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Abstract— The derivation of molecular signatures indicative  settings. It predicts prostate cancer progression by astim
of disease status and behavior are required to facilitate ta  ing 5 and 7-year progression-free probability (PFP) after
optimal choice of treatment for prostate cancer patients. Vé radical prostatectomy based on serum PSA, Gleason grade,

conducted a computational analysis of gene expression prlai . . .
data obtained from 79 cases, 39 of which were classified as surgical margin status, and pathologic stage. Though well

having disease recurrence, to investigate whether an adveed calibrated and repeatedly validated, the nomogram pegorm
computational algorithm can derive more accurate prognost  only slightly better than mid-way between a model with

signatures for prostate cancer. At the 90% sensitivity leve  perfect discrimination and one with no discrimination. ,Yet
a newly derived genetic signature achieved 85% specificity. to date, no single biomarker, nor any prognostic molecular

This is the first reported genetic signature to outperform a dels based hiah-th hout . IVsi
clinically used postoperative nomogram. Furthermore, a hprid ~ MOGEIS based on high-throughput gene expression analysis,

signature derived by combination of the nomogram and gene has been able to significantly improve upon the predictive
expression data significantly outperformed both genetic ath  accuracy of the postoperative nomogram [4], [5].

clinical signatures, and achieved a specificity of 95%. Our  The advent of microarray gene expression technology has
study demonstrates the possibility of utilizing both gendt o eaty enabled the search for predictive disease biomarke

and clinical information for highly accurate prostate cancer th t f N lorat tudies h
prognosis beyond the current clinical systems, and shows In the past tew years. Numerous exploratory studies have

that more advanced computational modeling of microarray demOUStrated t_he pOte_ntia| value of gene ?XpreSSion signa-
and clinical data is warranted before clinical application of  tures in assessing the risk of post-surgical disease &ucer

predictive signatures is considered. beyond the current clinical systems [6], [7], [8], [9], [11]
However, most of studies focused on breast cancer progno-
I. INTRODUCTION sis [11]. Moreover, many existing predictive models were

Prostate cancer is the most common male cancer Iigrived using relatively simple computational algorithms
incidence, and the second most common cause of ma’l@d the critical issue of whether existing gene signatures
cancer death in the United States. In 2008, it is estimatéfe ready for randomized, prospective clinical validation
that approximately 186,320 new cases will be diagnosd#ials is still under debate in the oncology community
and 28,660 men will die from this disease. The mortalit}12]. The key to resolving the issue is the development
rate for prostate cancer is declining due to improvemeng advanced computational algorithms, particularly featu
in earlier detection and in local therapy strategies. Haxev Selection algorithms that are capable of identifying ratev
the ability to predict the metastatic behavior of a patent'genes from tens of thousands genes on the basis of a limited
cancer, as well as to detect and eradicate disease recmber of patient tissue samples. However, feature setecti
rence remains some of the greatest clinical challenges f@r high-dimensional data still remains one of the major
oncology. It is estimated that 25-40% of men undergoinghallenges in statistical machine learning [13]. Thiscaesly
radical prostatectomy will have disease relapse, oftanadr undermines the performance of many currently used data
a biochemical recurrence, as the first clinical indication @nalysis algorithms in terms of their speed and accurady, an
rising serum level of prostate specific antigen (PSA) [1]represents a major obstacle in translating predictive fsode
The accurate identification of patients at risk for relapsestablished in exploratory studies to clinical applicasio
would greatly facilitate the rational application of adunt \We have recently derived a new feature selection algorithm
treatment strategies. that addresses several major issues with prior work. The

Accurate prediction models based on standard clinicalgorithm performs remarkably well in the presence of a huge
variables already exist for prostate cancer recurrenag afftumber of irrelevant features. It allows one to process many
radical prostatectomy [2]. A postoperative nomogram [3] i¢housands of features within a few minutes on a personal
one of the most frequently used tools in current clinicafomputer, yet maintaining a very high accuracy that is yearl

insensitive to a growing number of irrelevant features [14]
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of a newly identified genetic signature with those previgusicomplexity becomes a serious issue, and even a heuristic
derived. Receiver operator characteristic (ROC) curves arsearch becomes computationally not feasible. For thioreas
survival data analyses demonstrate the superior perfarenarmany gene identification algorithms resort to filter methods
of the new signature over previous work, and suggest th#iat evaluate genes individually based on some information
the application of this approach to large-scale cohortistud theoretic measures such as Fisher score and p-value df t-tes
may lead to the derivation of prognostic prostate cancésee, for example, [6], [7]). Although filter methods work
signatures that are worthy of clinical validation trialseW well for exploratory purposes, the obtained gene signature
further derived a hybrid prognostic signature by integngti are far from optimal for clinical applications.
gene expression data and clinical variables that significan We recently derived a new feature selection algorithm that
outperformed both the gene signature and nomogram. Oaddresses several major issues with prior work, including
results demonstrate that advanced computational modelipgoblems with computational complexity, solution accyrac
can significantly improve the accuracy of prognostic signeand capability to handle problems with extremely large
tures for prostate cancer, advocating the notion that modata dimensionality [14]. The key idea of the algorithm
computational analysis of microarray and clinical data iss to decompose an complex model into a set of locally
warranted before clinical trials of predictive signatuege linear ones through local learning, and then estimate featu
considered. relevance globally within a large margin framework with
£1 regularization. We below present a brief review of the
Il. MATERIALS AND METHODS algorithm. We start by defining the margin. Suppose we have
A. Dataset a training dataset consisting 8f samples, each represented

We analyzed the gene expression and clinical dataset ude./ features. Given a distance function, we find two nearest
in the study published by [4]. The data set was built fronneighbors of each sampie,, one from the same class (called
tissue samples obtained from 79 patients with clinicallpearest hit or NH), and the other from the different class
localized prostate cancer treated by radical prostatectorfcalled nearest miss or NM) [17]. The margin ofx,, is
at MSKCC between 1993 and 1999. Thirty-nine cases hdfien defined ap, = d(x,,NM(x;,)) — d(x,, NH(x,)),
disease recurrence as classified by 3 consecutive incrisasewhered(-) is the distance function. For the purpose of this
the serum level of PSA after radical prostatectomy, and/fortoaper, we use the block distance to define a sample’s margin
samples were classified as non-recurrent samples by virted nearest neighbors, while other standard definitions may
of maintaining an undetectable PSA .05 ng/mL) for at also be used. An intuitive interpretation of this margin is
least 5 years after radical prostatectomy. No patientvedei @ measure as to how much, can “move” in the feature
any neo-adjuvant or adjuvant therapy before document&@ace before being misclassified. By the large margin theory
disease recurrence. The complete clinical charactesistic [18], a classifier that minimizes a margin-based error fionct
the 79 primary tumors are listed in [4]. Samples were snapsually generalizes well on unseen test data. One natwal id
frozen, examined histologically and enriched for neojastthen is to scale each feature, and thus obtain a weighted
epithelium by macrodissection. Gene expression analyass wfeature space, parameterized by a nonnegative veetor
carried out using the Affymetrix U133A human gene array0 that a margin-based criterion function in tiveluced
which has 22,283 features for individual gene/EST clusterfeature space is maximized. The margin>of, computed
as per manufacturers instructions. Image processing waéh respect tow, is given by:
perf(_)rmed using Affymetrix Mlcroarray Suite 5.0 to produce (W) = (X, NM(x)[W) — d(xn, NH(x)[W) . (1)
cel files which were used directly in our analyses.

] ] By definingz,, = |x,, — NM(x,)| — |x, — NH(x,,)|, where
B. Feature Selection Algorithm | - | is an element-wise absolute operatpy,(w) can be

High-throughput microarray technologies now routinelysimplified asp,(w) = w’z,, which is a linear function
produce data sets with an unprecedented number of geradsw. By construction, the magnitude of each element of
characterizing each patient sample, which greatly fatdg w reflects the relevance of the corresponding feature in a
the search for predictive disease biomarkers through mukarning process. Note that the margin thus defined requires
tivariate data analyses. However, it also poses a serioasly information about the neighborhood &f,, while no
challenge to existing learning algorithms. With a limitedassumption is made about the underlying data distribution.
number of patient samples, a learning algorithm can easilyhis implies that by local learning we can transform an
overfit training data, resulting in an over-optimistic oreav arbitrary nonlinear problem into a set of locally linear sne
zero training error, but with a poor generalization perfor- The main problem with the above margin definition,
mance on unseen test data. A commonly used practice isowever, is that the nearest neighbors of a given sample
perform feature selection to identify a small fraction ohge are unknown before learning. To account for the uncertainty
that drive cancerous tumor growth and/or spread [15], [16]n defining local information, we develop a probabilistic
Many existing feature selection algorithms rely on a heiaris model where the nearest neighbors of each sample are treated
combinatorial search (e.g., forward and backward selekgtio as latent variables. We define a probability that sample
which has no guarantee of any optimality. In the presence; is the nearest hit or miss at,, P(x;=NH(x,)|w)
of tens of thousands of irrelevant genes, computationat P(x;=NM(x,)|w), depending on the class to which



x; belongs. Following the principles of the expectation- Compared with existing methods, our algorithm has sev-
maximization algorithm, we estimate the margin througleral nice properties. First, it avoids any heuristic corabin
taking the expectation af,,(w) by averaging out the latent torial search, and allows one to process many thousands of

variables: features within a few minute on a personal computer. Second,
the algorithm has two levels of regularization, i.e., the
~ 7 N _ . the al A rization, ,
pu(W) = w (ZieMn, P(xi=NM (x)|W)[3n — xi implicit leave-one-out and explicit; regularization, thereby
Y ien, Pxi=NH(x,)|w)[x, —xi|) ensuring a good generalization capability of the classifier
= wlz, constructed using selected features on unseen test samples

(2) Third, unlike many existing methods, ours has a strong

where M, contains all samples that have a differentheoretical foundation. Our theoretical analysis suggest

label from x,, and H, contains all samples that havethat the algorithm have a logarithmical sample complexity
the same label ax,, excluding x,. The probabilites With respect to the input data dimensionality. That is, the
P(x;=NH(x,)|w) and P(x;=NM(x,)|w) are estimated number of samples needed for maintaining the same level

through the standard kernel density estimation method: Of learning accuracy grows onliogarithmically with the
k(| ) data dimensionality. This property makes the algorithnyver
Xn — Xi||lw

VieM,, suitable for microarray data analysis. We have conducted a

Zje/\/ln k(ll%n = xjllw) large-scale experiment on a wide variety of synthetic and
k(|50 — %3 lw) ®) real_—world data sets Fhat demo_nstrqted that the algorigam c

,VieH,, achieve close-to-optimal solutions in the presence of many

ZjeHn k(llxn = x;lw) @) thousands of irrelevant features. Due to space limitation,

wherek(-) is a kemel function. Specifically, we use eXpo_many technical details are omitted. Interested reader may

nential kernel(d)— exp(—d/§) where kernel width deter- refer to [14] for detailed discussion of the algorithm.
mines the resolution at which the data is locally analyzed.c. Experimental Procedure

Once the margins are defined, the problem of learning
feature weights can be directly solved within the large rimarg o

framework. For computational convenience, we perform thl%ave—one-out cross validation (LOOCV) method to estimate

estimation within the logistic regression formulation [1® e .
e classifier parameters and prediction performance. Therexpe
molecular classification, we expect that most of genes are

. imental protocol consists of inner and outer loops. In the
irrelevant. To encourage the sparseness, one commonly use ; : .

. o . inner loop, LOOCYV is performed to estimate the optimal
strategy is to add; penalty ofw to an objective function,

. . R ) classifier parameters based on the training data provided by
which leads to the following optimization problem: . .
the outer loop, and in the outer loop, a held-out sample is

P(x;=NM(x,,)|w) =

P(x;=NH(x,)|w) =

To avoid possible overfitting of a computational model
training data, we used an experimental protocol with the

X . classified using the best parameters from the inner loop. The
H‘gnzlog(l + exp(—w Zn)) + Allwll1, (5) experiment is repeated until each sample has been tested.
n=1 The held-out testing sample is not involved in any stage of

subject tow; > 0,1 < j < J, where X is a parameter the training process. The classification parameters thed ne
that controls the sparseness of the solution. The nonwegatio be specified in the inner loop include the kernel width and
constraint onw can be absorbed into the objective functiorregularization parameter of the feature selection algorjtas

by settingw; = 1)72 which yields an unconstrained optimiza-well as the structural parameters of a classifier, whichdead
tion problem, whose solution can be readily found througtp a multi-dimensional parameter search. To make the exper-

gradient descent with a simple update rule: iment computationally feasible, we adopted some heuristic
o simplifications. Linear discriminant analysis (LDA) wasds
Y exp(= 22, 05°Za(4)) i ificati i
v v —n | A— Z g cn Z0(j) | v;, 1O estimate classification performances and tune the input
! ’ il S exp(— Zj 022, (7)) parameters. One major advantage of LDA, compared to other

(6) classifiers (e.g., SVM and neural networks), is that LDA has
where n; is the learning rate determined by the standardo structural parameters. We predefined the kernel width
line search. It can be shown that, for fixed, the solution as 5, and estimated the regularization parameter through
obtained when the gradient vanishes is a global minimizecOOCYV in the inner loop. In our simulation study, we found
given a nonzero initial poirrtz§0). that the choice of the kernel width is not critical, and the

Sincez,, implicitly depends orw through the probabilities algorithm yields nearly identical prediction performarioe
P(x;=NH(x,)|w) and P(x,=NM(x,)|w), we use a fixed- a large range of values for this parameter. We comment that
point recursion method that alternatively refines the emtis®m a comprehensive parameter searching may lead to a more
of the probabilities and feature weights until convergenceccurate prediction performance but with a much higher
By using the Banach fixed point theorem, it can be provedomputational complexity.
that our algorithm converges to unique solution for any Kaplan-Meier survival plots and log-rank tests were used
nonnegative initial feature weights, under a loose cooniti to assess the predictive values of different prognostic ap-
that a kernel width is sufficiently large [14]. proaches. The Mantel-Cox estimation of hazard ratio was



performed to quantify the relative risk of biochemical recu of the hybrid and genetic models, reported in Table I, show
rence in the bad-prognosis group compared with the goothat the patients assigned to the bad-prognosis group a2e 18
prognosis group. A hazard ratio above 1.0 indicates that tt{85% CI: 5.9- 56.2) and 16.5 (95% CI: 5.4 - 51.0) times more
patients assigned to the bad-prognosis group have a higlikely to develop disease recurrence than those assigned to
probability to develop disease recurrence than those in tliee good-prognosis group, respectively, which is muchéiigh
good-prognosis group. In most microarray data analysethan that of the nomogram (8.4, 95% CI: 2.9 - 24.6).

the numbers of available patient samples are usually quite

small, and some performance measurements (e.g., hazard ROC

ratios) are heavily influenced by the choice of a decision ' e
threshold. A receiver operating characteristic (ROC) eurv oor | et A
obtained by varying a decision threshold provides a direct 08 .:' 2 ]
view on how a predictive approach performs at the different 07f ' : ]

sensitivity and specificity levels. The specificity is defires
the probability that a patient who did not experience diseas
recurrence was assigned to the good-prognosis group, and

Sensitivity
o
0
s
i

the sensitivity is the probability that a patient who deypeld 03 F..’ i
disease recurrence was in the bad-prognosis group. The most ook |
frequently used criterion for comparing multiple ROC cwgve =e= Nomogram

is the area under a ROC curve, commonly denoted as AUC, T e Genetic
which can range from 0.5 (no discrimination) to 1.0 (perfect % 0z 04 06 08 1

ability to discriminate). MedCalc version 8.0 (MedCalc Sof 1 Speciiely

ware, Mariakerke, Belgium) was used to perform the ROGig 1.  Receiver operating characteristic (ROC) plot corimga the

curve analysis. A p-value of 0.05 is considered statidical prediction performance of the nomogram, genetic and hymathbination
significant. of nomogram and genetic) models.

lIl. RESULTS To further demonstrate the predictive value of the three

We developed two computational models to predict thepproaches in assessing the risk of biochemical recurrence
biochemical recurrence of prostate cancer. The first modil prostate cancer patients, survival data analyses were pe
is based exclusively on gene expression data obtained frdatmed. The Kaplan-Meier curve of the hybrid model, plotted
tissue samples, and the second combines the predictive iR-Fig. 2, shows a significant difference in the probabilify o
formation of both genetic and clinical variables. Specifjca remaining free of disease recurrence in patients with geod o
in the latter combination (or hybrid) model we used a®ad prognosis (p-value 0.001). The Mantel-Cox estimate
clinical variable the 7-year probability of disease reenge 0of hazard ratio of biochemical recurrence of prostate cance
estimated by the postoperative nomogram. within five years for the hybrid model is 29.1 (95% CI:

ROC curve analysis was performed to compare the predi8-3 - 102.1), which is much larger than those of either the
tion performance of the two novel prognosis models and tHgomogram (11.9, 95% ClI: 3.8 - 36.9) or the genetic model
nomogram (Fig. 1). The nomogram performed reasonab(}8.0, 95% CI: 5.9 - 54.6). At the 5-year end point, all
well, consistent with multiple studies reported in thertite three approaches have similar low relapse rates in patients
ture [3], but the genetic model predicted disease recueren@ith good prognosis, but the patients assigned to the bad-
more accurately than the nomogram, specifically in the higbrognosis group by the hybrid model have a much lower
specificity region. At the 90% sensitivity level, the geneti probability of remaining free of disease recurrence (0.21,
signature correctly classified 69 out of 79 samples (87%%$5% Cl: 0.12 - 0.40) than that determined by the nomogram
including 34 non-recurrent and 35 recurrent tumors. To ouP-35, 95% CI: 0.22 - 0.50) .
knowledge, this is the first reported genetic signature in We also performed an experiment to compare the predic-
the literature that outperforms the clinically used prédic tion performance of our algorithm with those obtained by
nomogram. Furthermore, a hybrid signature derived by conusing SVM-RFE [20] and/; regularized logistic regression
bining the gene expression data with clinical informatiof21]. Both algorithms can perform classification direciie
outperformed both the nomogram and the genetic signaturesults, reported in Fig. 3, show that the two competing
At the 90% sensitivity level, the hybrid signature improvedalgorithms perform worse than our algorithm. However, the
the specificities of the genetic model and nomogram by abotgsults suggest that combining the nomogram with genetic
10% and 20%, respectively (Table 1). It correctly classifiednformation can indeed improve the prediction performance
74 out of 79 samples (94%), including 38 non-recurrent and With a small sample size, in each iteration in LOOCYV,
36 recurrent tumors. Statistical analysis of the ROC curvake derived computational model may generate a different
using MedCalc Software revealed the predictive accuracy pfognostic signature since the training data used is differ
the hybrid signature to be significantly superior to thathaf t In the genetic modeling approach, a 5, 6, 7 and 8-gene model
postoperative nomogram (p-value 0.0001) and the gene- was developed in 7, 43, 24 and 5 iterations, respectively. A
expression model (p-value 0.05). The odds ratio (OR) total of 11 genes were identified in the genetic prognostic



TABLE |
PREDICTION RESULTS OF THE NOMOGRAMGENETIC AND HYBRID PREDICTIVE MODELS THE SPECIFICITY WAS COMPUTED AT THE90%
SENSITIVITY LEVEL.

Hazard Ratio (HR)

Methods AUC(95% ClI) Specificity Odd Ratio (95% ClI) HR (95% CI) p-value

Nomogram _ 0.86 (0.77 - 0.93) 73% 8.4 (2.0 - 24.6) 11.0 (3.886. < 0.001

Genetic 0.90 (0.81 - 0.96) 85% 16.5 (5.4 - 51.0) 18.0 (5.9 6)54. < 0.001

Hybrid 0.96 (0.90 - 0.99) 95% 18.2 (5.9 - 56.2)  29.1 (8.3 - 1p2. < 0.001

Kaplan-Meier Plot (Hybrid — Genetic + Clinical) Kaplan-Meier Plot (Genetic) Kaplan-Meier Plot (Nomogram)
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Fig. 2. Kaplan-Meier estimation of the probabilities of @@ning free of disease recurrence for patients with goodaat prognosis. The “Genetic”
signature was derived from gene expression data, the “Nmn@gs an existing clinical prediction model, and the “Higlirsignature was the combination
of both. The p-values were computed by log-rank test.

ROC (SVM-RFE) ROC (norm-1 logistic regression)
T T T

L : : —— derived by combining the gene expression data with the 7-

1 year PFP score outperformed both the nomogram and the
genetic signature, correctly classifying 74 out of 79 samspl

| Statistical analyses also clearly demonstrated the sanitgri

1 of the hybrid signature over a prognostic system that uses

)
>
i

Sensitivity
o
o
i
Sensitivity

odr it i i only genetic or clinical markers. These data confirm the

| I | previous finding that the nomogram and gene expression

ol e ot e models can provide complementary information for predict-
= = =Genetic Ll = = = Genetic H H H

T s e N PR ing biochemical recurrence of prostate cancer [4_]. Though

1-Spectiely 1-Spectiely the nomogram performs very well when the estimated 7-

Fig. 3. ROC curves obtained by using SVM-RFE and norm-1 eeiged ~ Y&@r diseas:e pr_ognosis—free probability is larger thgn ,90%
logistical regression. assigns a significant number of non-recurrence patientseto t

bad prognosis group. It is evident in Fig. 4 that microarray

data provides additional information to stratify thesdegras.
signature (Table Il). The observed pattern (under- or ovewhile it is clear that the hybrid signature performs very lwel
expressed) in the recurrent cases for each gene, and th@s far, we should emphasize that in many cases clinical dat
frequency of occurrence of each gene over 79 algorithig not available, or is not consistent across instituticarsj
iterations, are listed in Table Il. A high occurrence rate ishus it is important that the optimal genetic signatures are
an indication of the importance of the corresponding genglso pursued.
for predicting disease recurrence. In the hybrid modeling
approach, the nomogram output was selected in all 79 Three genes that were most highly weighted in both the
iterations, and 4, 5 and 6 genes were identified in 69, @enetic and hybrid signatures were RPL23, EI24, and PAK3.
and 1 iteration(s), respectively. A total of 5 different ggen RPL23 is a member of the ribosomal protein family that acts
were included in the hybrid models. Notably, all of thesdo0 stabilize rRNA structure, regulate catalytic functiamd
genes were also present in the genetic model, and three getigegrate translation with other cellular processes, boént
(PAK3, RPL23, and EI24) occurred at a high frequency istudies have shown that many ribosomal proteins (RPs) have

both the genetic and hybrid models (Table I1). extra-ribosomal cellular functions independent of protei
biosynthesis. A potential role for RPs in carcinogenesi$ an
IV. DISCUSSION tumor progression is being founded on studies that have

The application of our feature selection algorithm to thémplicated ribosomal proteins not only as targets of tumor
MSKCC dataset enabled us to derive a genetic signatuseppressors or proto-oncogenes, but also as more direct
that predicts disease recurrence after radical prostatgct mediators of aspects of tumor progression [24]. RPL23 has
with 87% overall accuracy. Furthermore, a hybrid signaturbeen shown by Dai et al. [25] to be part of a multi-protein



o %og?o@” ‘ of new and effective therapies. The fact that diagnostic and
g0 ® 6 * * Yoo prognostic signatures reported to date have been compbsed o
g o® A tens or hundreds of genes means that the choosing of genes to
0.7 * * * i i i A

O ¥ x study functionally remains difficult and somewhat arbigrar
501 o] *yp Xk ¥ 1 A major advantage of our deriving accurate prognostic
gosy- ® ** * % 1 signatures comprising just a few genes greatly facilittes
Zoat O e * 1 task of functional investigation. The number of genes was
03 o *; *;* 1 further reduced to 5 in our clinical/genetic hybrid sigrratu
02r O Tx ** 1 and it is notable that all 5 genes were also amongst the
01r ok * 1 11 genes comprising the genetic signature. This was not
95 v sl st ¥ necessarily to be expected, because the analysis used to
Decision based on Microarray derive the hybrid signature was not in any way informed by

Fig. 4.  Scatter plot of the prediction results obtained byngisthe ghaia?iﬂztltsvzli?atu:e analySIS.dWhlledthe)t/_ usle(.j t:e same raw
nomogram and the genetic model. This demonstrates thatethetig and ) gnatures were derived entirely indepemdent
clinical markers contain complementary information inessing the risk of ~ The derivation of disease-associated molecular signature
a patient developing biochemical disease recurrence. is necessarily an ongoing, dynamic process, in which, with
the inclusion of more patient samples with consistent cdihi
information, a prognostic signature will be continuously
complex that regulates the activity of the oncoprotein HDMZefined [11]. Due to biological and technical limitations,
(human MDM2), a protein that is frequently over-expressegissye-based microarray analysis may not be able to achieve
in various human carcinomas, soft tissue sarcomas, an@oo, accuracy. Yet, the application of our advanced feature
other cancers [26]. HDM2 interacts with several growth supselection algorithm has brought us close to optimality in
pressors and other proteins, including the tumor suppressfijs dataset. The ROC curves of our analyses depicted in
p53, the retinoblastoma susceptibility gene product RU, arkjg. 1 show that, in this cohort, there is now very little
the growth suppressor p14, so any shift in the availabilitysom for improvement, suggesting that the application of
of HDM2 could lead to significant alterations of cellularipis approach to large-scale cohort studies may lead to the

phenotype. Etoposide induced gene 24 (EI24) is a pS3erivation of prognostic prostate cancer signatures that a
induced gene (PIG) that is located in chromosoma_l regiqorthy of clinical validation trials.
11g23-24 shown to be often mutated or deleted in solid
tumors, including prostate [27]. EI24/PIG8 is localized in
the endoplasmic reticulum (ER), and by virtue of its binding REFERENCES
Bcl-2, has been linked with the modulation of apoptosis [28] _ _
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