis nonPro 
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formations occur frequently either at or near the active sites 

of protein molecules, and it is very likely that they have 

roles in the function of the protein [1, 3-5]. Such examples 

are carboxypeptidase A, dihydrofolate reductase and intein 

gyrA, where cis peptide bonds have been strongly proposed 

to bear a functional role [5, 6]. Moreover, several cis 

formations play a significant role in the final structure, as 

well as the folding and stability of many proteins [4, 7]. 

Furthermore, the occurrence of cis nonPro formations has 

been associated with steric strain in proteins and it has been 

speculated that these sites of strain comprise some kind of 

energy reservoir for the protein [7]. 

Certain factors have been proposed in the literature to 

affect the occurrence of cis peptide bonds. Nuclear Magnetic 

Resonance (NMR) experiments have reported that there is a 

strong connection between the primary amino acid sequence 

and the occurrence of cis conformations in proteins [8]. In 

addition, the physicochemical properties of the surrounding 

residues have been proven to influence the isomerization of 

peptide bonds [9]. Based on these facts, several approaches 

have been implemented in order to predict the conformation 

of the peptide bond either in Xaa-Pro amino acid pairs or 

between any two amino acids [10-12]. However, all these 

methods utilize a rather opaque architecture, whereby a 

classifier is employed to distinguish between the 

conformations, without providing insight regarding the 

nature and the interactions of the peptide bond 

isomerization. 

In this work we perform a systematic attempt to discover 

non-random patterns that are associated with cis nonPro 

formations and accurately describe these bonds. For this 

purpose a combinatorial pattern discovery algorithm is 

employed which reports regular expression-type patterns 

that are overrepresented in a set of sequences. Thus, we 

circumvent the limitations of previously reported methods, 

and provide some hints about the physical causes of cis 

nonPro formations. Similar studies have emerged 

nonrandom patterns correlated with the secondary structure 

[13, 14] or regions of disorder in proteins [15]. Moreover, in 

our study several conservative substitutions are permitted 

among the amino acids, regarding their structural or 

chemical nature. The careful assessment of the derived 

patterns might further contribute to the biological 

interpretation of cis nonPro formations.  
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Fig. 1. Conformational isomers of a Glycine–Phenylalanine (G-F) peptide bond. The displayed structure is 1HNJ, acquired from the Protein Data Bank. 

 

II. MATERIALS AND METHODS 

A. Dataset 

The data necessary for our study consist of 3050 well 

resolved (resolution < 2.0Å) and refined protein sequences, 

extracted from the Protein Data Bank (PDB) [16]. The 

chosen proteins have been determined by X-ray 

crystallography and display less than 25% sequence identity; 

furthermore the R-factor is less than 0.25. The annotation of 

the dataset is performed using VADAR (Volume Area 

Dihedral Angle Reported) [17], which accepts PDB files and 

calculates the dihedral angle ω. Bonds with ω dihedral angle 

between  -30° and +30° are considered as cis, whereas bonds 

with ω dihedral angle between 150° and 210° are assumed to 

be trans. For each nonPro peptide bond in the above non-

redundant set of sequences, a region containing its 

immediate ±5 neighboring residues is assembled [10, 18]. In 

order to avoid interclass overlapping regions, the ±5 trans 

nonPro residues flanking a cis nonPro region are excluded 

from our study (Figure 2). Thus, two non-overlapping 

datasets are composed, the D+ containing all cis nonPro 

regions and the D- containing all trans nonPro regions. All 

extracted regions have a length of 11 residues. 

 

 
Fig. 2. The above sequence segment has a cis nonPro peptide bond between 

C-T residues, in the center. The cis region taken into account, shown in the 

bottom of the figure, contains ±5 residues flanking the peptide bond. 

Residues in the excluded region, shown in the top of the figure, are 

eliminated from our study so that no overlapping regions exist both in D+ 

and D-. 

 

B. Pattern discovery 

All regions in D+ are properly formatted and provided in 

the TEIRESIAS pattern discovery algorithm [19], which 

efficiently detects all maximal patterns present in the dataset, 

without enumerating the entire solution space. The algorithm 

operates in two phases: scanning and convolution. During 

the scanning phase, patterns exceeding a minimum support 

threshold are maintained; next these elementary patterns are 



 

 

 

progressively combined into larger patterns, until all existing 

maximal patterns are discovered. The algorithm detects all 

non-overlapping patterns of three to eleven residues (W=11), 

with minimum support K=2 [19, 20], requiring at least three 

constant literals (L=3). An initially low threshold is chosen 

regarding the support of the discovered patterns, since 

further validation is performed in the next stage of our 

analysis. The choice of L=3 is arbitrary but justified a 

posteriori by the observation that patterns with more 

specified residues are not frequent enough in our database, 

whereas patterns with fewer literals are rather uninformative. 

The pattern discovery process is carried out using three 

different types of analysis with biological insight: i) exact 

pattern discovery, ii) pattern discovery using a chemical 

equivalency set: [AG], [DE], [FY], [KR], [ILMV], [QN], 

[ST] and iii) pattern discovery using a structural equivalency 

set: [CS], [DLN], [EQ], [FHWY], [ITV], [KMR]. Residues 

in “[ ]” are allowed to substitute one another during the 

pattern discovery process, considering either their chemical 

behavior or structural nature. In the first type of pattern 

discovery, positions in the extracted patterns are occupied 

either by a specific residue or by a wildcard (denoted as a 

single dot “.”); during the other two types of pattern 

discovery, positions may also be occupied by one of the 

specified character classes.  

 

C. Pattern validation 

Since the initial set of the discovered patterns, is derived by 

taking into account only D+, the patterns themselves are not 

guaranteed to be highly specific. Thus, the contradiction of 

patterns against a negative control set (i.e. D-) is necessary, 

 

in order to exclude patterns that are equally represented in 

both datasets. The pattern validation procedure is based on 

comparing proportionally the number of matching regions in 

D+ and D-. If P is a pattern and M(P) is the set of regions 

matching P, then we can define score as: 

 

( )

( ) ( )

D M P
Score

D M P norm D M P
     (1) 

where norm D D , which is used to phase out the 

imbalance in our datasets, since it is reasonable to expect 

( )D M P  and ( )D M P  to be roughly proportional 

to the database size. Score ranges in [0,1], with score=0 in 

the least favorable case and score=1 in the most favorable 

one. If a pattern is equally represented in the cis and trans 

regions, then score 0.5 and values greater than that should 

indicate a propensity towards cis nonPro regions. In our case 

a much more rigorous threshold is chosen (score ≥ 0.9) in 

order to maintain only highly selective associations, that 

capture the nature of cis nonPro formations. A further 

constraint is imposed on the derived patterns: 

 

( ) 4D M P                                      (2) 

 

This ensures that every pattern should match the cis 

regions at least four times; thus excluding patterns that 

match trans regions zero times and cis regions. This 

constraint also ensures that patterns with zero matches in D-, 

yielding score=1, are not essentially descriptive and should 

not be maintained unless they are adequately represented in 

D+. 

 
Fig. 3. The steps of the proposed methodological analysis. 



 

 

 

Moreover, the reliability of the derived patterns is 

assessed; besides the score, a measure of significance is 

computed and attached to every pattern. This measure is 

estimated using the Bayes theorem in conjunction with a 

second order Markov chain and represents the probability 

that the pattern under consideration is found by chance in a 

very large biological database. The steps of the proposed 

methodological analysis are shown in Figure 3. 

 

III. RESULTS AND DISCUSSION 

A summary of the most representative patterns (top-20 

highest scoring patterns), obtained from our study, is shown 

in Table 1; for each pattern, the score it obtained, as well as, 

the significance measure attached to it, are given. Our 

methodological analysis has rediscovered some known facts 

about the nature of cis nonPro bonds, while it has also 

detected certain unknown ones. From the careful assessment 

of the highest scoring patterns in Table 1, several interesting 

conclusions can be drawn. The most obvious remark is that 

cis nonPro regions are replete with Glycines (G), which are 

found in 50 out of the 60 patterns presented in Table 1. 

Glycine is found with very high frequency either as part of 

the peptide bond or in its immediate neighborhood [3]. Some 

representative patterns are “H...G..GL”, “K.G.G...P”, 

“F..G.G.R”, “[AG].[QN].[ILMV]K.V[ST]”, 

“[KR].G.G.R.P”, “GT[ILMV]..QL”, “[KMR].G.G.R.P”, 

“[FHWY][KMR]..KG..K”, “K.[DLN]GT....L” and their 

variations, as well as many others. The tiny Glycine residue 

raises the probability of acquiring a cis conformation, 

probably due to lack of steric hindrance. Besides Glycine, 

Alanine (A) is also frequently observed in the neighborhood 

of cis nonPro formations, due to its confined size [3]; It is 

observed in many patterns, such as “A.SG.Y”, “GA.D.A”, 

“[AG].[QN].[ILMV]K.V[ST]”, 

“A[DLN]..[DLN][KMR][DLN]V” and 

“A.[CS]..YG[DLN]”. Moreover, residues Leucine (L), 

Lysine (K), Threonine (T) and Serine (S) have relatively 

high propensities for occurrence near cis nonPro bonds, as 

we can see in many patterns shown in Table 1 (e.g. 

“H...G..GL”, “K..GT....L”, “LN.LK”, 

“E.K[KMR][KMR].L”, “[ST]T.E..A[ILMV]”, 

“K.[DLN]GT....L”, “S[AG].[FY]GL”). Especially Leucine 

and Lysine are more frequent than the other two residues. 

Regarding Leucine, Serine and Threonine similar 

observations have been reported in the literature, whereas 

Lysine has been previously found to occur scarcely near cis 

nonPro formations [3]. This can be attributed to the limited 

amount of solved structures available at that time. Aromatic 

residues (Phenylalanine (F), Tryptophan (W), Tyrosine (Y) 

and Histidine (H)) are also found in many of the highest 

scoring patterns, such as: “F..G.G.R”, “G.F.W”, 

“S[AG].[FY]GL”, “[FHWY][KMR]..KG..K” and 

“H...G..GL”, to name a few.  

 
 

Table 1: The patterns are grouped according to the type of pattern discovery. Important details such as the score and significance of the derived patterns are 

also provided. The reported patterns are sorted first by score and then by significance. 
 

Exact pattern discovery Chemical equivalency set Structural equivalency set 

Pattern Score Significance Pattern Score Significance Pattern Score Significance 

KPGKGRRK 1 -37.673 KPGKGRRK 1 -37.673 KPGKGRRK 1 -37.673 

H...G..GL 0.998 -14.556 [AG].[QN].[ILMV]K.V[ST] 0.999 -22.208 A[DLN]..[DLN][KMR][DLN]V 0.999 -21.106 

K.G.G...P 0.997 -14.595 [KR].G.G.R.P 0.999 -19.440 [KMR].G.G.R.P 0.999 -19.228 

G.G.R.P 0.996 -14.201 GT[ILMV]..QL 0.999 -18.060 [FHWY][KMR]..KG..K 0.999 -18.591 

K..GT....L 0.996 -13.646 [DE][ST]G.YG 0.999 -18.941 K.[DLN]GT....L 0.999 -18.390 

GT...QL 0.995 -13.957 LN.LK[ILMV] 0.998 -18.015 A.[CS]..YG[DLN] 0.999 -18.902 

F..G.G.R 0.994 -14.369 G..[DE].K..S[ILMV] 0.998 -17.942 H...G..GL 0.998 -14.556 

GT.E..L 0.992 -13.719 H...G..GL 0.998 -14.556 [DLN]G.[KMR].PL 0.998 -17.778 

A.SG.Y 0.991 -14.401 [ST]T.E..A[ILMV] 0.998 -17.590 D[KMR].[EQ]...[ITV]L 0.997 -17.185 

FKPG 0.990 -14.695 [AG]...[ILMV]K[ILMV][ILMV][ST] 0.997 -20.226 E.K[KMR][KMR].L 0.997 -17.626 

GA.D.A 0.988 -18.877 S[AG].[FY]GL 0.997 -18.287 K.G.G...P 0.997 -14.595 

LN.LK 0.987 -13.369 [AG][ST].EP.[ILMV] 0.997 -17.609 L..V[ITV].Q[DLN] 0.997 -17.560 

G...W...D 0.980 -9.985 [DE][DE][AG]T[KR]..[ILMV] 0.997 -21.966 LG..[ITV]N.[DLN] 0.995 -17.440 

G.F.W 0.977 -10.267 GT[ILMV]I.[QN] 0.997 -17.827 GT...QL 0.995 -13.957 

G..G...W 0.972 -9.414 K.G.G...P 0.997 -14.595 F..G.G.R 0.994 -14.369 

G....N...S 0.969 -8.639 [ILMV].G.[AG]..AT 0.997 -17.157 [KMR].G.G...P 0.994 -13.515 

H.E.....L 0.963 -8.835 K..GT....L 0.996 -13.646 L..L.[DLN][ITV]T 0.994 -16.699 

F....G..K 0.960 -8.888 F..G.G..[KR] 0.996 -13.761 [KMR]..KG..K 0.994 -13.462 

P..G..K 0.958 -8.932 L[AG].[ILMV][ILMV]N.[ILMV] 0.996 -20.443 F..G.G..[KMR] 0.994 -13.565 

H......GL 0.956 -8.798 E[DE][AG]....[ILMV]L 0.995 -16.296 [KMR]EP[DLN][DLN] 0.993 -17.265 

 



 

 

 

Furthermore, b-branched amino acids (Valine (V), 

Isoleucine (I) and Threonine (T)) can also be observed in 

some of the patterns shown in Table 1 (e.g. 

“[AG].[QN].[ILMV]K.V[ST]”, “[ST]T.E..A[ILMV]”, 

“D[KMR].[EQ]...[ITV]L”).  

It is noteworthy that some patterns are observed in all 

three types of pattern discovery, either completely unaltered 

or with slight variations. Some of these predominant patterns 

are “H...G..GL”, “K.G.G...P” and “F..G.G.R” (or its 

variations “F..G.G..[KR]” and “F..G.G..[KMR]”). In Figure 

4 we can see an approximation of the three dimensional 

structure of these patterns. In should be noted that in all 

three patterns an underlying “pocket” like motif exists. 

Regarding the pattern “KPGKGRRK”, which yielded very 

high scores in all three types of pattern discovery, all its 

instances are found in the same protein sequence (2GECA), 

which has four successive cis nonPro bonds; thus, no 

conclusions about the nature of cis nonPro formations, in 

general, can be drawn from this pattern only. 

 

  
Fig. 4. Approximation of the three dimensional structure of the predominant 

patterns “K.G.G...P”, “H…G..GL” and “F..G.G.R”. 

 

 

Overall, we can see that the significance measure for all 

retained patterns is very low, especially in the cases of 

pattern discovery using a chemical or a structural 

equivalency set. Such low values of significance ensure that 

the discovered patterns are quite unlikely to appear by 

chance, even in a very large biological database. Hence, the 

retained associations formulate highly specific and reliable 

descriptors of cis nonPro formations. 

 

IV. CONCLUSIONS 

Cis nonPro peptide bonds have been underrated for several 

years, due to their scarce occurrence. However, it is now 

clear that these formations are not irregularities of the 

respective structure that they are found, but actually play a 

significant role in the structure and function of the protein 

molecule. Although the limited amount of solved structures 

has impeded the study of cis nonPro bonds, with more three 

dimensional structures at hand today, more systematic 

approaches have become feasible. 

Our analysis has yielded several descriptive patterns 

regarding the nature of cis nonPro bonds, most of which are 

consistent with previous findings, but it has also discovered 

some previously unknown associations. More important 

though, is that the surrounding and the interactions of cis 

nonPro conformations have been formulated in a list of 

simple and understandable patterns. Furthermore, the 

extracted patterns can be contradicted with available patterns 

concerning important sites in proteins (e.g. active sites) and, 

thus, enhance the functional prevalence of cis nonPro 

formations. 
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