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Abstract— A single mass spectrometry experiment could
produce hundreds of thousands of tandem mass spectra. Several
search engines have been developed to interpret tandem mass
spectra. All search engines need to determine the masses of
peptide ions from mass/charge ratios of ions. Unfortunately,
mass spectrometers do not detect the charges of ions. A current
strategy is to search candidate peptides multiply times, once for
each possible charge state (typically +2 or +3). However, this
strategy not only wastes the search time but also increases the
risk of false positive peptide identification.

This paper aims at discriminating doubly charged spectra
from triply charged ones. 28 features are introduced to describe
the discriminant characteristics of doubly charged and triply
charged spectra. The support vector machine (SVM) technique
is used to train the classifier on these 28 features. To verify the
proposed method, computational experiments are conducted
on two types of datasets: ISB dataset generated from the
low-resolution ion-trap instrument and TOV dataset generated
from the high-resolution quadrupole-time-of-flight (Q-TOF)
instrument. For each type of dataset, the SVM-based classifiers
are trained and tested on 20 randomly sampled sub-datasets.
The results show that the proposed method reaches averagely
95% and 93% of correct rates to discriminate doubly charged
spectra from triply charged ones for the low-resolution ISB
dataset and the high-resolution TOV dataset, respectively.

I. INTRODUCTION

With the development of proteomics, tandem mass spec-
trometry (MS/MS) has been used for the rapid identifica-
tion and characterization of protein components of complex
biological mixtures. By using an enzyme, e.g. trypsin, pro-
teins are digested into peptides. Tandem mass spectra are
employed to analyze these peptides in view of their identifi-
cations by database search or de novo sequencing. Database
search programs, such as SEQUEST [1] and MASCOT
[2], identify peptides by comparing tandem mass spectra
with theoretically predicted spectra derived from protein
databases. De novo sequencing algorithms try to reconstruct
original peptide sequences using tandem mass spectra. A
review of several common de novo sequencing algorithms
is given by [3].
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Depending on the mass spectrometry ionization technol-
ogy, peptide ions can carry more than one charge, especially
the case with electrospray ionization (ESI) instruments [4].
In such a case, the instrument does not measure the masses
of peptide ions but the mass/charge (m/z) ratios. However,
most search algorithms need to calculate the mass of a
peptide ion from the mass spectrum before comparing an
experimental spectrum with a theoretical spectrum. Hence,
if the charge state of a peptide ion is not known, search
algorithms have to search candidate peptides multiple times,
once for each possible charge state. However, this may
increase both the search time and the risk of false positive
peptide identification. It is, therefore, of great interest to
assign reliable charge states to peptide ions.

The common technique used for the determination of
the charge state is based on isotopic peaks of a peptide
spectrum that are mostly caused by the 13C isotope [5].
However, determination of charge states by isotopic peaks
is possible only when high-resolution instruments such as
quadrupole-time-of-flight (Q-TOF) are used. Many common
mass spectrometers like the ion trap and triple quadrupole
instruments generally have the limited resolution. Therefore,
the isotopic peak based technique is not suitable to determine
charge states of peptide tandem mass spectra produced by
low-resolution instruments.

Several algorithms have been proposed to determine the
charge state of a peptide ion from a mass spectrum. In
general, singly charged spectra can be reliably distinguished
from multiply charged spectra with currently existing algo-
rithms [6] while it is rare to obtain high quality spectra
with charges greater than three. Therefore, most existing
methods aim at distinguishing doubly charged and triply
charged spectra. In [7], a program named 2to3 was proposed
to estimate the charge state of a precursor ion by counting
the number of complementary fragment peak pairs. In [8],
a support vector machine (SVM) based approach was pro-
posed to determine charge states of multiply charged peptide
tandem mass spectra. 34 spectral features were introduced
to discriminate between doubly charged and triply charged
peptide tandem mass spectra. Out of these 34 features, 19
features were derived from the a priori differences according
to the charge state of the peptide mass spectrum, and other 15
features were the sum of intensities over each of 15 different
m/z ranges divided by the total intensity of the spectrum. The
multiply charged spectra were classified into three groups:
“+2”, “+3”, and “+2OR+3” to minimize the losses of peptide
identifications in [8]. More recently, Na et al. developed an
SVM-based approach to differentiate doubly charged spectra



from triply charged ones [9]. They proposed 9 features to
describe the discriminant characteristics of doubly charged
and triply charged spectra. In these 9 features, one feature
was the difference between the number of complementary
peak pairs in doubly charged case and triply charged case, 5
features were calculated by the Good-Diff Fraction (GDFR)
[10] for singly charged and doubly charged fragment ions at
different m/z ranges, and other 3 features were the sum of
intensities over each of 3 different m/z ranges divided by the
total intensity of the spectrum. Similar to [8], the multiply
charged spectra are classified into three groups.

Instead of classifying multiply charged spectra into three
groups (“+2”, “+3”, and “+2OR+3”) in the previous methods,
in this paper we develop a new method which classifies
multiply charged spectra into only two groups (“+2” and
“+3”) with high accuracy. To do this, 28 spectral features are
proposed to distinguish between doubly charged and triply
charged spectra. Out of the proposed 28 spectral features,
24 features are computed by combining the properties of
peptide tandem mass spectra with peak intensities, and other
4 ones are the sum of relative intensities over each of 4
different m/z ranges in the spectrum. With the proposed 28
features, the SVM is applied to constructing the classifier.
The proposed method can reduce the number of database
searches for multiply charged spectra by 50%. Computational
experimental results from the low-resolution ISB and high-
resolution TOV datasets have shown the performance of the
proposed method.

II. METHODS AND MATERIALS

A. Properties of peptide tandem mass spectra

A peptide P is a sequence of n amino acids. P = p1 p2 · · · pn
in an alphabet of 20 amino acids, each amino acid having a
mass m(pi). The mass of the peptide P is calculated by

m(P) =
n

∑
i=1

m(pi)+Mw (1)

where Mw is the mass of a water molecule. Generally, in mass
spectrometry experiments the cleavage along the peptide’s
backbone in the collision-induced dissociation (CID) stage
results in an N-terminal fragment ion bi and a C-terminal
fragment ion yn−i. The m/z-values of singly charged bi and
bi−1 ions are, respectively, computed by

m(bi) =
i

∑
j=1

m(p j)+m(H) (2)

m(bi−1) = m(bi)−m(pi) (3)

where m(H) is the mass of a hydrogen atom, and the m/z-
values of doubly charged bi and bi−1 ions are, respectively,
computed by

m(b2+
i ) = (m(bi)+m(H))/2 (4)

m(b2+
i−1) = m(b2+

i )−m(pi)/2 (5)

The m/z-values of singly charged yn−i and yn−i+1 ions are
respectively computed by

m(yn−i) =
n

∑
j=i+1

m(p j)+m(H)+Mw (6)

m(yn−i+1) = m(yn−i)+m(pi) (7)

and the m/z-values of doubly charged yn−i and yn−i+1 ions
are, respectively, computed by

m(y2+
n−i) = (m(yn−i)+m(H))/2 (8)

m(y2+
n−i+1) = m(y2+

n−i)+m(pi)/2 (9)

From (1) through (9) the following identities can be obtained
for the relations between bi and yn−i ions

m(P)+2m(H) = m(bi)+m(yn−i) (10)

m(P)/2+2m(H) = m(b2+
i )+(m(yn−i)+m(H))/2 (11)

m(P)/2+2m(H) = (m(bi)+m(H))/2+m(y2+
n−i) (12)

m(P)/2+2m(H) = m(b2+
i )+m(y2+

n−i) (13)

and for the relations between bi−1 and yn−i ions

m(P)+2m(H)−m(pi) = m(bi−1)+m(yn−i) (14)
m(P)/2+2m(H)−m(pi)/2 = (m(yn−i)+m(H))/2

+m(b2+
i−1) (15)

m(P)/2+2m(H)−m(pi)/2 = (m(bi−1)+m(H))/2

+m(y2+
n−i) (16)

m(P)/2+2m(H)−m(pi)/2 = m(b2+
i−1)+m(y2+

n−i) (17)

According to the CID fragmentation principle, a peptide
mass spectrum may include several other types of fragment
ions such as neutral loss (H2O,NH3), a,c,x,z, and so on.
That is, there exist some pairs of m/z-values with difference
of the mass of certain molecular (e.g., water, ammonia) in
the peptide tandem mass spectra.

B. Spectral features

A mass spectrum usually contains tens to hundreds of m/z-
values on the x-axis, each with corresponding signal intensity
on the y-axis. In this study, after removing the noisy peaks
by use of the morphological reconstruction method [11],
28 spectral features are introduced to distinguish between
doubly charged and triply charged spectra as follows.

In the ESI process, a peptide ion can be multiply charged.
This study is concerned with the doubly charged and triply
charged peptide tandem mass spectra. If the precursor ion
with m/z = Mz is doubly charged, the m/z-values of the
peaks in a spectrum S should be in the interval (0,2Mz] and
the m/z-values of doubly charged fragment ions should be
in the interval (0,Mz]. If the precursor ion is triply charged,
the m/z-values of the peaks in the spectrum should be in
the interval (0,3Mz] and the m/z-values of doubly charged
fragment ions should be in the interval (0,3/2Mz]. Based
on this observation, the entire m/z range of a spectrum is
divided into four bands, (0,Mz],(Mz,3/2Mz],(3/2Mz,2Mz],
and (2Mz,3Mz]. The intensity density in each of these four



ranges is expected to be different for doubly charged and
triply charged spectra. Thus we propose the following four
features for a given peptide mass spectrum S

F1 = ∑
m(x)≤Mz

Ir(x) (18)

F2 = ∑
Mz<m(x)≤ 3

2 Mz

Ir(x) (19)

F3 = ∑
3
2 Mz<m(x)≤2Mz

Ir(x) (20)

F4 = ∑
2Mz<m(x)≤3Mz

Ir(x) (21)

where m(x) and Ir(x) denote the m/z-value and the relative
intensity of the peak x in the spectrum S, respectively. In the
existing literature, the relative intensity is usually defined as
the raw intensity normalized by the intensity of the most
abundant peak or the sum of peak intensities in a spectrum.
This study employs the raw intensity normalized by the sum
of peak intensities in a spectrum as the relative intensity since
better performance of the SVM classifier can be obtained.

A spectrum obtained from a precursor ion with m/z = Mz
can have different peptide’s mass according to its charge
state. For example, if the precursor ion is doubly charged,
its mass can be calculated by Mp2 = 2Mz − 2m(H). If the
precursor ion is triply charged, its mass can be calculated
by Mp3 = 3Mz−3m(H). Based on the properties of peptide
tandem mass spectra and the different mass of the precursor
ion according to its charge state, we introduce other 24
features as follows. To do this, we first define two variables
for a given peptide mass spectrum S

sum1(x,y) = m(x)+m(y) (22)
sum2(x,y) = m(x)+(m(y)+m(H))/2 (23)

where m(x) and m(y) denote the m/z-values of peaks x and
y in the spectrum S, respectively, and a weighting factor

W (x,y) =
Ir(x)+ Ir(y)

2
(24)

where Ir(x) and Ir(y) represent the relative intensities of
peaks x and y in the spectrum S, respectively.

F5 − F10: Perfect complements. These features measure
how likely an N-terminus ion and a C-terminus ion in the
spectrum S are produced as the peptide fragments at the same
peptide bond. The doubly charged features are defined as

F5 = ∑{W (x,y)|sum1(x,y)≈Mp2 +2m(H))} (25)

F6 = ∑{W (x,y)|sum1(x,y)≈Mp2/2+2m(H)} (26)

F7 = ∑{W (x,y)|sum2(x,y)≈Mp2/2+2m(H)} (27)

The feature F5 measures the presence of complementary peak
pairs of singly charged ions in the spectrum S; the feature
F6 measures the presence of complementary peak pairs of
doubly charged ions in the spectrum S, and the feature F7
measures the presence of complementary peak pairs of one
doubly charged and the other singly charged ions in the
spectrum S. These three features are expected to be greater

for doubly charged spectra than for triply charged spectra.
The comparison implied by ≈ employs a tolerance, which
was set to 1 Thompson for the low-resolution ISB dataset
and 0.1 Thompson for the high-resolution TOV dataset in
this paper. These values for the tolerance were obtained by
trial and error. The use of the weighting factors in the features
in this paper is to account the increased likelihood of more
intense peaks being true fragment ions.

Similarly, we can define three triply charged features
F8,F9 and F10. The formulas defining these three features
are analogous to (25)-(27), except that the precursor ion
mass term is replaced with Mp3. These three features are
expected to be greater for triply charged spectra than for
doubly charged spectra.

F11 −F16: Complements with an amino acid difference.
These features measure how likely a fragment ion and the
complementary fragment ion of another ion in the spectrum S
differ by one of the twenty amino acids. The doubly charged
features are defined as

F11 = ∑{W (x,y)|sum1(x,y)≈Mp2 +2m(H)−Mi,

i = 1, · · · ,17} (28)

F12 = ∑{W (x,y)|sum1(x,y)≈Mp2/2+2m(H)−Mi/2,

i = 1, · · · ,17} (29)

F13 = ∑{W (x,y)|sum2(x,y)≈Mp2/2+2m(H)−Mi/2,

i = 1, · · · ,17} (30)

where Mi(i = 1,2, · · · ,17) are the 17 different masses of
all 20 amino acids. This study considers all Methionine
amino acids to be sulfoxidized and does not distinguish
three pairs of amino acids in their masses: Isoleucine vs.
Leucine, Glutamine vs. Lysine, and sulfoxidized Methionine
vs. Phenylalanine since the masses of each pair are very
close. The feature F11 measures the presence of peak pairs
of one singly charged ion and the complementary fragment
ion of the other singly charged ion corresponding to an
amino acid mass difference in the spectrum S; the feature
F12 measures the presence of peak pairs of one doubly
charged ion and the complementary fragment ion of the other
doubly charged ion corresponding to an amino acid mass
difference in the spectrum S, and the feature F13 measures
the presence of peak pairs of one doubly charged ion and
the complementary fragment ion of the other singly charged
ion corresponding to an amino acid mass difference in the
spectrum S.

Similarly, we can define three triply charged features
F14,F15 and F16. The formulas defining these three features
are analogous to (28)-(30), except that the precursor ion mass
term is replaced with Mp3.

F17 − F22: Complements with a water or ammonia dif-
ference. These features measure how likely one ion in the
spectrum S is produced by losing a water or ammonia
molecule from the complementary ion of a b-ion or y-ion.



The doubly charged features are defined as

F17 = ∑{W (x,y)|sum1(x,y)≈Mp2 +2m(H)−Mw

or Mp2 +2m(H)−Ma} (31)

F18 = ∑{W (x,y)|sum1(x,y)≈Mp2/2+2m(H)−Mw/2

or Mp2/2+2m(H)−Ma/2} (32)

F19 = ∑{W (x,y)|sum2(x,y)≈Mp2/2+2m(H)−Mw/2

or Mp2/2+2m(H)−Ma/2} (33)

where Ma is the mass of an ammonia molecule. The feature
F17 measures the presence of peak pairs of one singly
charged ion and the complementary fragment ion of the other
singly charged ion with a difference of a water or ammonia
molecule in the spectrum S; the feature F18 measures the
presence of peak pairs of one doubly charged ion and the
complementary fragment ion of the other doubly charged
ion with a difference of a water or ammonia molecule in
the spectrum S, and the feature F19 measures the presence of
peak pairs of one doubly charged ion and the complementary
fragment ion of the other singly charged ion with a difference
of a water or ammonia molecule in the spectrum S.

Similarly, we can define three triply charged features
F20,F21 and F22. The formulas defining these three features
are analogous to (31)-(33), except that the precursor ion mass
term is replaced with Mp3.

F23 − F28: Complements with a CO or NH difference.
These features measure how likely one ion in the spectrum
S is a supportive ion of the complementary ion of a b-ion or
y-ion. The doubly charged features are defined as

F23 = ∑{W (x,y)|sum1(x,y)≈Mp2 +2m(H)−MC

or Mp2 +2m(H)−MN} (34)

F24 = ∑{W (x,y)|sum1(x,y)≈Mp2/2+2m(H)−MC/2

or Mp2/2+2m(H)−MN/2} (35)

F25 = ∑{W (x,y)|sum2(x,y)≈Mp2/2+2m(H)−MC/2

or Mp2/2+2m(H)−MN/2} (36)

where MC and MN are the masses of a CO group and an NH
group, respectively. The feature F23 measures the presence of
peak pairs of one singly charged ion and the complementary
fragment ion of the other singly charged ion with a difference
of a CO or NH group in the spectrum S; the feature F24
measures the presence of peak pairs of one doubly charged
ion and the complementary fragment ion of the other doubly
charged ion with a difference of a CO or NH group in the
spectrum S, and the feature F25 measures the presence of
peak pairs of one doubly charged ion and the complementary
fragment ion of the other singly charged ion with a difference
of a CO or NH group in the spectrum S.

Similarly, we can define three triply charged features
F26,F27 and F28. The formulas defining these three features
are analogous to (34)-(36), except that the precursor ion mass
term is replaced with Mp3.

C. Normalization
After the feature extraction, each spectrum is mapped

into a 28-dimensional feature vector, and then each value

of these spectral features is normalized as Fi/max(Fi), i =
1,2, · · · ,28, where max(Fi) is the maximum value of the ith
spectral feature across the samples in the training set. This
normalization is also applied to the spectral features in the
test data, using the maximum value from the training data.

D. Classification method

In this paper, the SVM is applied to determine the
charge states of multiply charged spectra because of its
good generalization ability. The SVM is proposed by Vapnik
based on the statistical learning theory [12]. An important
characteristic of the SVM is that “while most classical neural
network algorithms require an ad hoc choice of system’s
generalization ability, the SVM approach proposes a learning
algorithm to control the generalization ability of the system
automatically” [13]. In this study, the sequential minimal
optimization (SMO) algorithm [14] is employed to train the
SVM.

In this study, the SVM classifier is employed to classify
multiply charged spectra into two groups in order to save
the spectral searching time. To assess the performance of
the SVM classifier, three correct rates are calculated in this
study: correct rate for doubly charged spectra (CRD), correct
rate for triply charged spectra (CRT), and accuracy

CRD =
# of correctly classified doubly charged spectra

# of doubly charged spectra

CRT =
# of correctly classified triply charged spectra

# of triply charged spectra

accuracy =
# of correctly classified multiply charged spectra

# of multiply charged spectra

E. Experimental data

This study used two different proteome datasets: ISB and
TOV. The first dataset was acquired on a low-resolution ion
trap mass spectrometer, and the second one was generated
by a high-resolution Q-TOF instrument.

1) ISB dataset: The ISB dataset used in this study was
acquired on an LC-ESI ion trap (Thermo Finnigan LCQ
instrument) and was provided by the Institute of Systems
Biology (ISB, Seattle, USA). This dataset consists of 37044
peptide CID mass spectra. The samples analyzed were
generated by the tryptic digestion of a control mixture of
standard 18 proteins (not of human origin) [15]. The peptide
and charge-state assignments were annotated for 125 singly
charged spectra, 1242 doubly charged spectra and 573 triply
charged spectra, using SEQUEST search program.

2) TOV dataset: This dataset consists of 83224 peptide
tandem mass spectra which were acquired on a QSTAR
Plusar (MDS Sciex Corp.) in Eastern Quebec Proteomic
Center in Laval University Medical Research Center in
Canada. The samples analyzed were generated by the tryp-
tic digestion of a whole-cell lysate from the 36 fractions
of TOV-112. These spectra were searched against a sub-
set of the IPI database including 67971 human protein
sequences using MASCOT and X! Tandem [16], respec-
tively. The assignments of 2765 doubly charged and 3145



TABLE I
THE NUMBER OF THE SAMPLES IN THE TRAINING AND TEST SETS

SVM classify Training set (D : T) Test set (D : T)
for ISB dataset 300 : 300 942 : 273
for TOV dataset 400 : 400 2365 : 2745

TABLE II
THE RESULTS IN THE ISB TEST DATASET

CRD (%) CRT (%) Accuracy (%)
Range 92.6∼95.3 92.7∼97.8 93.3∼95.6
Ave. 94.1 95.7 94.5
SD 0.71 1.36 0.62

triply charged spectra were verified to be correct by Scaf-
fold (http://www.proteomesoftware.com/index.html) with the
minimum identified probability of 0.95.

III. RESULTS AND DISCUSSION

In this study, the SVM classifiers were respectively trained
and tested on the identified multiply charged spectra in two
different datasets: ISB and TOV. Doubly charged spectra
were labeled as “+1”, and triply charged spectra were labeled
as “−1”. This study employed radial basis functions (RBF)
whose width parameter was set equal to 0.5 as the kernel
functions of the SVMs. The penalty term for training set
errors was set equal to 10. We selected these values for
the parameters of SVM classifiers since better classification
performance was obtained by using these values. The number
of the samples in the training and test sets for the SVM
classifiers is shown in Table I. ‘D’ represents the number
of doubly charged spectra, and ‘T’ represents the number of
triply charged spectra.

In this study we repeated to train and test each SVM
classifier on 20 randomly sampled datasets to investigate
the performance of the proposed method. The results are
shown in Tables II and III. In these tables, ‘Ave.’ stands for
the average, and ‘SD’ for the standard deviation. For the
low-resolution ISB dataset, Table II shows that the proposed
method can reach the accuracy of about 96% at the best case.
This means that while classifying multiply charged spectra
into two groups the proposed method can maintain about
96% of peptide identifications. On average it can maintain
about 95% of peptide identifications for the ISB dataset.
Though the essential interest of the proposed approach is
for the low-resolution spectra, we tested our algorithm on
the high-resolution TOV dataset. From Table III, it can be
seen that the proposed method can classify multiply charged
spectra into two groups while losing an average of about
7% of peptide identifications for the high-resolution TOV
dataset. This indicates that the proposed method can be
employed to determine charge states of peptide tandem mass
spectra produced by both low-resolution and high-resolution
instruments. Table IV shows the average correct rates over
20 randomly sampled datasets using the proposed method
without normalization. Comparing Table IV with Tables II
and III, it indicates that the normalization of spectral features
can improve the performance of the SVM classifiers.

TABLE III
THE RESULTS IN THE TOV TEST DATASET

CRD (%) CRT (%) Accuracy (%)
Range 90.1∼94.4 91.3∼94.9 92.1∼93.1
Ave. 92.1 92.9 92.5
SD 1.23 1.17 0.27

TABLE IV
THE RESULTS USING THE PROPOSED METHOD WITHOUT

NORMALIZATION

Dataset CRD (%) CRT (%) Accuracy (%)
ISB 93.6 93.8 93.7
TOV 91.2 92.9 92.1

In addition, the last row in each of Tables II and III gives
the standard deviations of our proposed methods over twenty
randomly sampled datasets. All the standard deviations for
CRD, CRT and accuracy are very small (from 0.27%-1.36%).
This indicates that the proposed method is insensitive to the
variations of the training and test sets in the same dataset.

In [8] and [9], the authors classified multiply charged
spectra into three groups: “+2”, “+3”, and “+2OR+3” in
order to minimize the losses of peptide identifications, and
about 40% reduction in the search time was obtained.
However, this study classifies multiply charged spectra into
only two groups: “+2” and “+3”. Thus the proposed method
can reduce the number of database searches for multiply
charged spectra by 50%, and data reduction improvement
of the proposed approach is about 10% compared with [8]
and [9]. In addition, the methods in [8] and [9] have not been
evaluated on high-resolution datasets.

Although the percentage of misclassified identified spectra
by the proposed method is higher than those in [8] and [9],
the multiply charged spectra are intentionally classified into
three groups by their methods. For the low-resolution ISB
dataset, the method proposed in [9] retains 93.1% of peptide
identifications while classifying multiply charged spectra into
two groups. This indicates that the proposed approach outper-
forms this existing algorithm while classifying the multiply
charged spectra into two groups. One major reason for this is
that the proposed spectral features combining the properties
of peptide tandem mass spectra with peak intensities have
good discriminant characteristics of doubly charged and
triply charged spectra. In addition, the misclassified identified
spectra may be false positive identifications since the search
results by one search engine may also have false positives. In
this study, to further illustrate the bias raised from the search
results by SEQUEST, we randomly selected 30 misclassified
spectra from the ISB dataset, which were classified as doubly
charged or triply charged spectra by the proposed method, yet
were determined by the SEQUEST search program as triply
charged or doubly charged spectra. These 30 spectra were re-
searched by on-line MASCOT against the SwissProt database
(http://www.matrixscience.com/). The parent mass tolerance
was set at ±2 Da, and the fragment ion mass tolerance
was set at ±0.6 Da. The enzyme parameter was set as



TABLE V
PEPTIDE-SPECTRUM MATCH SCORES BY SEQUEST AND MASCOT.

aTHE PRECURSOR ION CHARGE STATE WAS DETERMINED BY THE

SEQUEST SEARCH RESULT; bBOLDFACE LETTER REPRESENTS THAT

THE MASCOT ION SCORE IS OVER THE SIGNIFICANTLY IDENTIFIED

CUTOFF (p VALUE< 0.05)

Spectrum Precursor ion SEQUEST Xcorr MASCOT
charge statea score ion score

1 +3 4.1491 2
2 +3 3.7519 5
3 +2 3.3490 49b

4 +2 3.0861 2
5 +2 3.0358 27
6 +2 3.0143 13
7 +2 2.7514 28
8 +2 2.5227 23
9 +2 3.0628 32
10 +2 2.9468 17
11 +2 2.8124 9
12 +3 3.6251 7
13 +2 3.4835 8
14 +2 4.7507 53
15 +3 4.6131 20
16 +3 3.7381 5
17 +2 3.4835 8
18 +3 4.6891 42
19 +2 2.9700 33
20 +2 2.5432 13
21 +3 3.5476 15
22 +3 4.7086 38
23 +2 3.7191 7
24 +3 3.5661 6
25 +2 2.6438 9
26 +3 3.6299 16
27 +2 3.4664 26
28 +2 2.8471 14
29 +2 2.8032 11
30 +2 3.4664 26

tryptic sequences, and the maximum of missed cleavage site
was 1. All 30 peptide-spectrum match scores by SEQUEST
and MASCOT are shown in Table V. We found that only
3 spectra were significantly identified (p value< 0.05) by
MASCOT. This indicates that the other 27 spectra out of
these 30 misclassified spectra may be false positive identi-
fications. That is, 90% of the misclassified spectra may be
false positive peptide identifications. Thus, the correct rates
in this study should be higher, and manual verification by
a mass spectrometry expert is also required to confirm this
indication.

IV. CONCLUSIONS

In this paper, an SVM-based approach is proposed to
determine charge states of multiply charged peptide tandem
mass spectra. 28 spectral features are introduced to distin-
guish between doubly charged and triply charged spectra.
Each spectrum is mapped into a 28-dimensional feature
vector. The SVM is applied to construct the classifier in the
feature space that distinguishes between doubly charged and
triply charged spectra. The SVM classifiers are trained and
tested on the low-resolution ISB and high-resolution TOV
datasets, respectively. Computational experimental results
have demonstrated the effectiveness of the proposed method.

The significance of the proposed method is two-fold.
First, the proposed method provides a reliable algorithm
to determine charge states of peptide tandem mass spectra
before database search. The proposed method can reduce
50% of the spectral searching time for multiply charged
spectra and reduce the risk of false positive peptide iden-
tification. Second, the proposed method can be employed to
evaluate the database search results from one search engine
while incorporating with different identification methods.
For example, by both re-searching misclassified spectra with
MASCOT and manual verification, we can confirm that the
assignments of some of these spectra by SEQUEST are
actually false.
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