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Abstract— The derivation of molecular signatures indicative
of disease status and behavior are required to facilitate the
optimal choice of treatment for prostate cancer patients. We
conducted a computational analysis of gene expression profile
data obtained from 79 cases, 39 of which were classified as
having disease recurrence, to investigate whether an advanced
computational algorithm can derive more accurate prognostic
signatures for prostate cancer. At the 90% sensitivity level,
a newly derived genetic signature achieved 85% specificity.
This is the first reported genetic signature to outperform a
clinically used postoperative nomogram. Furthermore, a hybrid
signature derived by combination of the nomogram and gene
expression data significantly outperformed both genetic and
clinical signatures, and achieved a specificity of 95%. Our
study demonstrates the possibility of utilizing both genetic
and clinical information for highly accurate prostate cancer
prognosis beyond the current clinical systems, and shows
that more advanced computational modeling of microarray
and clinical data is warranted before clinical application of
predictive signatures is considered.

I. INTRODUCTION

Prostate cancer is the most common male cancer by
incidence, and the second most common cause of male
cancer death in the United States. In 2008, it is estimated
that approximately 186,320 new cases will be diagnosed
and 28,660 men will die from this disease. The mortality
rate for prostate cancer is declining due to improvements
in earlier detection and in local therapy strategies. However,
the ability to predict the metastatic behavior of a patient’s
cancer, as well as to detect and eradicate disease recur-
rence remains some of the greatest clinical challenges in
oncology. It is estimated that 25-40% of men undergoing
radical prostatectomy will have disease relapse, often termed
a biochemical recurrence, as the first clinical indication a
rising serum level of prostate specific antigen (PSA) [1].
The accurate identification of patients at risk for relapse
would greatly facilitate the rational application of adjuvant
treatment strategies.

Accurate prediction models based on standard clinical
variables already exist for prostate cancer recurrence after
radical prostatectomy [2]. A postoperative nomogram [3] is
one of the most frequently used tools in current clinical
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settings. It predicts prostate cancer progression by estimat-
ing 5 and 7-year progression-free probability (PFP) after
radical prostatectomy based on serum PSA, Gleason grade,
surgical margin status, and pathologic stage. Though well
calibrated and repeatedly validated, the nomogram performs
only slightly better than mid-way between a model with
perfect discrimination and one with no discrimination. Yet,
to date, no single biomarker, nor any prognostic molecular
models based on high-throughput gene expression analysis,
has been able to significantly improve upon the predictive
accuracy of the postoperative nomogram [4], [5].

The advent of microarray gene expression technology has
greatly enabled the search for predictive disease biomarkers
in the past few years. Numerous exploratory studies have
demonstrated the potential value of gene expression signa-
tures in assessing the risk of post-surgical disease recurrence
beyond the current clinical systems [6], [7], [8], [9], [11].
However, most of studies focused on breast cancer progno-
sis [11]. Moreover, many existing predictive models were
derived using relatively simple computational algorithms,
and the critical issue of whether existing gene signatures
are ready for randomized, prospective clinical validation
trials is still under debate in the oncology community
[12]. The key to resolving the issue is the development
of advanced computational algorithms, particularly feature
selection algorithms that are capable of identifying relevant
genes from tens of thousands genes on the basis of a limited
number of patient tissue samples. However, feature selection
for high-dimensional data still remains one of the major
challenges in statistical machine learning [13]. This seriously
undermines the performance of many currently used data
analysis algorithms in terms of their speed and accuracy, and
represents a major obstacle in translating predictive models
established in exploratory studies to clinical applications.
We have recently derived a new feature selection algorithm
that addresses several major issues with prior work. The
algorithm performs remarkably well in the presence of a huge
number of irrelevant features. It allows one to process many
thousands of features within a few minutes on a personal
computer, yet maintaining a very high accuracy that is nearly
insensitive to a growing number of irrelevant features [14].

In this study, we conducted a computational analysis to
investigate whether the application of our computational
algorithms can lead to the derivation of more accurate prog-
nostic molecular signatures for predicting prostate cancer
recurrence. We analyzed a prostate tissue gene expression
dataset established at MSKCC [4], and used a rigorous ex-
perimental protocol to compare the prognostic performance



of a newly identified genetic signature with those previously
derived. Receiver operator characteristic (ROC) curves and
survival data analyses demonstrate the superior performance
of the new signature over previous work, and suggest that
the application of this approach to large-scale cohort studies
may lead to the derivation of prognostic prostate cancer
signatures that are worthy of clinical validation trials. We
further derived a hybrid prognostic signature by integrating
gene expression data and clinical variables that significantly
outperformed both the gene signature and nomogram. Our
results demonstrate that advanced computational modeling
can significantly improve the accuracy of prognostic signa-
tures for prostate cancer, advocating the notion that more
computational analysis of microarray and clinical data is
warranted before clinical trials of predictive signaturesare
considered.

II. MATERIALS AND METHODS

A. Dataset

We analyzed the gene expression and clinical dataset used
in the study published by [4]. The data set was built from
tissue samples obtained from 79 patients with clinically
localized prostate cancer treated by radical prostatectomy
at MSKCC between 1993 and 1999. Thirty-nine cases had
disease recurrence as classified by 3 consecutive increasesin
the serum level of PSA after radical prostatectomy, and forty
samples were classified as non-recurrent samples by virtue
of maintaining an undetectable PSA (< 0.05 ng/mL) for at
least 5 years after radical prostatectomy. No patient received
any neo-adjuvant or adjuvant therapy before documented
disease recurrence. The complete clinical characteristics of
the 79 primary tumors are listed in [4]. Samples were snap
frozen, examined histologically and enriched for neoplastic
epithelium by macrodissection. Gene expression analysis was
carried out using the Affymetrix U133A human gene array
which has 22,283 features for individual gene/EST clusters,
as per manufacturers instructions. Image processing was
performed using Affymetrix Microarray Suite 5.0 to produce
cel files which were used directly in our analyses.

B. Feature Selection Algorithm

High-throughput microarray technologies now routinely
produce data sets with an unprecedented number of genes
characterizing each patient sample, which greatly facilitates
the search for predictive disease biomarkers through mul-
tivariate data analyses. However, it also poses a serious
challenge to existing learning algorithms. With a limited
number of patient samples, a learning algorithm can easily
overfit training data, resulting in an over-optimistic or even
zero training error, but with a poor generalization perfor-
mance on unseen test data. A commonly used practice is to
perform feature selection to identify a small fraction of genes
that drive cancerous tumor growth and/or spread [15], [16].
Many existing feature selection algorithms rely on a heuristic
combinatorial search (e.g., forward and backward selection),
which has no guarantee of any optimality. In the presence
of tens of thousands of irrelevant genes, computational

complexity becomes a serious issue, and even a heuristic
search becomes computationally not feasible. For this reason,
many gene identification algorithms resort to filter methods
that evaluate genes individually based on some information-
theoretic measures such as Fisher score and p-value of t-test
(see, for example, [6], [7]). Although filter methods work
well for exploratory purposes, the obtained gene signatures
are far from optimal for clinical applications.

We recently derived a new feature selection algorithm that
addresses several major issues with prior work, including
problems with computational complexity, solution accuracy,
and capability to handle problems with extremely large
data dimensionality [14]. The key idea of the algorithm
is to decompose an complex model into a set of locally
linear ones through local learning, and then estimate feature
relevance globally within a large margin framework with
ℓ1 regularization. We below present a brief review of the
algorithm. We start by defining the margin. Suppose we have
a training dataset consisting ofN samples, each represented
by J features. Given a distance function, we find two nearest
neighbors of each samplexn, one from the same class (called
nearest hit or NH), and the other from the different class
(called nearest miss or NM) [17]. The margin ofxn is
then defined asρn = d(xn, NM(xn)) − d(xn, NH(xn)),
whered(·) is the distance function. For the purpose of this
paper, we use the block distance to define a sample’s margin
and nearest neighbors, while other standard definitions may
also be used. An intuitive interpretation of this margin is
a measure as to how muchxn can “move” in the feature
space before being misclassified. By the large margin theory
[18], a classifier that minimizes a margin-based error function
usually generalizes well on unseen test data. One natural idea
then is to scale each feature, and thus obtain a weighted
feature space, parameterized by a nonnegative vectorw,
so that a margin-based criterion function in theinduced
feature space is maximized. The margin ofxn, computed
with respect tow, is given by:

ρn(w) = d(xn, NM(xn)|w)− d(xn, NH(xn)|w) . (1)

By definingzn = |xn − NM(xn)| − |xn − NH(xn)|, where
| · | is an element-wise absolute operator,ρn(w) can be
simplified asρn(w) = w

T
zn, which is a linear function

of w. By construction, the magnitude of each element of
w reflects the relevance of the corresponding feature in a
learning process. Note that the margin thus defined requires
only information about the neighborhood ofxn, while no
assumption is made about the underlying data distribution.
This implies that by local learning we can transform an
arbitrary nonlinear problem into a set of locally linear ones.

The main problem with the above margin definition,
however, is that the nearest neighbors of a given sample
are unknown before learning. To account for the uncertainty
in defining local information, we develop a probabilistic
model where the nearest neighbors of each sample are treated
as latent variables. We define a probability that sample
xi is the nearest hit or miss ofxn, P (xi=NH(xn)|w)
or P (xi=NM(xn)|w), depending on the class to which



xi belongs. Following the principles of the expectation-
maximization algorithm, we estimate the margin through
taking the expectation ofρn(w) by averaging out the latent
variables:

ρ̄n(w) = w
T
(

∑

i∈Mn

P (xi=NM(xn)|w)|xn − xi|−
∑

i∈Hn

P (xi=NH(xn)|w)|xn − xi|
)

= w
T
z̄n ,

(2)
where Mn contains all samples that have a different
label from xn, and Hn contains all samples that have
the same label asxn, excluding xn. The probabilities
P (xi=NH(xn)|w) and P (xi=NM(xn)|w) are estimated
through the standard kernel density estimation method:

P (xi=NM(xn)|w) =
k(‖xn − xi‖w)

∑

j∈Mn

k(‖xn − xj‖w)
, ∀i∈Mn

(3)

P (xi=NH(xn)|w) =
k(‖xn − xi‖w)

∑

j∈Hn

k(‖xn − xj‖w)
, ∀i∈Hn,

(4)
wherek(·) is a kernel function. Specifically, we use expo-
nential kernelk(d)= exp(−d/δ) where kernel widthδ deter-
mines the resolution at which the data is locally analyzed.

Once the margins are defined, the problem of learning
feature weights can be directly solved within the large margin
framework. For computational convenience, we perform the
estimation within the logistic regression formulation [19]. In
molecular classification, we expect that most of genes are
irrelevant. To encourage the sparseness, one commonly used
strategy is to addℓ1 penalty ofw to an objective function,
which leads to the following optimization problem:

min
w

N
∑

n=1

log
(

1 + exp(−w
T
z̄n)
)

+ λ‖w‖1 , (5)

subject towj ≥ 0, 1 ≤ j ≤ J , where λ is a parameter
that controls the sparseness of the solution. The nonnegative
constraint onw can be absorbed into the objective function
by settingwj = v2

j , which yields an unconstrained optimiza-
tion problem, whose solution can be readily found through
gradient descent with a simple update rule:

vj ← vj − η

(

λ−

N
∑

n=1

exp(−
∑

j vj
2z̄n(j))

1 + exp(−
∑

j vj
2z̄n(j))

z̄n(j)

)

vj ,

(6)
where η is the learning rate determined by the standard
line search. It can be shown that, for fixedz̄n, the solution
obtained when the gradient vanishes is a global minimizer,
given a nonzero initial pointv(0)

j .
Sincez̄n implicitly depends onw through the probabilities

P (xi=NH(xn)|w) andP (xi=NM(xn)|w), we use a fixed-
point recursion method that alternatively refines the estimates
of the probabilities and feature weights until convergence.
By using the Banach fixed point theorem, it can be proved
that our algorithm converges to aunique solution for any
nonnegative initial feature weights, under a loose condition
that a kernel width is sufficiently large [14].

Compared with existing methods, our algorithm has sev-
eral nice properties. First, it avoids any heuristic combina-
torial search, and allows one to process many thousands of
features within a few minute on a personal computer. Second,
the algorithm has two levels of regularization, i.e., the
implicit leave-one-out and explicitℓ1 regularization, thereby
ensuring a good generalization capability of the classifier
constructed using selected features on unseen test samples.
Third, unlike many existing methods, ours has a strong
theoretical foundation. Our theoretical analysis suggested
that the algorithm have a logarithmical sample complexity
with respect to the input data dimensionality. That is, the
number of samples needed for maintaining the same level
of learning accuracy grows onlylogarithmically with the
data dimensionality. This property makes the algorithm very
suitable for microarray data analysis. We have conducted a
large-scale experiment on a wide variety of synthetic and
real-world data sets that demonstrated that the algorithm can
achieve close-to-optimal solutions in the presence of many
thousands of irrelevant features. Due to space limitation,
many technical details are omitted. Interested reader may
refer to [14] for detailed discussion of the algorithm.

C. Experimental Procedure

To avoid possible overfitting of a computational model
to training data, we used an experimental protocol with the
leave-one-out cross validation (LOOCV) method to estimate
classifier parameters and prediction performance. The exper-
imental protocol consists of inner and outer loops. In the
inner loop, LOOCV is performed to estimate the optimal
classifier parameters based on the training data provided by
the outer loop, and in the outer loop, a held-out sample is
classified using the best parameters from the inner loop. The
experiment is repeated until each sample has been tested.
The held-out testing sample is not involved in any stage of
the training process. The classification parameters that need
to be specified in the inner loop include the kernel width and
regularization parameter of the feature selection algorithm, as
well as the structural parameters of a classifier, which leads
to a multi-dimensional parameter search. To make the exper-
iment computationally feasible, we adopted some heuristic
simplifications. Linear discriminant analysis (LDA) was used
to estimate classification performances and tune the input
parameters. One major advantage of LDA, compared to other
classifiers (e.g., SVM and neural networks), is that LDA has
no structural parameters. We predefined the kernel width
as 5, and estimated the regularization parameter through
LOOCV in the inner loop. In our simulation study, we found
that the choice of the kernel width is not critical, and the
algorithm yields nearly identical prediction performancefor
a large range of values for this parameter. We comment that
a comprehensive parameter searching may lead to a more
accurate prediction performance but with a much higher
computational complexity.

Kaplan-Meier survival plots and log-rank tests were used
to assess the predictive values of different prognostic ap-
proaches. The Mantel-Cox estimation of hazard ratio was



performed to quantify the relative risk of biochemical recur-
rence in the bad-prognosis group compared with the good-
prognosis group. A hazard ratio above 1.0 indicates that the
patients assigned to the bad-prognosis group have a higher
probability to develop disease recurrence than those in the
good-prognosis group. In most microarray data analyses,
the numbers of available patient samples are usually quite
small, and some performance measurements (e.g., hazard
ratios) are heavily influenced by the choice of a decision
threshold. A receiver operating characteristic (ROC) curve
obtained by varying a decision threshold provides a direct
view on how a predictive approach performs at the different
sensitivity and specificity levels. The specificity is defined as
the probability that a patient who did not experience disease
recurrence was assigned to the good-prognosis group, and
the sensitivity is the probability that a patient who developed
disease recurrence was in the bad-prognosis group. The most
frequently used criterion for comparing multiple ROC curves
is the area under a ROC curve, commonly denoted as AUC,
which can range from 0.5 (no discrimination) to 1.0 (perfect
ability to discriminate). MedCalc version 8.0 (MedCalc Soft-
ware, Mariakerke, Belgium) was used to perform the ROC
curve analysis. A p-value of 0.05 is considered statistically
significant.

III. RESULTS

We developed two computational models to predict the
biochemical recurrence of prostate cancer. The first model
is based exclusively on gene expression data obtained from
tissue samples, and the second combines the predictive in-
formation of both genetic and clinical variables. Specifically,
in the latter combination (or hybrid) model we used as
clinical variable the 7-year probability of disease recurrence
estimated by the postoperative nomogram.

ROC curve analysis was performed to compare the predic-
tion performance of the two novel prognosis models and the
nomogram (Fig. 1). The nomogram performed reasonably
well, consistent with multiple studies reported in the litera-
ture [3], but the genetic model predicted disease recurrence
more accurately than the nomogram, specifically in the high
specificity region. At the 90% sensitivity level, the genetic
signature correctly classified 69 out of 79 samples (87%),
including 34 non-recurrent and 35 recurrent tumors. To our
knowledge, this is the first reported genetic signature in
the literature that outperforms the clinically used predictive
nomogram. Furthermore, a hybrid signature derived by com-
bining the gene expression data with clinical information
outperformed both the nomogram and the genetic signature.
At the 90% sensitivity level, the hybrid signature improved
the specificities of the genetic model and nomogram by about
10% and 20%, respectively (Table I). It correctly classified
74 out of 79 samples (94%), including 38 non-recurrent and
36 recurrent tumors. Statistical analysis of the ROC curves
using MedCalc Software revealed the predictive accuracy of
the hybrid signature to be significantly superior to that of the
postoperative nomogram (p-value< 0.0001) and the gene-
expression model (p-value< 0.05). The odds ratio (OR)

of the hybrid and genetic models, reported in Table I, show
that the patients assigned to the bad-prognosis group are 18.2
(95% CI: 5.9- 56.2) and 16.5 (95% CI: 5.4 - 51.0) times more
likely to develop disease recurrence than those assigned to
the good-prognosis group, respectively, which is much higher
than that of the nomogram (8.4, 95% CI: 2.9 - 24.6).
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Fig. 1. Receiver operating characteristic (ROC) plot comparing the
prediction performance of the nomogram, genetic and hybrid(combination
of nomogram and genetic) models.

To further demonstrate the predictive value of the three
approaches in assessing the risk of biochemical recurrence
in prostate cancer patients, survival data analyses were per-
formed. The Kaplan-Meier curve of the hybrid model, plotted
in Fig. 2, shows a significant difference in the probability of
remaining free of disease recurrence in patients with good or
bad prognosis (p-value< 0.001). The Mantel-Cox estimate
of hazard ratio of biochemical recurrence of prostate cancer
within five years for the hybrid model is 29.1 (95% CI:
8.3 - 102.1), which is much larger than those of either the
nomogram (11.9, 95% CI: 3.8 - 36.9) or the genetic model
(18.0, 95% CI: 5.9 - 54.6). At the 5-year end point, all
three approaches have similar low relapse rates in patients
with good prognosis, but the patients assigned to the bad-
prognosis group by the hybrid model have a much lower
probability of remaining free of disease recurrence (0.21,
95% CI: 0.12 - 0.40) than that determined by the nomogram
(0.35, 95% CI: 0.22 - 0.50) .

We also performed an experiment to compare the predic-
tion performance of our algorithm with those obtained by
using SVM-RFE [20] andℓ1 regularized logistic regression
[21]. Both algorithms can perform classification directly.The
results, reported in Fig. 3, show that the two competing
algorithms perform worse than our algorithm. However, the
results suggest that combining the nomogram with genetic
information can indeed improve the prediction performance.

With a small sample size, in each iteration in LOOCV,
the derived computational model may generate a different
prognostic signature since the training data used is different.
In the genetic modeling approach, a 5, 6, 7 and 8-gene model
was developed in 7, 43, 24 and 5 iterations, respectively. A
total of 11 genes were identified in the genetic prognostic



TABLE I

PREDICTION RESULTS OF THE NOMOGRAM, GENETIC AND HYBRID PREDICTIVE MODELS. THE SPECIFICITY WAS COMPUTED AT THE90%

SENSITIVITY LEVEL .

Hazard Ratio (HR)
Methods AUC(95% CI) Specificity Odd Ratio (95% CI) HR (95% CI) p-value
Nomogram 0.86 (0.77 - 0.93) 73% 8.4 (2.9 - 24.6) 11.9 (3.8-36.9) < 0.001

Genetic 0.90 (0.81 - 0.96) 85% 16.5 (5.4 - 51.0) 18.0 (5.9 - 54.6) < 0.001

Hybrid 0.96 (0.90 - 0.99) 95% 18.2 (5.9 - 56.2) 29.1 (8.3 - 102.1) < 0.001
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Fig. 2. Kaplan-Meier estimation of the probabilities of remaining free of disease recurrence for patients with good or bad prognosis. The “Genetic”
signature was derived from gene expression data, the “Nomogram” is an existing clinical prediction model, and the “Hybrid” signature was the combination
of both. The p-values were computed by log-rank test.
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Fig. 3. ROC curves obtained by using SVM-RFE and norm-1 regularized
logistical regression.

signature (Table II). The observed pattern (under- or over-
expressed) in the recurrent cases for each gene, and the
frequency of occurrence of each gene over 79 algorithm
iterations, are listed in Table II. A high occurrence rate is
an indication of the importance of the corresponding gene
for predicting disease recurrence. In the hybrid modeling
approach, the nomogram output was selected in all 79
iterations, and 4, 5 and 6 genes were identified in 69, 9,
and 1 iteration(s), respectively. A total of 5 different genes
were included in the hybrid models. Notably, all of these
genes were also present in the genetic model, and three genes
(PAK3, RPL23, and EI24) occurred at a high frequency in
both the genetic and hybrid models (Table II).

IV. DISCUSSION

The application of our feature selection algorithm to the
MSKCC dataset enabled us to derive a genetic signature
that predicts disease recurrence after radical prostatectomy
with 87% overall accuracy. Furthermore, a hybrid signature

derived by combining the gene expression data with the 7-
year PFP score outperformed both the nomogram and the
genetic signature, correctly classifying 74 out of 79 samples.
Statistical analyses also clearly demonstrated the superiority
of the hybrid signature over a prognostic system that uses
only genetic or clinical markers. These data confirm the
previous finding that the nomogram and gene expression
models can provide complementary information for predict-
ing biochemical recurrence of prostate cancer [4]. Though
the nomogram performs very well when the estimated 7-
year disease prognosis-free probability is larger than 90%, it
assigns a significant number of non-recurrence patients to the
bad prognosis group. It is evident in Fig. 4 that microarray
data provides additional information to stratify these patients.
While it is clear that the hybrid signature performs very well
thus far, we should emphasize that in many cases clinical data
is not available, or is not consistent across institutions,and
thus it is important that the optimal genetic signatures are
also pursued.

Three genes that were most highly weighted in both the
genetic and hybrid signatures were RPL23, EI24, and PAK3.
RPL23 is a member of the ribosomal protein family that acts
to stabilize rRNA structure, regulate catalytic function,and
integrate translation with other cellular processes, but recent
studies have shown that many ribosomal proteins (RPs) have
extra-ribosomal cellular functions independent of protein
biosynthesis. A potential role for RPs in carcinogenesis and
tumor progression is being founded on studies that have
implicated ribosomal proteins not only as targets of tumor
suppressors or proto-oncogenes, but also as more direct
mediators of aspects of tumor progression [24]. RPL23 has
been shown by Dai et al. [25] to be part of a multi-protein
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Fig. 4. Scatter plot of the prediction results obtained by using the
nomogram and the genetic model. This demonstrates that the genetic and
clinical markers contain complementary information in assessing the risk of
a patient developing biochemical disease recurrence.

complex that regulates the activity of the oncoprotein HDM2
(human MDM2), a protein that is frequently over-expressed
in various human carcinomas, soft tissue sarcomas, and
other cancers [26]. HDM2 interacts with several growth sup-
pressors and other proteins, including the tumor suppressor
p53, the retinoblastoma susceptibility gene product Rb, and
the growth suppressor p14, so any shift in the availability
of HDM2 could lead to significant alterations of cellular
phenotype. Etoposide induced gene 24 (EI24) is a p53-
induced gene (PIG) that is located in chromosomal region
11q23-24 shown to be often mutated or deleted in solid
tumors, including prostate [27]. EI24/PIG8 is localized in
the endoplasmic reticulum (ER), and by virtue of its binding
Bcl-2, has been linked with the modulation of apoptosis [28].
EI24 is a direct target of p53 transcriptional activation and
is thought to involve in the formation of reactive oxygen
species [29]. Perturbation of either of these mechanisms by
changes in EI24 expression may contribute to prostate cancer
progression. PAK3 is a Group I member of the p21-activated
kinase (Pak) family serine/threonine protein kinases thatbind
to and modulate the activity of the small GTPases, Cdc42
and Rac. GTPase signaling controls many aspects of cellular
response to the environment, and through these interactions,
PAKs have been shown to be involved in the regulation of
cellular processes such as gene transcription, cell morphol-
ogy, motility, and apoptosis [30]. Interestingly, it has been
revealed that one PAK family member is able to inhibit
androgen receptor (AR) responsiveness, a critical function in
prostate cells, by regulating nuclear translocation of theAR
and thus preventing specific transcriptional responses [31].
There is growing evidence for a pivotal role of GTPases in
tumor progression [32], [33], and is noteworthy that another
of the 11 genes in the genetic prognostic signature is a
GTPase-activating protein, named RICS, that also acts on
Cdc42 and Rac [34]. The potential roles of these genes in
prostate cancer progression deserve further investigation.

As well as an impact on clinical decision-making, it is
hoped that microarray data will advance our understanding
of cancer biology, which in turn will inform the development

of new and effective therapies. The fact that diagnostic and
prognostic signatures reported to date have been composed of
tens or hundreds of genes means that the choosing of genes to
study functionally remains difficult and somewhat arbitrary.
A major advantage of our deriving accurate prognostic
signatures comprising just a few genes greatly facilitatesthe
task of functional investigation. The number of genes was
further reduced to 5 in our clinical/genetic hybrid signature,
and it is notable that all 5 genes were also amongst the
11 genes comprising the genetic signature. This was not
necessarily to be expected, because the analysis used to
derive the hybrid signature was not in any way informed by
the genetic signature analysis. While they used the same raw
data, the two signatures were derived entirely independently.

The derivation of disease-associated molecular signatures
is necessarily an ongoing, dynamic process, in which, with
the inclusion of more patient samples with consistent clinical
information, a prognostic signature will be continuously
refined [11]. Due to biological and technical limitations,
tissue-based microarray analysis may not be able to achieve
100% accuracy. Yet, the application of our advanced feature
selection algorithm has brought us close to optimality in
this dataset. The ROC curves of our analyses depicted in
Fig. 1 show that, in this cohort, there is now very little
room for improvement, suggesting that the application of
this approach to large-scale cohort studies may lead to the
derivation of prognostic prostate cancer signatures that are
worthy of clinical validation trials.
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