

Abstract—Biclustering is a popular method which can reveal
unknown genetic pathways. However, even though many
algorithms have been suggested, no overwhelming algorithm
has been suggested, due to its significant search space, until now.
In this respect, several evolutionary algorithms tried to address
this problem utilizing the powerful search capability of
Evolutionary Computation (EC). However, most algorithms
focused on exploiting the Mean Square Residue (MSR) measure
which was proposed by Cheng and Church. The Order
Preserving Sub-Matrix (OPSM) constraint was rarely
considered even though it promises more biologically relevant
biclusters than the MSR measure. The goal of this paper is to
design an EC algorithm which ensures biologically significant
biclusters by using the OPSM constraint and better biclusters
than the original OPSM algorithm. We designed a novel
encoding method and evolutionary operators suitable for the
OPSM constraint. To efficiently explore the search space, we
modulized our evolutionary algorithm and applied the
co-evolution concept. Through a set of experiments, it was
confirmed that our algorithm outperformed a representative
EC biclustering algorithm based on CC and the original OPSM
algorithm.

I. INTRODUCTION
ecently, biclustering methods have been vigorously
researched to discover local patterns in gene expression

data. Whereas traditional clustering techniques such as
hierarchical clustering [1] and k-means clustering [2] requires
clustered genes to behave similarly over all the experimental
conditions, biclustering requires genes in the same cluster to
behave similarly over a subset of the conditions of gene
expression data. This specified clustering concept is useful to
uncover genetic pathways that are activated only over some
of the conditions. The problem of finding a minimum set of
biclusters is a generalization of another problem such as
covering a bipartite graph, which has been shown to be
NP-hard [15].

Hartigan [3] first introduced the biclustering concept and
later, in 2000, Cheng and Church [4] first used this concept in
biclustering gene expression data. After Cheng and Church,
various methods regarding biclustering gene expression have

Manuscript received July 5, 2008. This work was supported by the Korea
Science and Engineering Foundation (KOSEF) grant funded by the Korea
government (MOST) (No. R01-2006-000-11106-0).

H. Roh is with the Computer Science Department, Yonsei University,
Seoul, Korea (corresponding author to provide phone: 82-2-2123-7757, fax:
82-2-365-2579, e-mail: fallsmal@cs.yonsei.ac.kr).

S. Park is with the Computer Science Department, Yonsei University,
Seoul, Korea (e-mail: sanghyun@cs.yonsei.ac.kr).

been suggested. Among them, the Order Preserving
Sub-Matrix model (OPSM) [5] is a representative
biclustering method concerning the discovery of one or
several submatrices in a gene expression matrix in which the
expression levels of the selected genes induce the same linear
ordering of the selected conditions. Later, [6] extended
OPSM by assigning similar expression levels equal ranks.

Evolutionary Computation (EC) performs well in
addressing complex optimization problems. It has excellent
exploration power that provides the capability of escaping
from local optima and working well when solutions to a
problem contain complex interacting parts [16]. In addition,
EC has been applied for problem solving in various domains
such as planning [17], design [18], scheduling [19]-[20],
simulation and identification [21], control [22], and
classification [23]-[26].

In this respect, EC is very suitable for searching biclusters,
and thus it has been applied to several biclustering
approaches, combined with the previous well known
biclustering methods such as Cheng and Church (CC), and
the OPSM.

Several EC-based biclustering algorithms [7]-[10], which
utilize CC’s mean squared residue (MSR) measure as a
fitness function score, have been proposed. An EC-based
biclustering algorithm [12] with its own measure which has
many common aspects with Sequential Evolutionary
Biclustering (SEBI) [10] has been proposed. An EC-based
biclustering algorithm [11] which utilizes the OPSM
constraint has been also suggested. However, in the true sense
of the word, [11] is not a biclustering algorithm because it can
operate with not a subset of conditions but all the conditions.
It’s specially designed for gene expression data whose
conditions are time series. Among them, SEBI is a
comprehensive algorithm for the other algorithms. It tried to
find biclusters which have an MSR score lower than the
user-defined threshold while reducing overlapped areas
between biclusters, growing bicluster size, and maximizing
row variance.

Most of the previous EC algorithms for biclustering have
not provided biologically significant biclusters and also
cannot fully utilize the search power of EC. Biclustering
algorithms’ performance depends on how much information
about genetic pathways their results, such as biclusters, can
provide. Therefore, previous non-EC-based biclustering
algorithms are mostly evaluated by biological significance of
biclusters they found. However, previous EC algorithms

A Novel Evolutionary Algorithm for Bi-clustering of Gene
Expression Data based on the Order Preserving Sub-Matrix (OPSM)

Constraint
Hongchan Roh and Sanghyun Park

R

except only one EC-based biclustering algorithm [8] didn’t
even try to measure the biological significance of their results.
We can expect that their results, except the algorithms
[11]-[12], would not have good biological significance
because they used MSR measure of CC method as their
fitness score. CC is revealed as a not ideal method for finding
biologically significant biclusters in [13]. Its gene ontology
(GO) annotation evaluation result was the worst among 5
tested biclustering algorithms. Every EC-based algorithm has
the problem that its search space is so significantly large that
evolutionary algorithms cannot efficiently work.

 It can be expected that an EC algorithm using the OPSM
constraint probably provides more biologically significant
biclusters than the EC algorithms based on CC, since in [13],
OPSM was the best algorithm in GO p-value evaluation.
However, there is no OPSM based EC biclustering algorithm
in the true sense of the word biclustering, even though OPSM
showed very good performance in finding biologically
significant biclusters in [13]. In addition, the original OPSM
algorithm [5] cannot search globally because of its pruning
process, so we expect that EC-based biclustering algorithms
utilizing the OPSM constraint can find biclusters that the
original OPSM cannot find.

One goal of this paper is to design an EC algorithm which
can not only provide biologically significant biclusters
satisfying the OPSM constraint, but can also find bigger
biclusters than the original OPSM algorithm. The other goal
is to evaluate our algorithm with the original OPSM in the
aspect of bicluster size and with a representative EC
algorithm based on CC in the aspect of biological
significance.

Using the OPSM constraint, we designed an EC algorithm
including an efficient encoding method that can reduce the
search space, and genetic operators suitable for the OPSM
constraint. In order to efficiently search biclusters, we
modulized our EC algorithm for each module to handle
searching biclusters having a certain condition length. In
addition, using the concept of co-evolution, we maximized
the EC’s search capability.

In Section 2, the survey of related work is given. Section 3
describes our algorithm. Section 4 provides the experimental
result. Finally, we conclude this paper in Section 5.

II. PRELIMINARIES

A. Introduction to Evolutionary Computation
EC is a population-based stochastic generate-and-test

technique inspired by Darwinian evolution. Like survival of

the fittest and selective pressure, EC addresses complex
problems by evolving candidate solutions through
computational approaches [10].

EC typically needs a population such as a set of candidate
solutions. These solutions are evolved by the repeated
mutations and repeated selections of more fit solutions. The
candidate solutions in the population can be referred as
individuals, or as chromosomes. The solutions can be
encoded in different ways. A popular method is the binary
string encoding, where each bit of the string has a particular
meaning.

In each generation, selection is performed among the
individuals in the generation’s population according to the
quality of each solution. The quality is assessed by a score
function referred as the fitness function. Therefore, the better
the fitness of an individual, the more possibilities the
individual has of being selected for reproduction and the
more parts of its genetic material will be passed on to the next
generations.

After selection is performed, the survived individuals
reproduce their offspring through the crossover and mutation
process. In the crossover process, EC makes offspring by
swapping genetic information between the selected
individuals. The mutation process changes a very small part
of the genetic information of each offspring to a random
value.

By doing so, EC can efficiently explore the space of
candidate solutions to a certain problem. Typically, this space
is denoted as search space, which represents all the possible
solutions each of which can be encoded as an individual.

B. Previous EC algorithms for Biclustering Problem
In the remainder of this paper, we will assume that the

measurements of several experiments are given in terms of an
m×n-matrix, E, where m is the number of considered genes
and n the number of experiments. A cell eij of E contains a
real value that reflects the abundance of mRNA for gene i
under a experimental condition j.

SEBI [10] tried to find biclusters satisfying the following
conditions: Bigger bicluster size which means including more
genes and conditions; Smaller MSR score, at least lower than
ð, a threshold defined by users; Relatively high row variance
which means that a bicluster has high variance within a row;
Low level of overlapping among biclusters in order to cover
as more global search space.

Fig. 1. SEBI’s encoding

In SEBI’s EA, each individual represents a bicluster. SEBI
encoded each individual by using the binary encoding where
m bits and the following n bits respectively represent the
selection of genes and conditions as demonstrated in Fig. 1.
This means that if ith bit is set among the first m bits, ith gene is
included in the bicluster, and if jth bit is set among the
following n bits, jth condition is included in the bicluster.

Each individual is encoded by (m+n) bits, so the possible
number of individuals which is equal to the size of search
space is 2(m+n).

C. OPSM
Given the above notation, the OPSM constraint can be

described as follows: A submatrix is order preserving if there
is a permutation of its columns (conditions) such that the
sequence of (gene expression) values for each row (gene) is
strictly increasing.

The original OPSM algorithm [5] finds a subset G of genes
(|G| m) and a subset C of experiments (|C| n) such that

the submatrix D of E defined by G and C maximizes a given
score f(G,C) and is an Order Preserving Sub-Matrix (OPSM),
see below. The score f reflects the probability for D to
participate in the best OPSM. This algorithm evaluates from
2-length permutation to n-length permutation by this score
function.

After sorting permutations by this score, the algorithm
leaves the highest T permutations pruning the other
permutations at each step. The T is the pruning threshold
given by users. Permutations having (L+1)-length are
generated by adding one condition to L-length permutations.

III. ALGORITHM DESCRIPTION

A. Encoding Method
Each individual represented as an L-length character string

encodes an L-length permutation of condition numbers. Each
character of the string represents a condition number. The
character string is enough to express the permutations of
condition numbers because typical values for m and n are in
the ranges from 500 m 15000 and 10 n 150, given

a m×n gene expression matrix (GEM) [5]. The search space
generated by this encoding scheme is as follows:

∑
=

n

k
knP

2
 (1)

In the range of typical genes and conditions, the search
space generated by our encoding method is always smaller
than the search space of the other EC-based biclustering
algorithms [7]-[12] because all the algorithms uses binary
encoding for the selection of genes and conditions. As
mentioned above, the binary encoding scheme generates
2(m+n) search space. Due to the fact that m is usually greater
than n, our encoding scheme’s search space is significantly
smaller than the binary encoding scheme in general. In this
respect, this encoding method helps our EC algorithm to
efficiently work on finding biclusters.

B. Overall Algorithm
Fig. 2 shows the overall process of our algorithm

consisting of the main process such as EC_OPSM, and
sub-routines such as EC_Eachlen and Gen_Initpop. There are
3 global variables defined as parameters by users such as
MaxLen, PopSize, and MaxGen which represents the
maximum condition length, population size, and the number
of maximum generation, respectively.

Our algorithm named Evolutionary Computation based on
the Order Preserving Sub-Matrix constraint (ECOPSM) is
modulized to efficiently apply EC to our biclustering problem
as shown in Fig. 2a. In the EC_OPSM process, it executes an

 (a) (b)

Fig. 2. The overall algorithm

EC algorithm per each length permutation by calling
EC_Eachlen function. This can reduce the search space and
increase the search performance. It utilizes the previous EC
result having L-length individuals in generating the initial
population of (L+1)-length individuals.

As a first step of the EC_OPSM process, this algorithm
converts a GEM to a Ranked Condition Matrix (RCM). As
represented in Fig. 3, the GEM is first ranked by its
expression value in each row. Then, each condition number is
written to the RCM substituted for its expression value in the
rank position of the row. Next, RCM’s each row is
transformed to a character string such that each character
represents the condition number. Finally, RCM is stored as an
array of character strings. This array size is equal to m, the
total number of the genes in the GEM.

By converting the GEM to the RCM, ECOPSM can easily
find out biclusters satisfying the OPSM constraint by
examining whether the current individual string is a
subsequence of each row string in RCM.

After successfully generating RCM, ECOPSM generates
an initial population which has the PopSize of 2-length
individual strings. The 2-length individuals are completely
randomly generated by selecting 2 random numbers among 0
to n-1 without duplication.

In the loop of the EC_OPSM, the ECOPSM obtains the
final population evolved by the GA_Eachlen function.
Storing the returned population to Lth slot of the array of the
final populations (best_inds_array[L]), it generates the initial
population of (L+1)-length individuals by calling the
Gen_Initpop function. The Gen_Initpop function makes each
of (L+1)-length individuals by inserting a random number,
that is not already included in each L-length individual, into a
random position of the individual of the final popluation as
shown in Fig. 2b. By doing so, the initial population of
3-length individuals is generated by the 2-length individuals,
the initial population of 4-length individuals by the 3-length
individuals, and so on.

If the best individual of the returned population’s fitness is
0 or the EC_OPSM finally finishes finding the best n-length
individuals, then it returns the array of the final populations.

C. Evolutionary Computation
The EC_Eachlen function in Fig. 2b retrieves the best

individuals which has the specified length by the input
parameter, Len. First, it evaluates the fitness of each
individual in the initial population obtained by the input
parameter. The fitness function is simply defined as follows:

),()(XRCMcountXf = (2)
X is an individual, and count(RCM, X) is the function that

counts the number of genes each of which has a subsequence
equal to the string of X by using the stored string-array of
RCM in the first step of EC_OPSM process. Using the
counted genes and the conditions encoded in X, a bicluster is
defined. This fitness evaluation is clear and reasonable, since
OPSM’s performance depends on the size of biclusters, and
in this case the bicluster size is determined solely by the
number of genes due to the condition length fixed as the given
parameter, Len.

Parent selection is performed by Rank based Selection [27]
such that the individuals in the population are ranked
according to their fitness, and the expected value for each
individual to be selected as parents depends on its rank rather
than its absolute fitness. Offspring are reproduced by
performing 1-point crossover between the selected two
parents. If the crossover operation makes the individual have
duplicated conditions, mandatory mutation is performed in
order to replace the duplicated condition number with another
condition number not included in the individual.

After the crossover operation, this function executes a
slightly changed mutation, which is not toggling a bit in
binary encoding but exchanging one character with the
unused condition number in the individual string, to the
individual.

D. An Extension using Co-evolution Concept
Co-evolution is a promising method that can increase the

efficiency of evolutionary exploration in Evolutionary
Computation.

In our algorithm, co-evolution between L-length
individuals and (L+1)-length individuals is possible because
if it generates L-length initial population from (L+1)-length
individuals, then the better biclusters that have not been

(a) (b)

Fig. 3. Converting process from GEM to RCM

searched by the previous evolutionary process can be found.
Therefore, we appended the co-evolution operation named

Pair-Iteration in the loop of the EC_OPSM process. In the
loop, EC_OPSM iterates the following co-evolution process
Max Iteration (MaxIter) times. First, the (L+1)-length initial
population is generated from the L-length final population
returned by the EC_Eachlen function. Second, the
(L+1)-length population is evolved through the process of the
EC_Eachlen function with the generated (L+1)-length initial
population given as the parameter of the function. Next, the
L-length initial population is generated from the (L+1)-length
final population returned by the EC_Eachlen function. Then,
L-length population is evolved through the process of the
EC_Eachlen function with the generated L-length initial
population given as the parameter. In addition, the array of
the final populations (best_inds_array) is updated with the
returned final population at each step.

Through several experiments, this co-evolution process
was empirically proven to be more cost-effective than merely
increasing the number of max generation, MaxGen and the
population size, PopSize.

IV. EXPERIMENTAL RESULT

A. Experimental Environment

We conducted experiments on two well-known data sets in
order to assess the performance of the proposed method for
finding biclusters. Both data sets are the yeast Saccharomyces
cerevisiae cell cycle expression data sets. The first expression
matrix is originated by Cho et al. [28] consisting of 2,884
genes and 17 experimental conditions. The second data set is
the one provided by Gasch et al. [14], which contains 2993
genes and 173 conditions.

To assess the biological relevance of biclusters on the
GEM for Saccharomyces, a quantitative measure is
introduced that relates the biclustering outcomes to
annotations by Gene Ontology (GO) Consortium. We
measured the p-value for overrepresented GO categories
using the latest updated (2008.5.22) gene annotation data
provided by GO Consortium.

In order to compare our algorithm with the original OPSM
algorithm, the bicluster size is measured with the row size and
column size reported separately. In this case, the bicluster size
is more important as a performance measure than the p-value,
since both algorithms satisfy the OPSM constraint, and the
only difference is the searching method.

The ECOPSM’s parameters used by these experiments are
represented in Table 1.

B. Performance Comparison with SEBI

Fig. 4. Biological relevance of biclusters found by ECOPSM and SEBI

We conducted experiments on Cho et al.’s data to assess
the biological significance of biclusters found by ECOPSM
and SEBI algorithms. Since the biological relevance of
biclusters found by the SEBI algorithm has not been reported,
we implemented the SEBI algorithm based on the Bleuler and
Zitzler’s paper [10]. Cho et al.’s data were used since we
needed to test our own implemented version of SEBI using
the data used by the research [10]. We obtained 100 biclusters
whose average gene number, condition number, and mean
square residue were 13.03, 15.84, and 248.29, respectively,
which were similar results to the experimental result in the
research.

We measured the adjusted p-value of the found biclusters
(The adjusted p-value represents the fraction (as a %) of 1000
null-hypothesis simulations having the genes of the tested
bicluster with this single-hypothesis p-value or smaller). The
adjusted p-value was compared by the adjusted p-value of
ECOPSM’s biclusters as shown in Fig. 4. The 100 biclusters
found by SEBI algorithms participated in this comparison. To
be compared with these biclusters, 100 biclusters were
randomly chosen among the biclusters found by ECOPSM,
which have 5 to 7 conditions. The reason why we didn’t used
all the found biclusters but randomly chosen 100 biclusters
was to fairly compare them with the biclusters found by SEBI.
ECOPSM found 300 biclusters every length and
consequently, 900 biclusters were found, which have 5 to 7
conditions. Therefore, it would be a slight advantage for
ECOPSM to use the whole 900 biclusters in comparison, so
we applied the approach choosing randomly.

Fig. 4 demonstrates the proportion of biclusters which has
the p-value lower than each values represented in the x-axis
of the graph. 50 % of ECOPSM’ biclusters have the adjusted

TABLE I
ECOPSM PARAMETERS

Parameter Description Quantity

MaxLen Maximum condition length n

PopSize Number of individuals
in a population 300

MaxGen Maximum generation number 300
Pc Crossover rate 0.6
Pm Mutation rate 0.01

Min Parameter for Rank based selection 0 to 0.9
Max Parameter for Rank based selection 1.1 to 2.0
MaxIter Maximum pair-iteration count 15 to 20

p-value lower than 0.001, whereas only 5 % of the SEBI’s
biclusters have the adjusted p-value lower than 0.001.

By this result, it was revealed that the ECOPSM generated
more biologically significant biclusters than the SEBI
algorithm.

C. Performance comparison with the original OPSM

Fig. 5. Bicluster size of ECOPSM and OPSM

We conducted experiments on Gasch et al.’s data set and
Cho et al.’s data set, comparing our algorithm with the
original OPSM algorithm by measuring the size of biclusters.
The size of the biclusters can be the measure of the biclusters’
quality, since finding bigger biclusters is the same goal of the
paper [5] that originally proposed the OPSM. For each OPSM
having a certain number of conditions, the number of genes
was measured. Since the original OPSM’s performance
varies with the pruning threshold, we executed the OPSM
algorithms 10 times, increasing the threshold by 100 from
100 to 1000. We used the same OPSM program as Prelic et al.
[13] utilized in their experiment.

In the experiment of Cho et al.’s data set, the ECOPSM and
OPSM demonstrated the same performance in finding larger
biclusters, since the data set was too small to differentiate the
performance of both.

Fig. 5 shows the experimental result conducted on Gasch et
al.’s data set. Except 11-length condition, the ECOPSM
locates larger biclusters than the original OPSM. The number
of genes included in biclusters decreased according to the
increase in the number of conditions. It can be noticed that the
threshold could not significantly increase the performance of
the OPSM. ECOPSM’s longest condition length having at
least 2 genes was 34 whereas the original OPSM’s longest
condition length was 27.

D. Comprehensive Performance Comparison
The comprehensive comparison between the 3 algorithms

was needed. Therefore, we compared the 3 algorithms by
using the Gasch et al.’s data and GO p-value evaluation.

The 100 biclusters found by one run of SEBI were totally
used in this comparison, with the MSR threshold 300 given as
in the paper, and in the case of ECOPSM, for the comparison,
the 100 biclusters were randomly chosen from the found
biclusters which have 10 to 13 conditions. In the case of the
original OPSM, the pruning threshold T was chosen as 1000

and all the found biclusters having 10 to 13 conditions
participated in the comparison.

Fig. 6 represents the proportion of the biclusters found by
each algorithm which has lower values than the specified
values in the x-axis. It’s remarkable that more than 30% of
biclusters found by the ECOPSM have p-value lower than
10-130. All the biclusters of the ECOPSM are distributed in the
range of p-value from 10-58 to 10-157. However, OPSM’s
biclusters are distributed in the range of p-value from 10-37 to
10-100. Moreover, SEBI’s biclusters are distributed in the very
short range of p-value from 1 to 10-10.

Fig. 6. Biological relevance of biclustering found by each algorithm

E. Various biclusters found by ECOPSM
The following graphs show the several biclusters chosen

among the biclusters that ECOPSM found from Gasch et al.’s
data.

Fig. 7. Biclusters located from the yeast expression data. The bicluster
features in each are reported in the following format (number of genes,

number of conditions, p-value) as follows in the order of left-to-right and
top-to-bottom. (143, 10, 6.6*10-72), (102, 11, 2.9*10-76), (103, 11, 9*10-82),

(103, 12, 2.10*10-151), (62, 14, 1.4*10-102), (24, 22, 9.2*10-39), (3, 32,
2.10*10-5), (2, 34, higher than 10-5).

V. CONCLUSION
Recently, biclustering methods have been spotlighted as a

method of uncovering genetic pathways.
This paper proposed an Evolutionary Computation (EC)

algorithm which can efficiently locate biclusters using the
Order Preserving Sub-matrix (OPSM) constraint.

In the design of this algorithm, we modulized the bicluster
search process and adapted the co-evolution concept to
efficiently explore the given search space.

In the set of experiments, our algorithm overwhelmed a
representative EC algorithm based on mean square residue, a
popular bicluster measure, in the aspect of finding
meaningful genetic pathways, and also demonstrated that it
found larger and better biclusters than the original OPSM
algorithm.

This research can not only be used as a novel method in
finding biologically significant biclusters, but can also be
adapted as a method of designing EC algorithms that can find
biclusters based on the OPSM constraint.

As a future research, we are considering to compare our
algorithm with more various EC-based biclustering
algorithms or non-EC-based biclustering algorithms.

REFERENCES
[1] R. R. Sokal and C.D. Michener, “A statistical method for evaluating

systematic relationships,” Univ. Kansas Sci. Bull., vol. 38, 1958, pp.
1409–1438.

[2] J. A. Hartigan, and M. A. Wong, “A k-means clustering algorithm,”
Appl. Stat., vol. 28, 1979, pp. 100–108.

[3] J. A. Hartigan, "Direct clustering of a data matrix," Journal of the
American Statistical Association, vol. 67, no. 337, pp. 123-129, 1972.

[4] Y. Cheng and G. M. Church, “Biclustering of expression data,” in Proc.
8th Int. Conf. Intelligent Systems for Molecular Biology, 2000, pp.
93–103.

[5] A. Ben-Dor, B. Chor, R. Karp, and Z. Yakhini, “Discovering local
structure in gene expression data: the order-preserving sub-matrix
problem,” in Proc. 6th Ann. Int. Conf. Computational Biology,

[6] J. Liu, J. Yang, and W. Wang, “Biclustering in gene expression data by
tendency,” in Computational Systems Bioinformatics Conf. (CSB
2004). IEEE, 2004.

[7] S. Bleuler, A. Prelic, and E. Zitzler, “An EA framework for biclustering
of gene expression data,” in Congress on Evolutionary Computation
(CEC-2004), 2004, pp. 166-173.

[8] A. Chakraborty, H. Maka, “Biclustering of gene expression data using
genetic algorithm,” in Proc. 2005 IEEE Symposium on Computational
Intelligence in Bioinformatics and Computational Biology, 2005, pp.
1–8.

[9] X. Fei, S. Lu, H. F. Pop, and L.R. Liang, “GFBA: a genetic fuzzy
biclustering algorithm for discovering value-coherent biclusters,” in
Proc. 2007 Int. Symposium on Bioinformatics Research and
Applications, 2007.

[10] F. Divina and J. S. Aguilar-Ruiz, “Biclustering of expression data with
evolutionary computation,” IEEE Trans. Knowledge and Data
Engineering, vol. 18, no. 5, 2006, pp. 49-57.

[11] S. Bleuler and E. Zitzler, “Order preserving clustering over multiple
time course experiments,” in Proc. EvoWorkshops 2005, pp. 33-43,
2005.

[12] R. Giraldez, F. Divina, B. Pontes, and J.S. Aguilar-Ruiz,
“Evolutionary search of biclusters by minimal intrafluctuation,” in
Fuzzy Systems Conf. (FUZZ-IEEE 2007), 2007, pp. 1-6.

[13] A. Prelic, S. Bleuler, P. Zimmermann, A. Wille, P. B¨uhlmann, W.
Gruissem, L. Hennig, L. Thiele, and E. Zitzler, “A systematic
comparison and evaluation of biclustering methods for gene expression
data,” Bioinformatics, 22, 2006.

[14] A. P. Gasch, P. T. Spellman, C. M. Kao, O. Carmel-Harel, M. B. Eisen,
G. Storz, D. Botstein, and P. O. Brown, “Genomic expression programs
in the response of yeast cells to environmental changes,” Molecular
Biology of the Cell, vol. 11, 2000, pp. 4241–4257.

[15] J. Orling, “Containment in graph theory: covering graphs with cliques,”
in Proc. Koninldijke Nederlandse Akademie van Wetenschappen, vol.
39, 1977, pp. 211-218.

[16] A. E. Eiben and J. E. Smith, Introduction to Evolutionary Computing,
Springer-Verlag, 2003.

[17] D. E. Goldberg and L. Robert, “Alleles, loci, and the travelling
salesman problem,” in Proc.1st Int. Conf. Genetic Algorithms, 1985,
pp. 154-159.

[18] P. J. Bentley and D.W. Corne, Creative evolutionary systems, Morgan
Kaufmann Publishers Inc., 2001.

[19] T. Yamada and R. Nakano, “A Genetic algorithm applicable to
large-scale job-shop problems,” Parallel Problem Solving from Nature,
vol. 2, Amsterdam: Elsevier Science Publishers, 1992.

[20] D. Corne, P. Ross, and H. L. Fang, “Fast practical evolutionary
timetabling,” in Proc. Evolutionary Computing AISB Workshop, pp.
251-263, URL:http://citeseer.nj.nec.com/corne94fast.html, 1994.

[21] D. K. Gehlhaar, G. M. Verkhivker, P. A. Rejto, C. J. Sherman, D. B.
Fogel, L. J. Fogel, and S. T. Freer, “Molecular recognition of the
inhibitor ag-1343 by hiv-1 protease: conformationally flexible docking
by evolutionary programming,” Chemistry and Biology, vol. 2, no. 5,
1995, pp. 317-324.

[22] G.F. Spencer, “Automatic generation of programs for crawling and
walking,” in Proc. 5th Int. Conf. Genetic Algorithms (ICGA ’93), 1993,
pp. 654.

[23] D.B. Fogel, “Evolving behavious in the iterated prisoner’s dilemma,”
Evolutionary Computation, vol. 1, no. 1, 1993, pp. 77-97.

[24] F. Divina and E. Marchiori, “Evolutionary concept learning,” in Proc.
Genetic and Evolutionary Computation Conf., 2002, pp. 343-350.

[25] J. S. Aguilar-Ruiz, J. Riquelme, and M. Toro, “An evolutionary
approach to estimating software development projects,” Information
and Software Technology, vol. 14, no. 43, 2001, pp. 875-882.

[26] J. S. Aguilar-Ruiz, J. Riquelme, and C. D. Valle, “Evolutionary learning
of hierarchical decision rules,” IEEE Trans. Systems, Man, and
Cybernetics, Part B, vol. 33, no. 2, 2003, pp. 324-331.

[27] J. E. Baker, “Adaptive selection methods for genetic algorithms,” in
Proc. 1st International Conf. on Genetic Algorithms and Their
Applications, 1985

[28] R. Cho, M. Campbell, E. Winzeler, L. Steinmetz, A. Conway, L.
Wodicka, T. Wolfsberg, A. Gabrielian, D. Landsman, D. Lockhart, and
R. Davis, “A genome-wide transcriptional analysis of the mitotic cell
cycle,” Molecular Cell, vol. 2, 1998, pp. 65-73.

