
  

  

Abstract—Biclustering is a popular method which can reveal 
unknown genetic pathways. However, even though many 
algorithms have been suggested, no overwhelming algorithm 
has been suggested, due to its significant search space, until now. 
In this respect, several evolutionary algorithms tried to address 
this problem utilizing the powerful search capability of 
Evolutionary Computation (EC). However, most algorithms 
focused on exploiting the Mean Square Residue (MSR) measure 
which was proposed by Cheng and Church. The Order 
Preserving Sub-Matrix (OPSM) constraint was rarely 
considered even though it promises more biologically relevant 
biclusters than the MSR measure. The goal of this paper is to 
design an EC algorithm which ensures biologically significant 
biclusters by using the OPSM constraint and better biclusters 
than the original OPSM algorithm. We designed a novel 
encoding method and evolutionary operators suitable for the 
OPSM constraint. To efficiently explore the search space, we 
modulized our evolutionary algorithm and applied the 
co-evolution concept. Through a set of experiments, it was 
confirmed that our algorithm outperformed a representative 
EC biclustering algorithm based on CC and the original OPSM 
algorithm. 

I. INTRODUCTION 
ecently, biclustering methods have been vigorously 
researched to discover local patterns in gene expression 

data. Whereas traditional clustering techniques such as 
hierarchical clustering [1] and k-means clustering [2] requires 
clustered genes to behave similarly over all the experimental 
conditions, biclustering requires genes in the same cluster to 
behave similarly over a subset of the conditions of gene 
expression data. This specified clustering concept is useful to 
uncover genetic pathways that are activated only over some 
of the conditions. The problem of finding a minimum set of 
biclusters is a generalization of another problem such as 
covering a bipartite graph, which has been shown to be 
NP-hard [15]. 

Hartigan [3] first introduced the biclustering concept and 
later, in 2000, Cheng and Church [4] first used this concept in 
biclustering gene expression data. After Cheng and Church, 
various methods regarding biclustering gene expression have 
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been suggested. Among them, the Order Preserving 
Sub-Matrix model (OPSM) [5] is a representative 
biclustering method concerning the discovery of one or 
several submatrices in a gene expression matrix in which the 
expression levels of the selected genes induce the same linear 
ordering of the selected conditions. Later, [6] extended 
OPSM by assigning similar expression levels equal ranks. 

Evolutionary Computation (EC) performs well in 
addressing complex optimization problems. It has excellent 
exploration power that provides the capability of escaping 
from local optima and working well when solutions to a 
problem contain complex interacting parts [16].  In addition, 
EC has been applied for problem solving in various domains 
such as planning [17], design [18], scheduling [19]-[20], 
simulation and identification [21], control [22], and 
classification [23]-[26]. 

In this respect, EC is very suitable for searching biclusters, 
and thus it has been applied to several biclustering 
approaches, combined with the previous well known 
biclustering methods such as Cheng and Church (CC), and 
the OPSM. 

Several EC-based biclustering algorithms [7]-[10], which 
utilize CC’s mean squared residue (MSR) measure as a 
fitness function score, have been proposed. An EC-based 
biclustering algorithm [12] with its own measure which has 
many common aspects with Sequential Evolutionary 
Biclustering (SEBI) [10] has been proposed. An EC-based 
biclustering algorithm [11] which utilizes the OPSM 
constraint has been also suggested. However, in the true sense 
of the word, [11] is not a biclustering algorithm because it can 
operate with not a subset of conditions but all the conditions. 
It’s specially designed for gene expression data whose 
conditions are time series. Among them, SEBI is a 
comprehensive algorithm for the other algorithms.  It tried to 
find biclusters which have an MSR score lower than the 
user-defined threshold while reducing overlapped areas 
between biclusters, growing bicluster size, and maximizing 
row variance. 

Most of the previous EC algorithms for biclustering have 
not provided biologically significant biclusters and also 
cannot fully utilize the search power of EC. Biclustering 
algorithms’ performance depends on how much information 
about genetic pathways their results, such as biclusters, can 
provide. Therefore, previous non-EC-based biclustering 
algorithms are mostly evaluated by biological significance of 
biclusters they found. However, previous EC algorithms 
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except only one EC-based biclustering algorithm [8] didn’t 
even try to measure the biological significance of their results. 
We can expect that their results, except the algorithms 
[11]-[12], would not have good biological significance 
because they used MSR measure of CC method as their 
fitness score. CC is revealed as a not ideal method for finding 
biologically significant biclusters in [13]. Its gene ontology 
(GO) annotation evaluation result was the worst among 5 
tested biclustering algorithms. Every EC-based algorithm has 
the problem that its search space is so significantly large that 
evolutionary algorithms cannot efficiently work. 

 It can be expected that an EC algorithm using the OPSM 
constraint probably provides more biologically significant 
biclusters than the EC algorithms based on CC, since in [13], 
OPSM was the best algorithm in GO p-value evaluation. 
However, there is no OPSM based EC biclustering algorithm 
in the true sense of the word biclustering, even though OPSM 
showed very good performance in finding biologically 
significant biclusters in [13]. In addition, the original OPSM 
algorithm [5] cannot search globally because of its pruning 
process, so we expect that EC-based biclustering algorithms 
utilizing the OPSM constraint can find biclusters that the 
original OPSM cannot find. 

One goal of this paper is to design an EC algorithm which 
can not only provide biologically significant biclusters 
satisfying the OPSM constraint, but can also find bigger 
biclusters than the original OPSM algorithm. The other goal 
is to evaluate our algorithm with the original OPSM in the 
aspect of bicluster size and with a representative EC 
algorithm based on CC in the aspect of biological 
significance. 

Using the OPSM constraint, we designed an EC algorithm 
including an efficient encoding method that can reduce the 
search space, and genetic operators suitable for the OPSM 
constraint. In order to efficiently search biclusters, we 
modulized our EC algorithm for each module to handle 
searching biclusters having a certain condition length. In 
addition, using the concept of co-evolution, we maximized 
the EC’s search capability. 

In Section 2, the survey of related work is given. Section 3 
describes our algorithm. Section 4 provides the experimental 
result. Finally, we conclude this paper in Section 5. 

II. PRELIMINARIES 

A. Introduction to Evolutionary Computation 
EC is a population-based stochastic generate-and-test 

technique inspired by Darwinian evolution. Like survival of 

the fittest and selective pressure, EC addresses complex 
problems by evolving candidate solutions through 
computational approaches [10].  

EC typically needs a population such as a set of candidate 
solutions. These solutions are evolved by the repeated 
mutations and repeated selections of more fit solutions. The 
candidate solutions in the population can be referred as 
individuals, or as chromosomes. The solutions can be 
encoded in different ways. A popular method is the binary 
string encoding, where each bit of the string has a particular 
meaning.  

In each generation, selection is performed among the 
individuals in the generation’s population according to the 
quality of each solution. The quality is assessed by a score 
function referred as the fitness function. Therefore, the better 
the fitness of an individual, the more possibilities the 
individual has of being selected for reproduction and the 
more parts of its genetic material will be passed on to the next 
generations. 

After selection is performed, the survived individuals 
reproduce their offspring through the crossover and mutation 
process. In the crossover process, EC makes offspring by 
swapping genetic information between the selected 
individuals. The mutation process changes a very small part 
of the genetic information of each offspring to a random 
value.  

By doing so, EC can efficiently explore the space of 
candidate solutions to a certain problem. Typically, this space 
is denoted as search space, which represents all the possible 
solutions each of which can be encoded as an individual.  

B. Previous EC algorithms for Biclustering Problem 
In the remainder of this paper, we will assume that the 

measurements of several experiments are given in terms of an 
m×n-matrix, E, where m is the number of considered genes 
and n the number of experiments. A cell eij of  E contains a 
real value that reflects the abundance of mRNA for gene i 
under a experimental condition j. 

SEBI [10] tried to find biclusters satisfying the following 
conditions: Bigger bicluster size which means including more 
genes and conditions; Smaller MSR score, at least lower than 
ð, a threshold defined by users; Relatively high row variance 
which means that a bicluster has high variance within a row; 
Low level of overlapping among biclusters in order to cover 
as more global search space. 

 
Fig. 1. SEBI’s encoding 



  

In SEBI’s EA, each individual represents a bicluster. SEBI 
encoded each individual by using the binary encoding where 
m bits and the following n bits respectively represent the 
selection of genes and conditions as demonstrated in Fig. 1. 
This means that if ith bit is set among the first m bits, ith gene is 
included in the bicluster, and if jth bit is set among the 
following n bits, jth condition is included in the bicluster. 

Each individual is encoded by (m+n) bits, so the possible 
number of individuals which is equal to the size of search 
space is 2(m+n). 

C. OPSM 
Given the above notation, the OPSM constraint can be 

described as follows: A submatrix is order preserving if there 
is a permutation of its columns (conditions) such that the 
sequence of (gene expression) values for each row (gene) is 
strictly increasing. 

The original OPSM algorithm [5] finds a subset G of genes 
(|G|   m) and a subset C of experiments (|C|   n) such that 

the submatrix D of E defined by G and C maximizes a given 
score f(G,C) and is an Order Preserving Sub-Matrix (OPSM), 
see below. The score f reflects the probability for D to 
participate in the best OPSM. This algorithm evaluates from 
2-length permutation to n-length permutation by this score 
function.  

After sorting permutations by this score, the algorithm 
leaves the highest T permutations pruning the other 
permutations at each step. The T is the pruning threshold 
given by users. Permutations having (L+1)-length are 
generated by adding one condition to L-length permutations. 

III. ALGORITHM DESCRIPTION 

A. Encoding Method 
Each individual represented as an L-length character string 

encodes an L-length permutation of condition numbers. Each 
character of the string represents a condition number. The 
character string is enough to express the permutations of 
condition numbers because typical values for m and n are in 
the ranges from 500   m   15000 and 10   n   150, given 

a m×n gene expression matrix (GEM) [5]. The search space 
generated by this encoding scheme is as follows: 

∑
=

n

k
knP

2
         (1) 

In the range of typical genes and conditions, the search 
space generated by our encoding method is always smaller 
than the search space of the other EC-based biclustering 
algorithms [7]-[12] because all the algorithms uses binary 
encoding for the selection of genes and conditions. As 
mentioned above, the binary encoding scheme generates 
2(m+n) search space. Due to the fact that m is usually greater 
than n, our encoding scheme’s search space is significantly 
smaller than the binary encoding scheme in general. In this 
respect, this encoding method helps our EC algorithm to 
efficiently work on finding biclusters. 

B. Overall Algorithm 
Fig. 2 shows the overall process of our algorithm 

consisting of the main process such as EC_OPSM, and 
sub-routines such as EC_Eachlen and Gen_Initpop. There are 
3 global variables defined as parameters by users such as 
MaxLen, PopSize, and MaxGen which represents the 
maximum condition length, population size, and the number 
of maximum generation, respectively. 

Our algorithm named Evolutionary Computation based on 
the Order Preserving Sub-Matrix constraint (ECOPSM) is 
modulized to efficiently apply EC to our biclustering problem 
as shown in Fig. 2a. In the EC_OPSM process, it executes an

 

                                                                               (a)                                                       (b) 

Fig. 2. The overall algorithm



  

EC algorithm per each length permutation by calling 
EC_Eachlen function. This can reduce the search space and 
increase the search performance. It utilizes the previous EC 
result having L-length individuals in generating the initial 
population of (L+1)-length individuals. 

As a first step of the EC_OPSM process, this algorithm 
converts a GEM to a Ranked Condition Matrix (RCM). As 
represented in Fig. 3, the GEM is first ranked by its 
expression value in each row. Then, each condition number is 
written to the RCM substituted for its expression value in the 
rank position of the row. Next, RCM’s each row is 
transformed to a character string such that each character 
represents the condition number. Finally, RCM is stored as an 
array of character strings. This array size is equal to m, the 
total number of the genes in the GEM. 

By converting the GEM to the RCM, ECOPSM can easily 
find out biclusters satisfying the OPSM constraint by 
examining whether the current individual string is a 
subsequence of each row string in RCM.  

After successfully generating RCM, ECOPSM generates 
an initial population which has the PopSize of 2-length 
individual strings. The 2-length individuals are completely 
randomly generated by selecting 2 random numbers among 0 
to n-1 without duplication. 

In the loop of the EC_OPSM, the ECOPSM obtains the 
final population evolved by the GA_Eachlen function. 
Storing the returned population to Lth slot of the array of the 
final populations (best_inds_array[L]), it generates the initial 
population of (L+1)-length individuals by calling the 
Gen_Initpop function. The Gen_Initpop function makes each 
of (L+1)-length individuals by inserting a random number, 
that is not already included in each L-length individual, into a 
random position of the individual of the final popluation as 
shown in Fig. 2b. By doing so, the initial population of 
3-length individuals is generated by the 2-length individuals, 
the initial population of 4-length individuals by the 3-length 
individuals, and so on. 

If the best individual of the returned population’s fitness is 
0 or the EC_OPSM finally finishes finding the best n-length 
individuals, then it returns the array of the final populations. 

C. Evolutionary Computation 
The EC_Eachlen function in Fig. 2b retrieves the best 

individuals which has the specified length by the input 
parameter, Len. First, it evaluates the fitness of each 
individual in the initial population obtained by the input 
parameter. The fitness function is simply defined as follows: 

),()( XRCMcountXf =     (2) 
X is an individual, and count(RCM, X) is the function that 

counts the number of genes each of which has a subsequence 
equal to the string of X by using the stored string-array of 
RCM in the first step of EC_OPSM process. Using the 
counted genes and the conditions encoded in X, a bicluster is 
defined. This fitness evaluation is clear and reasonable, since 
OPSM’s performance depends on the size of biclusters, and 
in this case the bicluster size is determined solely by the 
number of genes due to the condition length fixed as the given 
parameter, Len. 

Parent selection is performed by Rank based Selection [27] 
such that the individuals in the population are ranked 
according to their fitness, and the expected value for each 
individual to be selected as parents depends on its rank rather 
than its absolute fitness. Offspring are reproduced by 
performing 1-point crossover between the selected two 
parents. If the crossover operation makes the individual have 
duplicated conditions, mandatory mutation is performed in 
order to replace the duplicated condition number with another 
condition number not included in the individual. 

After the crossover operation, this function executes a 
slightly changed mutation, which is not toggling a bit in 
binary encoding but exchanging one character with the 
unused condition number in the individual string, to the 
individual. 

D. An Extension using Co-evolution Concept 
Co-evolution is a promising method that can increase the 

efficiency of evolutionary exploration in Evolutionary 
Computation. 

In our algorithm, co-evolution between L-length 
individuals and (L+1)-length individuals is possible because 
if it generates L-length initial population from (L+1)-length 
individuals, then the better biclusters that have not been 
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Fig. 3.  Converting process from GEM to RCM 

 



  

searched by the previous evolutionary process can be found. 
Therefore, we appended the co-evolution operation named 

Pair-Iteration in the loop of the EC_OPSM process. In the 
loop, EC_OPSM iterates the following co-evolution process 
Max Iteration (MaxIter) times. First, the (L+1)-length initial 
population is generated from the L-length final population 
returned by the EC_Eachlen function. Second, the 
(L+1)-length population is evolved through the process of the 
EC_Eachlen function with the generated (L+1)-length initial 
population given as the parameter of the function. Next, the 
L-length initial population is generated from the (L+1)-length 
final population returned by the EC_Eachlen function. Then, 
L-length population is evolved through the process of the 
EC_Eachlen function with the generated L-length initial 
population given as the parameter. In addition, the array of 
the final populations (best_inds_array) is updated with the 
returned final population at each step. 

Through several experiments, this co-evolution process 
was empirically proven to be more cost-effective than merely 
increasing the number of max generation, MaxGen and the 
population size, PopSize. 

IV. EXPERIMENTAL RESULT 

A. Experimental Environment 
 

We conducted experiments on two well-known data sets in 
order to assess the performance of the proposed method for 
finding biclusters. Both data sets are the yeast Saccharomyces 
cerevisiae cell cycle expression data sets. The first expression 
matrix is originated by Cho et al. [28] consisting of 2,884 
genes and 17 experimental conditions. The second data set is 
the one provided by Gasch et al. [14], which contains 2993 
genes  and 173 conditions. 

To assess the biological relevance of biclusters on the 
GEM for Saccharomyces, a quantitative measure is 
introduced that relates the biclustering outcomes to 
annotations by Gene Ontology (GO) Consortium. We 
measured the p-value for overrepresented GO categories 
using the latest updated (2008.5.22) gene annotation data 
provided by GO Consortium. 

In order to compare our algorithm with the original OPSM 
algorithm, the bicluster size is measured with the row size and 
column size reported separately. In this case, the bicluster size 
is more important as a performance measure than the p-value, 
since both algorithms satisfy the OPSM constraint, and the 
only difference is the searching method. 

The ECOPSM’s parameters used by these experiments are 
represented in Table 1. 

B. Performance Comparison with SEBI 

 
Fig. 4.  Biological relevance of biclusters found by ECOPSM and SEBI 

We conducted experiments on Cho et al.’s data to assess 
the biological significance of biclusters found by ECOPSM 
and SEBI algorithms. Since the biological relevance of 
biclusters found by the SEBI algorithm has not been reported, 
we implemented the SEBI algorithm based on the Bleuler and 
Zitzler’s paper [10]. Cho et al.’s data were used since we 
needed to test our own implemented version of SEBI using 
the data used by the research [10]. We obtained 100 biclusters 
whose average gene number, condition number, and mean 
square residue were 13.03, 15.84, and 248.29, respectively, 
which were similar results to the experimental result in the 
research.  

We measured the adjusted p-value of the found biclusters 
(The adjusted p-value represents the fraction (as a %) of 1000 
null-hypothesis simulations having the genes of the tested 
bicluster with this single-hypothesis p-value or smaller). The 
adjusted p-value was compared by the adjusted p-value of 
ECOPSM’s biclusters as shown in Fig. 4. The 100 biclusters 
found by SEBI algorithms participated in this comparison. To 
be compared with these biclusters, 100 biclusters were 
randomly chosen among the biclusters found by ECOPSM, 
which have 5 to 7 conditions. The reason why we didn’t used 
all the found biclusters but randomly chosen 100 biclusters 
was to fairly compare them with the biclusters found by SEBI. 
ECOPSM found 300 biclusters every length and 
consequently, 900 biclusters were found, which have 5 to 7 
conditions. Therefore, it would be a slight advantage for 
ECOPSM to use the whole 900 biclusters in comparison, so 
we applied the approach choosing randomly. 

Fig. 4 demonstrates the proportion of biclusters which has 
the p-value lower than each values represented in the x-axis 
of the graph. 50 % of ECOPSM’ biclusters have the adjusted 

TABLE I 
ECOPSM PARAMETERS 

Parameter Description Quantity 

MaxLen Maximum condition length n 

PopSize Number of individuals  
in a population 300 

MaxGen Maximum generation number 300 
Pc Crossover rate 0.6 
Pm Mutation rate 0.01 

Min Parameter for Rank based selection 0 to 0.9 
Max Parameter for Rank based selection 1.1 to 2.0 
MaxIter Maximum pair-iteration count 15 to 20 

 



  

p-value lower than 0.001, whereas only 5 % of the SEBI’s 
biclusters have the adjusted p-value lower than 0.001. 

By this result, it was revealed that the ECOPSM generated 
more biologically significant biclusters than the SEBI 
algorithm. 

C. Performance comparison with the original OPSM 

 
Fig. 5.  Bicluster size of ECOPSM and OPSM 

We conducted experiments on Gasch et al.’s data set and 
Cho et al.’s data set, comparing our algorithm with the 
original OPSM algorithm by measuring the size of biclusters. 
The size of the biclusters can be the measure of the biclusters’ 
quality, since finding bigger biclusters is the same goal of the 
paper [5] that originally proposed the OPSM. For each OPSM 
having a certain number of conditions, the number of genes 
was measured. Since the original OPSM’s performance 
varies with the pruning threshold, we executed the OPSM 
algorithms 10 times, increasing the threshold by 100 from 
100 to 1000. We used the same OPSM program as Prelic et al. 
[13] utilized in their experiment. 

In the experiment of Cho et al.’s data set, the ECOPSM and 
OPSM demonstrated the same performance in finding larger 
biclusters, since the data set was too small to differentiate the 
performance of both. 

Fig. 5 shows the experimental result conducted on Gasch et 
al.’s data set. Except 11-length condition, the ECOPSM 
locates larger biclusters than the original OPSM. The number 
of genes included in biclusters decreased according to the 
increase in the number of conditions. It can be noticed that the 
threshold could not significantly increase the performance of 
the OPSM. ECOPSM’s longest condition length having at 
least 2 genes was 34 whereas the original OPSM’s longest 
condition length was 27. 

D. Comprehensive Performance Comparison 
The comprehensive comparison between the 3 algorithms 

was needed. Therefore, we compared the 3 algorithms by 
using the Gasch et al.’s data and GO p-value evaluation. 

The 100 biclusters found by one run of SEBI were totally 
used in this comparison, with the MSR threshold 300 given as 
in the paper, and in the case of ECOPSM, for the comparison, 
the 100 biclusters were randomly chosen from the found 
biclusters which have 10 to 13 conditions. In the case of the 
original OPSM, the pruning threshold T was chosen as 1000 

and all the found biclusters having 10 to 13 conditions 
participated in the comparison. 

Fig. 6 represents the proportion of the biclusters found by 
each algorithm which has lower values than the specified 
values in the x-axis. It’s remarkable that more than 30% of 
biclusters found by the ECOPSM have p-value lower than 
10-130. All the biclusters of the ECOPSM are distributed in the 
range of p-value from 10-58 to 10-157. However, OPSM’s 
biclusters are distributed in the range of p-value from 10-37 to 
10-100. Moreover, SEBI’s biclusters are distributed in the very 
short range of p-value from 1 to 10-10. 

 
Fig. 6.  Biological relevance of biclustering found by each algorithm 

E. Various biclusters found by ECOPSM 
The following graphs show the several biclusters chosen 

among the biclusters that ECOPSM found from Gasch et al.’s 
data. 

 

 

 

 
Fig. 7.  Biclusters located from the yeast expression data. The bicluster 
features in each are reported in the following format (number of genes, 



  

number of conditions, p-value) as follows in the order of left-to-right and 
top-to-bottom. (143, 10, 6.6*10-72), (102, 11, 2.9*10-76), (103, 11, 9*10-82 ), 

(103, 12, 2.10*10-151), (62, 14, 1.4*10-102), (24, 22, 9.2*10-39), (3, 32, 
2.10*10-5), (2, 34, higher than 10-5). 

V. CONCLUSION 
Recently, biclustering methods have been spotlighted as a 

method of uncovering genetic pathways. 
This paper proposed an Evolutionary Computation (EC) 

algorithm which can efficiently locate biclusters using the 
Order Preserving Sub-matrix (OPSM) constraint. 

In the design of this algorithm, we modulized the bicluster 
search process and adapted the co-evolution concept to 
efficiently explore the given search space. 

In the set of experiments, our algorithm overwhelmed a 
representative EC algorithm based on mean square residue, a 
popular bicluster measure, in the aspect of finding 
meaningful genetic pathways, and also demonstrated that it 
found larger and better biclusters than the original OPSM 
algorithm. 

This research can not only be used as a novel method in 
finding biologically significant biclusters, but can also be 
adapted as a method of designing EC algorithms that can find 
biclusters based on the OPSM constraint. 

As a future research, we are considering to compare our 
algorithm with more various EC-based biclustering 
algorithms or non-EC-based biclustering algorithms. 
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