
  

  

Abstract—Dilated Cardiomyopathy is one of leading courses 
of heart failure. Recent advances in microarray technology 
have promised significant advantages in understanding the 
molecular mechanisms underlying dilated cardiomyopathy and 
heart failure. Several microarray studies have successfully 
yielded a set of signature genes associated with heart failure. 
However, it has been found that the overlap of these heart 
failure associated genes derived from different experiments is 
very small. Based on the analysis of two publicly available 
microarray datasets associated with heart failure with three 
types of machine learning and statistical prediction models, this 
paper explores this phenomenon. We found that there is no 
unique set of genes associated with heart failure. Many sets of 
genes can achieve very high prediction accuracy. In order to 
identify biomarkers in human heart failure, it may not be 
sufficient to just focus a certain number of top genes. Such 
main candidates should be chosen from the much longer list of 
genes. 

I. INTRODUCTION 
ILATED cardiomyopathy (DCM), a disorder of cardiac 
muscle, is a leading course of heart failure (HF) [1], 

[2]. In DCM, the heart muscle becomes weakened and one 
or both ventricles enlarge, making the heart pump blood less 
efficiently. The decreased heart function will eventually 
affect the working of other vital organs such as liver and 
lung. The causes of DCM are heterogeneous and despite 
many efforts, there is no specific genetic defect that has yet 
been well established. 

Recent advances in microarray technology have promised 
significant advantages in the identification of biomarker 
associated with HF and a better understanding of the 
molecular mechanisms underlying DCM and HF. Several 
microarray studies have successfully yielded a set of HF 
signature genes [2-5]. For example, based on the 
comparative analysis of gene profiles of seven nonfailing 
heart and eight failing human heart with a diagnosis of end-
stage DCM, Tan et al. [3] identified 103 differentially 
expressed genes which can be used to represent a gene 
fingerprint for human heart failure. They divided these 
genes into 10 groups: biomarker, myofibrillar, extracellular 
matrix/cytoskeletal, proteolysis stress, metabolism, 
apotosis/inflammatory, signal transduction, immune system 
and genes of unknown function. In an attempt to identify a 
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common gene expression signature in DCM across multiple 
microarray studies, Barth et al. [2] performed 2 genome-
wide expression studies using cDNA and short-
oligonucleotide platforms which comprised independent 
septal and left ventricular tissue samples from 40 patient 
samples. Together with 2 publicly available datasets, they 
studied gene profiles associated with HF from a total of 108 
myocardial samples and identify a robust set of 27 genes 
which can differentiate DCM samples from healthy subjects 
with an accuracy of 90%. Wittchen et al. [4] studied the 
genomic expression profile of inflammatory cardiomyopathy 
and identified two significantly altered gene networks 
centred around the cysteine-rich angiogenic inducer 61 
(CYR61) and adiponectin (APN) gene. They argued that 
dysbalance between the CYR61 and APN networks could 
have a pathogenic role in inflammatory cardiomyopathy and 
may contain novel therapeutic targets. More recently, 
Camargo and Azuaje [5] integrated three publicly available 
microarray datasets. Differentially expressed genes were 
evaluated in the context of a global protein protein 
interaction network. The main outcome of this study is a set 
of integrated, potentially novel DCM signature genes 
including PICK1, DYNLL1, ODC1, HTRA1 and HMGN2. 

However, it has been found that lists of biomarkers in HF 
derived from different experiment studies had only a few 
genes in common. For example, among 103 differentially 
expressed genes identified by Tan  et al. [3] and 27 genes 
found by Barth  et al. [2], they are only 4 genes appearing in 
both sets. Camargo and Azuaje [5] used prediction analysis 
of microarray (PAM) technique to identify 47, 3, and 36 
significant class predictor genes (CP) whose expression 
profile showed strong discriminative capability between 
DCM and non-DCM samples from three heterogeneous, 
independent datasets respectively. Surprisingly, none was 
shared by these three sets. Such the lack of agreement 
between the sets of signature genes derived from different 
studies was also found in breast cancer studies [6] and other 
human diseases [7], [8]. 

This paper aims to explore this phenomenon in the 
context of HF. Based on the analysis of two publicly 
available datasets using machine learning and statistical 
prediction models, the following question are addressed: (1) 
how many genes do we need to build a prediction model for 
the classification of DCM samples; (2) Is there a unique set?  
and (3) how to explain the disparity of gene sets reported by 
independent studies. The remainder of the paper is 
organized as follows. Section II briefly describes the dataset 
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under study, followed by a description of the prediction 
models and statistical evaluation techniques. The results are 
presented in Section III. The discussion of results and 
conclusions, together with future research, are given in 
Section IV.  

  

II. METHODOLOGY 

A. Datasets under study 
The two microarray datasets used in this paper were 

derived from a study on DCM published by Barth et al. [2] 
and can be downloaded from Gene Expression Omnibus 
(GEO, http://www.ncbi.nlm.nih.gov/geo/). The dataset A 
(Accession number GDS 2206) was generated by using 
cDNA microarray based on 28 septal myocardial samples. It 
was composed of 13 DCM hearts at the time of 
transplantation and 15 nonfailing (NF) donor hearts. The 
generation of the dataset B (Accession number GDS 2205) 
was based on the oligonucleotide microarray study 
consisting of 12 independent subendocardial left ventricular 
samples: 5 and 7 samples were obtained from NF donors 
and DCM hearts respectively. 

 
TABLE 1 THE CHARACTERISTICS OF DATASETS A AND B 

 
 
Both datasets were available in log-scale. Probe sets with 

missing values in more than 50% of their transcripts in 
either group were excluded in this study. The description of 
data preprocessing procedures used can be found in [2], [5]. 

B. Prediction models 
A total of three statistical and machine learning models: 

Naive Bayes (NB), Support Vector Machines (SVM), and 
K*, were employed to evaluate prediction performance of a 
set of genes or each individual gene.  

NB is a simple probabilistic classifier based on Bayesian 
theorem with naïve independence assumptions. Despite this 
over-simplified assumption, NB is surprisingly successful in 
many practical applications [9]. NB-based classification 
combines the naïve Bayes probability model with the 
maximum a posterior decision rule. Let C be a dependent 
class variable with k classes ),,,( 21 kcccC Κ= conditional on 

n feature variables .,,, 21 nFFF Κ  An NB-based 
classification model can be expressed as follows: 
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where nfff ,, ,21 Κ  are the value of features .,,, 21 nFFF Κ  
)(cp and )|( cfp  represent  prior probability and likelihood 

respectively.  
Based on solid theoretical foundation, SVM has 

demonstrated several important and unique features and has 
been applied to pattern recognition problems in a number of 
areas [10]. The main idea behind the SVM is to construct an 
N-dimensional hyperplanes as the decision-making surface 
that optimally classify samples into their respective 
categories. Conventional SVM-based classification involves 
the following steps: (a) training process; (b) identifying a set 
of support vectors; (c) computing the decision value, sv, for 
each test case using Equation (2); and (d) predicting the 
class of the test sample using a sign function. 
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Where k is the number of support vectors, x  is the vector of 
a test case, xi is ith support vector, yi is the output of ith 
support vector, αi is the associated Lagrange multiplier, and 
K(x, xi) is the kernel function.   

K* is a relatively simple instance-based classifier [11]. 
The class of a test case, t, is determined by finding training 
instance(s) that most similar to it. K* uses an entropy-based 
distance measure to calculate the similarity between two 
samples. It computes the probability of the test case, t, 
belonging to class ci using the following formula: 
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where xj is the jth member of class ci. The class with the 
highest probability is determined as the classification of the 
test case, t. 

C. Evaluation Methods 
The quality assessment of a prediction model is generally 

based on the extent to which the correct category labels have 
been assigned. From the medical point of view, it is 
important not only to check how many test cases have been 
correctly identified, but also to examine how well a model 
can classify an unseen test case as not belonging to a 
particular case. Thus, this paper adopts three statistical 
measures: accuracy (AC), sensitivity(Se), and specificity 
(Sp), to evaluate classifiers. 

Given the limited number of available training samples, a 
leave-one-out cross-validation is adopted. For a dataset with 
n samples, n experiments are carried out. For each 
experiment, a single sample is selected as the test case with 
the remaining samples used for training. The true error is 
estimated as the average error rate on test samples. To 



  

further assess prediction performance, we also evaluated the 
classification models using a set of independent samples that 
is separated from the training set used to build it. 

D. Implementation protocols 
All three classification models were implemented within 

the framework provided by the Weka package [12]. Unless 
indicated otherwise, the models reported here using the 
following learning setting. The training of SVM is based on 
sequential minimal optimization algorithm developed by 
Platt [13], which breaks the large quadratic programming 
into a series of smallest possible quadratic programming. A 
polynomial kernel with exponent set to 1 was used. The 
parameter C representing the degree of tolerance was set to 
1.0. The parameter globalBlend for K* classifier was equal 
to 50. 

III. RESULTS 

A. Significance analysis 
To establish the number of significantly differentially 

expressed genes, we performed t-test with Bonferroni 
correction. For dataset A, we found that more than 200 
genes having an adjusted p-value less than 0.01 (raw p-value 
less than 4.61e-07) and close to 350 genes having an 
adjusted p-value less than 0.05 (raw p-value less than 2.3e-
06). Examples of expression profiles of up-regulated and 
down-regulated genes are illustrated in Figs. 1 and 2. 

 

 
Fig. 1. Examples of expression profiles of up-regulated genes  
 

 
Fig. 2 Examples of expression profiles of down-regulated genes 

Interestingly, many previously found to be biomarker 
genes of heart failure [2] do not show differentially 
expressed patterns in this dataset after Bonferroni correction. 
Examples include chemokine ligand 2 (CCL2), transcripts 
encoding for sarcomer structure proteins (MYH10), and the 
procollagen C-endopeptidase enhancer 2 (PCOLCE2). This 
is partly due to the stringent nature of Bonferroni correction 
technique. 

We performed similar statistical analysis on Dataset B. 
Surprisingly we found that the set of differentially expressed 
genes in these two datasets had only a few in common. 
There are about 110 and 2580 genes, which have a raw p 
value below 0.001 in Datasets A and B respectively. Only 
the following 20 genes appeared in both sets: BACH2, 
C14orf133, C16orf45, CHST5, DHRS12, HMGN2, ISOC1, 
KIAA0195, KIAA0774, KIDINS220, MYH10, NCOA4, 
ODC1, RNF5, SEC31A, SGCE, SLC30A1, SSPN, TERF1, 
and YEATS2. 

 

B. Predictive power of   differentially-expressed genes 
To assess predictive performance of each individual gene, 

we built the classifiers with one single variable. We firstly 
ranked the genes in terms of their p-values. Tables 2 and 3 
show the prediction performance of top 10 genes of three 
classifiers for Datasets A and B respectively. 

 
TABLE 2 PREDICTION PERFORMANCE OF THREE CLASSIFIERS WITH  TOP 10 

INDIVIDUAL FEATURES FOR DATASET A 

Gene NB SVM K* 
BX089301 100% 100% 100% 
PHYH 100% 100% 100% 
BX094369 92.9% 92.9% 92.9% 
LOC387890 96.4% 96.4% 96.4% 
BX116905 96.4% 96.4% 96.4% 
SUCLA2 96.4% 96.4% 96.4% 
PSMD13 96.4% 96.4% 96.4% 
UNC84A 100% 92.9% 96.4% 
CSDE1 96.4% 96.4% 96.4% 
PAIP2 100% 100% 100% 

 
 

TABLE 3 PREDICTION PERFORMANCE OF THREE CLASSIFIERS WITH  TOP 10 
INDIVIDUAL FEATURES FOR DATASET B 

Gene NB SVM K* 
TRMT5 100% 100% 100% 
C16orf45 100% 100% 100% 
CBFB 100% 91.7% 100% 
H2AFZ 91.7% 100% 100% 
AL133215 100% 100% 100% 
SUV420H1 100% 75% 100% 
ODC1 100% 83.3% 100% 
SMC4 100% 83.3% 100% 
IDH2 100% 91.7% 100% 
C20orf149 100% 91.7% 100% 



  

 
A closer examination of the results presented in Tables 2 

and 3 reveals that: 
1. Most classification with top 10 genes can achieve 

high classification accuracy (>90%). For example, 
For Dataset A, classification with gene PHYH and 
BX089301 obtained 100% accuracy using all three 
classifiers. 96.4% accuracy was achieved when 
using NB, SVM and K* with gene SUCLA2. For 
Dataset B, classification with TRMT5, C16orf45, 
and AL133215 with three classifiers can achieve 
100% accuracy. 

2. For Dataset A, three classification models exhibit the 
similar behaviour. The obtained AC values are 
between 92.9% and 100%. However, for Dataset B, 
there is a slightly different story with K* having 
consistent AC value (100%) and SVM 
demonstrating a relatively big variation of accuracy 
that ranges from 75% to 100%. 

3. The ranking of each individual gene may not 
completely reflect its predictive power. To 
investigate the impact of gene ranking, we ranked 
genes with correlation coefficient-based ranking 
criterion [14], i.e. each gene, ig , was ranked in terms 
of its capacity to distinguish between HF and DCM, 
which was defined as follows: 

 where )( iNF gμ  and )( iNF gσ  be the mean value 
and the standard deviation of ig  in Class NF, 

)( iDCM gμ and )( iDCM gσ  be the mean value and the 
standard deviation of ig  for Class DCM. Tables 4 
and 5 show the prediction results of top 10 genes. In 
comparison to the results presented in Tables 2 and 3, 
no significant difference was observed between these 
two ranking experiments. 
 

TABLE 4 PREDICTION PERFORMANCE OF THREE CLASSIFIERS WITH TOP 10 
GENES BASED ON CORRELATION COEFFICIENT RANKING CRITERION FOR 

DATASET A 

Gene NB SVM K* 
BX089301 100% 100% 100% 
PHYH 96.4% 100% 100% 
BX116905 96.4% 96.4% 96.4% 
BX094369 92.9% 92.9% 92.9% 
PSMD13 96.4% 96.4% 96.4% 
DLAT 92.9% 92.9% 92.9% 
UNC84A 100% 92.9% 96.4% 
LOC387890 96.5% 96.5% 96.5% 
SUCLA2 96.5% 96.5% 96.5% 
CSDE1 96.5% 96.5% 96.5% 

 
 

TABLE 5 PREDICTION PERFORMANCE OF THREE CLASSIFIERS WITH TOP 10 
GENES BASED ON CORRELATION COEFFICIENT RANKING CRITERION FOR 

DATASET B. 

Gene NB SVM K* 
TRMT5 100% 100% 100% 
C16orf45 100% 100% 100% 
IDH2 100% 91.7% 100% 
AL133215 100% 91.7% 100% 
CBFB 100% 91.7% 100% 
APOBEC2 83.3% 100% 100% 
H2AFZ 91.7% 100% 100% 
YEATS2 91.7% 91.7% 91.7% 
SUV420H1 100% 75% 100% 
KIAA0195 100% 91.7% 100% 

 

C. Many gene sets can achieve a very high classification 
accuracy 

We found that there were many sets of genes which can 
achieve 100% classification accuracy. We ranked the genes 
in terms of their adjusted p-values. For Dataset A, three 
prediction models using all genes with an adjusted p-value 
greater than 0.01 as input can achieve 100% prediction 
performance. The same 100% accuracy was obtained when 
using top 5, top10, top 50, top100, top 200 genes. 

We then randomly selected 5 differentially-expressed 
genes as input to three classifiers. Once again we found that 
we can obtain very high classification performance. Using 
DCTN6, SCP2, MRFAP1L1, MRPL1, and C20orf29, for 
example, we obtained 100% classification accuracy. More 
than 96% classification accuracy was achieved with genes 
ATP6AP2, MFN2, ABI2, DAP3, and GSTZ1. 

Similar observations were made when performing  the 
analysis of Dataset B. Top 100 genes with the lowest p-
values were selected and 100% classification accuracy was 
achieved for all three classifiers using top 1, 2, 3, 4, 5, 10, 
20, 30, 40, 50, 60, 70, 80, 90, and 100 genes. 

The results presented in this section highlighted that it 
may not be sufficient to just examine a certain number of top 
genes for the identification of HF associated genes. Such 
main candidates should be chosen from the much longer list 
of genes. The similar observation was made by Ein-Dor et 
al. [6]  when they studied signature genes in breast cancer. 

D. Validation based on Independent dataset 
To further assess predictive performance of each 

classification model, we evaluated them using an 
independent test dataset instead of leave-one-out cross 
validation. We firstly found a set of 35 genes which are 
significantly expressed (based on raw p-value < 0.01) in 
both Datasets A and B. Then we constructed 4 sets of 
training and testing samples which include 5, 10, 20 and 35 
of these genes respectively. We used their expression values 
in one dataset for training while the prediction was based on 
their expression value in another dataset. The results were 
shown in Tables 6 to 13.  
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TABLE 6 PREDICTION RESULTS FOR THREE CLASSIFIERS WITH 5 GENES. THE 

EXPRESSION VALUES IN DATASET A WAS USED FOR TRAINING WHILE THE 
PREDICTION WAS BASED ON THEIR EXPRESSION VALUES IN DATASET B. NB 
USES SUPERVISED DISCRETIZATION TO CONVERT NUMERIC ATTRIBUTES TO 

NOMINAL ONES  

NF  DCM 
Model Ac 

(%) Pr 
(%) 

Se 
(%) 

Sp 
(%) 

Pr 
(%) 

Se 
(%) 

E. Sp 
(%) 

NB 100 100 100 100 100 100 100 
SVM 100 100 100 100 100 100 100 
K* 100 100 100 100 100 100 100 
 

 
TABLE 7 PREDICTION RESULTS FOR THREE CLASSIFIERS WITH 10 GENES. THE 

EXPRESSION VALUES IN DATASET A WAS USED FOR TRAINING WHILE THE 
PREDICTION WAS BASED ON THEIR EXPRESSION VALUES IN DATASET B. NB 
USES SUPERVISED DISCRETIZATION TO CONVERT NUMERIC ATTRIBUTES TO 

NOMINAL ONES  

NF  DCM 
Model Ac 

(%) Pr 
(%) 

Se 
(%) 

Sp 
(%) 

Pr 
(%) 

Se 
(%) 

F. Sp 
(%) 

NB 100 100 100 100 100 100 100 
SVM 100 100 100 100 100 100 100 
K* 91.7 83.3 100 85.7 100 85.7 100 
 

 
TABLE 8 PREDICTION RESULTS FOR THREE CLASSIFIERS WITH 20 GENES. THE 

EXPRESSION VALUES IN DATASET A WAS USED FOR TRAINING WHILE THE 
PREDICTION WAS BASED ON THEIR EXPRESSION VALUES IN DATASET B. NB 
USES SUPERVISED DISCRETIZATION TO CONVERT NUMERIC ATTRIBUTES TO 
NOMINAL ONES. THE PARAMETER OF GLOBALBLEND OF K* WAS SET TO 10  

NF  DCM 
Model Ac 

(%) Pr 
(%) 

Se 
(%) 

Sp 
(%) 

Pr 
(%) 

Se 
(%) 

G. Sp 
(%) 

NB 83.3 71.4 100 71.4 100 71.4 100 
SVM 91.7 83.3 100 85.7 100 85.7 100 
K* 83.3 71.4 100 71.4 100 71.4 100 
 

 
TABLE 9 PREDICTION RESULTS FOR THREE CLASSIFIERS WITH 35 GENES. THE 

EXPRESSION VALUES IN DATASET A WAS USED FOR TRAINING WHILE THE 
PREDICTION WAS BASED ON THEIR EXPRESSION VALUES IN DATASET B. NB 
USES SUPERVISED DISCRETIZATION TO CONVERT NUMERIC ATTRIBUTES TO 

NOMINAL ONES  

NF  DCM 
Model Ac 

(%) Pr 
(%) 

Se 
(%) 

Sp 
(%) 

Pr 
(%) 

Se 
(%) 

H. Sp 
(%) 

NB 84.6 75.0 100 71.4 100 71.4 100 
SVM 92.3 85.7 100 85.7 100 85.7 100 
K* 91.7 83.3 100 85.7 100 85.7 100 

 
TABLE 10 PREDICTION RESULTS FOR THREE CLASSIFIERS WITH 5 GENES. THE 

EXPRESSION VALUES IN DATASET B WAS USED FOR TRAINING WHILE THE 
PREDICTION WAS BASED ON THEIR EXPRESSION VALUES IN DATASET A. NB 
USES SUPERVISED DISCRETIZATION TO CONVERT NUMERIC ATTRIBUTES TO 

NOMINAL ONES. A POLYNOMIAL KERNEL OF THIRD ORDER WAS USED IN 
SVM  

NF  DCM 
Model Ac 

(%) Pr 
(%) 

Se 
(%) 

Sp 
(%) 

Pr 
(%) 

Se 
(%) 

I. Sp 
(%) 

NB 100 100 100 100 100 100 100 
SVM 96.4 100 93.3 100 92.9 100 93.3 
K* 100 100 100 100 100 100 100 
 

TABLE 11 PREDICTION RESULTS FOR THREE CLASSIFIERS WITH 10 GENES. 
THE EXPRESSION VALUES IN DATASET B WAS USED FOR TRAINING WHILE 

THE PREDICTION WAS BASED ON THEIR EXPRESSION VALUES IN DATASET A. 
NB USES SUPERVISED DISCRETIZATION TO CONVERT NUMERIC ATTRIBUTES 

TO NOMINAL ONES  

NF  DCM 
Model Ac 

(%) Pr 
(%) 

Se 
(%) 

Sp 
(%) 

Pr 
(%) 

Se 
(%) 

J. Sp 
(%) 

NB 92.9 93.3 93.3 92.
3 

92.3 92.3 93.3 

SVM 100 100 100 100 100 100 100 
K* 89.3 100 80.0 100 81.3 100 80.0 

 
TABLE 12 PREDICTION RESULTS FOR THREE CLASSIFIERS WITH 20 GENES. 
THE EXPRESSION VALUES IN DATASET B WAS USED FOR TRAINING WHILE 

THE PREDICTION WAS BASED ON THEIR EXPRESSION VALUES IN DATASET A. 
NB USES SUPERVISED DISCRETIZATION TO CONVERT NUMERIC ATTRIBUTES 
TO NOMINAL ONES. THE PARAMETER OF GLOBALBLEND OF K* WAS SET TO 

50. A POLYNOMIAL KERNEL OF THIRD ORDER WAS USED IN SVM 

NF  DCM 
Model Ac 

(%) Pr 
(%) 

Se 
(%) 

Sp 
(%) 

Pr 
(%) 

Se 
(%) 

K. Sp 
(%) 

NB 85.7 92.3 80.0 92.3 80.0 92.3 80.0 
SVM 92.9 93.3 93.3 92.3 92.3 92.3 93.3 
K* 60.7 100 26.7 100 54.2 100 54.2 

 
TABLE 13 PREDICTION RESULTS FOR THREE CLASSIFIERS WITH 35 GENES. 
THE EXPRESSION VALUES IN DATASET B WAS USED FOR TRAINING WHILE 

THE PREDICTION WAS BASED ON THEIR EXPRESSION VALUES IN DATASET A. 
NB USES SUPERVISED DISCRETIZATION TO CONVERT NUMERIC ATTRIBUTES 

TO NOMINAL ONES  

NF  DCM 
Model Ac 

(%) Pr 
(%) 

Se 
(%) 

Sp 
(%) 

Pr 
(%) 

Se 
(%) 

L. Sp 
(%) 

NB 82.1 91.7 73.3 92.3 75.0 92.3 73.3 
SVM 89.3 87.5 93.3 84.6 91.7 84.6 93.3 
K* 57.1 100 20.0 100 52.0 100 20.0 



  

 
As can be seen from the results presented in these tables, 

training with Dataset B and testing with Dataset A generally 
produced the worse performance comparing with that of 
training using Dataset A and testing using Dataset B. This is 
because that Dataset B was composed of fewer samples. 
Such a difference was particularly significant when the 
number of genes was getting larger and instance-based 
classifier (K*) was used. 

Another observation was that using the 5 genes can 
achieve the best results while continual increase of genes 
doesn’t contribute to the improvement of prediction 
performance. In fact, in most of cases, the poor results were 
achieved when using all 35 genes.  

IV. DISCUSSION AND CONCLUSIONS 
Based on the analysis of two publicly available HF 

microarray data, this paper evaluated the sets of HF related 
genes derived from computational analysis of gene 
expression profiles. While we found that many genes were 
highly differentially expressed in one dataset, there were 
only a few common genes differentially expressed in both 
datasets. More importantly, we found that many sets of 
genes can achieve 100% prediction accuracy. Classification 
with several individual genes such as PHYH and TRMT5 
can also obtain very high accuracy. This may suggest that it 
should not be enough to just focus a certain number of top 
genes for the identification of potential targets for therapy. 
Such candidates should be chosen from the much longer list 
of genes [6]. Based on validation using independent 
datasets, we found that classification with, for example, 5 
genes, i.e. SEC31A, PIK3CA, SSPN, ODC1, and 
KIAA0195 can achieve 100% prediction accuracy. 

Recent years have seen growing interest in studying 
cardiovascular biomarkers. Morrow and de Lemos [15] have 
set out three criteria for the appraisal of novel biomarkers: 
(a) Can the clinician measure it? (b) does it provide new 
information that is not already available? And (c) will the 
identified biomarkers help the clinician make decision? 
Eugene [16] argued that only relatively few of the 
biomarkers previously identified can satisfy all three criteria. 
However, they may provide important relevant information 
such as the pathogenesis of heart failure. He then divided a 
list of HF biomarkers into six categories: (a)Inflammation; 
(b) Oxidative stress; (c) Extracellular-matrix remodeling; (d) 
Neurohormones; (e) Myocyte injury; and (f) Myocyte stress. 
Comprehensive analysis of expression profiles of these 
biomarkers would be an important part of our future work. 

Currently we only analyzed two HF expression data with 
three classification models. It is worth repeating the 
experiments using more microarray datasets associated with 
HF. The behaviour of other types of machine learning and 
statistical models such as neural network based classifiers 
also deserves further investigation. 
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