
A computational approach to microarray universal reference sample

Georgia Tsiliki, Sofia Kaforou, Manouela Kapsetaki, George Potamias and Dimitris Kafetzopoulos

Abstract— The choice of a reference material in two-colour
microarray experiments is an important issue of the experi-
mental design. We consider a number of cell lines derived from
a variety of primary tissues in order to construct a reference
material. The aim of the present study is to understand the cor-
relation structure of the data and develop a common reference
that would enable comparison of expression levels in multiple
microarray hybridizations with high coverage. We analyze 22
cultured cell line samples using a common reference pool. After
estimating the coverage for each cell line or combinations of cell
lines based on methods suggested by the literature, we employ
stochastic optimization techniques to estimate the optimal set
of cell lines in the reference sample. We found that only a
subset of cell lines is necessary to achieve coverage as high
or higher than that of the original reference sample used. We
tested experimentally the performance of the new reference
sample suggested and found that its coverage outperforms the
coverage achieved by Stratagene’s human reference sample for
the particular platform.

I. INTRODUCTION

Comparisons of expression levels across different two-
colour microarray experiments and identification of informa-
tive patterns of their gene expression are facilitated when a
common reference is co-hybridized to every microarray [14].
Then, the power of microarray analysis can be increased
depending on the coverage of genes spotted on the array,
where coverage or microarray coverage is defined as the
percentage of spots with hybridization signal above a user
defined threshold [5]. To provide optimal coverage of genes
spotted on the array, common reference samples are often
generated from RNA derived from various cell lines.

Initially, one sample originating from one cell line, or
time point zero, was used as a common reference [10]. A
disadvantage of this approach is that the control sample does
not provide signal in all spots. To overcome this drawback,
a pool reference sample originating from diverse cell lines
was suggested, which would exhibit a more complete gene
representation ([6],[14]). Although, cell culturing can be time
and space consuming, this approach is the most popular.
However, coverage strongly depends on the structure of the
sample. A commercially available pool reference sample
commonly used in two-color microarray experiments is the
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Universal Human RNA Reference (UHRR) from Stratagene
company (http://www.stratagene.com). Another possible ref-
erence sample would consists of parts of RNA from all
experimental samples [12]. This pool reference is experi-
ment specific and requires large amount of reference pool
which might not be feasible in case of limited experimental
samples.

According to Sterrenburg et al.(2002) a common reference
for DNA microarrays would consist of a mix of the prod-
ucts that were spotted on the array [10]. Their Polymerase
Chain Reaction (PCR) reference was generated by pooling a
fraction of all amplified probes prior to printing. A very low
number of spots could not be analyzed because reference, as
opposed to target, did not give a significant signal. Dye-swap
experiment were conducted to test reference reproducibility
which yielded a reproducible hybridization signal in 99.5%
of the microarray platform content.

Yang et al.(2002) suggested the use of a limited number of
cell lines, each expressing a large number of diverse genes.
Particularly, they constructed two reference pools from those
cell lines with the greatest representation of unique genes,
which are also easy to grow and yield high quantities of
RNA. In their first reference pool they mixed equal amounts
of colon cell lines CaCO2, KM12L4A and the ovarian cell
line OVCAR3, whereas in their second pool OVCAR3 was
replaced with the brain cell line U118MG. They found that
adding more cell lines to the pool would not necessarily
improve the overall gene representation because some genes
were diluted below the detection limit. The first reference
sample exhibited similar coverage with Statagene’s UHRR
sample (75%), and the second reference sample had coverage
equal to 80%. The observed difference in the coverage
percentages may be due to the fact that brain exhibits the
greatest diversity of transcripts or that the subset of genes
expressed in brain is more disjoint with the genes observed
in colon than in ovary. Thus, according to Yang et al.(2002),
a simple pool of RNA from diverse cell lines can provide a
superior reference.

Human, mouse and rat reference RNA samples were con-
sidered by Novoradovskaya et al.(2004), which they referred
to as Universal Reference RNA (URR) and were prepared
from pools of RNA derived from individual cell lines rep-
resenting different tissues. Specifically, each of the three
URR consisted of ten human, eleven mouse and fourteen rat
cell lines, respectively. They evaluated microarray coverage
based on a pre-specified threshold equal to the background
intensity or twice the background intensity of each channel,
using different microarray platforms. Probes with intensities
above threshold were characterized as present. They reported



microarray coverage greater than 80% for all arrays tested
when threshold was equal to background, and greater than
60% when threshold was equal to twice the background.
Consequently, they agreed with Yang et al.(2002) that pools
of RNA derived from a limited but diverse set of cell lines
resulted in an optimal reference sample.

In summary, some important prerequisites for common
reference samples are: significant signal for each spot, large
quantities sufficient to satisfy longterm requirements of many
researchers and reproducibility in a way that different batches
would be indistinguishable from one another.

A common reference sample accomplishing the above cri-
teria would provide an internal standard against which gene
expressions of each experimental sample can be compared
[6]. In this paper we study the structure of the data and
examine whether small number of samples with a differen-
tial representation of expressed genes can outperform more
complex mixtures. A computational approach to estimate the
optimal cell line set is described.

II. MATERIAL AND METHODS

A. Cell line hybridizations

A Qiagen human library of 70mer probes
(www1.qiagen.com) was used, which consists of 34,772
probes representing 24,650 genes and 37,123 gene
transcripts. The oligos were printed in duplicates onto
aminosilane glass slides activated with PDITC. The number
of cells per millilitre (ml) was determined before freezing,
and aliquots of five million cells were completely lysed
by passing the lysate five times through a 20-gauge needle
(0.9 millimetre (mm) diameter) fitted to a sterile syringe.
Total RNA was purified on Rneasy columns according
to manufacture’s instructions. Cy5 labelled mRNA from
each cell line was co-hybridized with equal amount of Cy3
labelled reference mRNA mix, where the latter consists of
equimolar quantities of RNA from a variety of cell lines.

We tested 22 assays specific to 22 human carcinoma cell
lines, where their abbreviations and origin are shown in
Table I. The third column of the table includes abbreviations
specific to the medium used for cell line culturing, which was
supplemented with 50µg/ml gentamycin in all cases. Those
22 cell lines were also included in the reference sample
considered here. Three mixes with different combinations
of external RNA controls were spiked into RNA samples.
Labelling efficiency and quantity of labelled RNA was de-
termined with the spectrophotometer Nanodrop 3.0.1. Arrays
were then scanned using a GSI Lumonics ScanArray5000.

Fluorescent intensities of Cy5, Cy3 channels on each slide
were subjected to spot filtering and normalization. Particu-
larly, we employed print-tip lowess normalization method to
remove intensity dependent dye-specific and spatial effects
[9]. While lowess normalization greatly reduces dye-specific
artifacts that often appear for low or high (saturated) intensity
data points, the data exhibit additional structure that can be
used to evaluate patterns of gene expression.

TABLE I
CELL LINE LIST

Cell lines Derivation Culturing Conditions
1. HL60 Bone marrow RPMI 1640, 10% FBS
2. Hs578T Mammary Gland DMEM, 15% FBS
3. McF7 Mammary Gland DMEM, 10% FBS
4. OVCAR3 Ovary RPMI 1640, 10% FBS
5. Panc1 Pancreas RPMI 1640, 10% FBS
6. SKMEL3 Skin McCoy’s 5A, 10% FBS
7. SKMM2 Bone Marrow RPMI 1640, 10% FBS
8. T47D Mammary Gland RPMI 1640, 10% FBS
9. TERA1 Testis McCoy’s 5A, 10% FBS
10. U87MG Brain DMEM, 10% FBS
11. Raji B-lymphoblasts RPMI 1640, 10% FBS
12. JAR Genital DMEM, 10% FBS
13. Saos2 Bone DMEM, 10% FBS
14. SW872 Liposarcoma Leibovitch L-15, 10% FBS
15. THP1 Peripheral Blood RPMI 1640, 10% FBS
16. HCT116 Colon McCoy’s 5A, 10% FBS
17. HUVEC Umbelical Vein EBM-2, 10% FBS
18. HepG2 Liver DMEM, 10% FBS
19. HeLa Cervix DMEM, 10% FBS
20. LNCap Prostate RPMI 1640, 15% FBS
21. Molt4 T-lymphoblasts RPMI 1640, 10% FBS
22. WERI1 Retina RPMI 1640, 10% FBS

B. Structure in the data set

Only for this section and in order to estimate the sig-
nificant genes and study the correlation structure between
cell lines, we consider the M values for the probes, where
M = log2(Cy5)− log2(Cy3). We first impute missing values
in a similar fashion as the weighted K-nearest neighbors
(KNN) algorithm suggested by Troyanskaya et al.(2001), but
instead of the Euclidean distance between the 10 nearest
neighbours of the missing value, we compute Pearson’s
correlation coefficient between the sample with the missing
value and its nearest 10 neighbours. For the rest of the
analysis we consider the data with the imputed values.

We employ a bootstrapping method to select the genes
which have M values significantly different from zero across
all 22 cell lines. The bootstrap method assigns measures
of accuracy to sample estimates [3], which allow us to
have a value of variability for the data, without destroying
the observed structure. Particularly, we generated 1,000
bootstrap samples each one of which consists of N = 22 cell
lines sampled with replacement from the original population,
and n = 34,771 probes (one probe which had only one
non-missing value was excluded). For each gene we use
one-sample Student t-test to test the null hypothesis of
E(M) = 0 and keep only those genes with mean M value
significantly different from zero at a 1% significance level.
The distribution of the M values is well approximated by
the standard normal distribution, hence the assumption of
normality for the parametric t-test is not violated. We select
124 probes that appear to be significant in at least 50%
of the bootstrap samples considered, after controlling False
Discovery Rate (FDR) with Benjamini and Yekutieli (BY)
correction [1].

As a first attempt to understand variation in the sample,
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Fig. 1. Pearson’s pairwise correlation coefficients between the 22 cell
lines. All probes (left) or only significant probes (right) are considered. Each
of the 231 coloured squares in the plots correspond to a pairwise coefficient.

we test for association between the 22 cell lines considered.
Fig. 1 shows Pearson’s pairwise correlation coefficients be-
tween cell lines. The left hand-side plot shows correlation
structure between cell lines for all 34,771 probes, whereas
the right hand-side plot for only the 124 probes found
significant. In the first plot the pairwise coefficients exhibit
small values which vary in [0,0.5], while in the second plot
more evident correlation patterns appear. Particularly, there
are some positive correlation coefficients at the bottom of
the plot which correspond to the pairwise coefficients of the
first six or even seven cell lines of Table I. Also, row 18,
which corresponds to liver HepG2 cell line, appears to be
uncorrelated with the remaining cell lines.

We apply hierarchical clustering algorithm to expression
ratios using Euclidean distance metric and Ward clustering
algorithm [13]. A clustered image map which relates genes
and cell lines is shown in the first graph of Fig.2. The graph
is accompanied by two dendograms specific to genes and
cell lines. We can observe some pattern between groups
of cell lines for the set of significant probes which reflects
the connection of those probes with the specific cell lines.
Particularly, cell lines appear to group into approximately
three clusters.

In the second plot of Fig.2 we test the robustness of
the hierarchical relationship between cell lines, as this
was suggested by the first plot of Fig.2. For this reason,
we apply the multiclass bootstrap resampling technique
suggested by [8] and check how strongly the estimated
clusters are supported by the data. In brief, their algorithm
generates 10,000 bootstrap samples, performs hierarchical
cluster analysis for each sample and reports empirical
p-values (%) for each of the initially estimated clusters
which suggest how likely we are to observe those clusters.
Red values correspond to approximate unbiased (AU)
p-values, and green values to ordinary bootstrap p-values
(BP). Bias corrected p-values are calculated from the slope
of the regression curve applied to bootstrap probabilities.
Clusters with AU ≥ 0.95 are strongly supported by the
data and are highlighted by rectangles in Fig.2. We can
observe two significant clusters according to bootstrapping

TABLE II
CATEGORIZATION OF PROBES

Category Number of probes (%)
common 11,540 (33.19)
unique 2,679 (7.76)
shared 11,721 (33.71)
non-expressed 8,813 (25.34)

analysis, which include all cell lines except for HepG2 and
WERI1. Particularly, A1 = {OVCAR3, Saos2, T HP1} cluster
was observed in all bootstrap samples (AU p−value = 1) and
A2 = {HL60, Hs578T, McF7, Panc1, SKMEL3, SKMM2, T 47D,

T ERA1, U87MG, Ra ji, JAR, SW872, HCT 116, HUV EC, HeLa,

LNCap, Molt4} was observed in 97 out of 100 bootstrap
samples. A2 cluster contains all three mammarian gland cell
lines.

Thus, most of the cell lines are grouped together in A2
cluster indicating their similarity in terms of ratio intensities,
which might also indicate their ability to produce signal in
the same group of probes spotted on the array. For this reason
we examine reducing the number of cell lines involved in the
pool reference sample and compare their coverage with that
of the reference sample used. In part of our analysis we use
information from cell line clustering.

III. REFERENCE POOL SELECTION

A. Setting an absolute intensity cutoff value

For the following analysis we focus on Cy5 intensities of
the probes in order to estimate the array coverage of the
reference sample which involves only one of the channels.
We can categorize probes based on a pre-specified threshold
C0 for the Cy5 intensities, after adjusting their distribution
across arrays ([14], [5]). If we choose this threshold to
be equal to the mean Cy5 intensity across cell lines and
in particular C0 = 350, then probes can be categorized as
shown in Table II. With the term common we refer to those
probes with Cy5 ≥ C0 in all cell lines, the term unique
refers to probes with Cy5 ≥ C0 in just one cell line, the
term shared refers to probes with Cy5 ≥ C0 for more than
one, but not all, cell lines, and the rest of the probes
are denoted as non-expressed. The percentage of missing
values per cell line varies from 0.5% to 3.7%, however, here
we categorize absolute intensities after we imputed missing
values as explained in section II. The large percentage of
non-expressed probes can be partly explained from the strict
C0 used, for example Novoradovskaya et al.(2002) used a less
strict threshold. Also the percentage of commonly expressed
genes is very similar to that of shared genes, which means
that we observe signal in most of the cases. We exclude
common probes from the analysis presented in section III-
B, because, since we are only interested in whether a probe
exceeds C0 and not by what extent, thus they would not
affect our analysis. However, all probes are considered in
section III-C.
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Fig. 2. The first plot presents a coloured representation of the data table
(heatmap), with the rows (probes) and columns (cell lines) in cluster order.
The colour in each cell of this table reflects the mean-adjusted expression
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high values. In the second plot the dendrogram represents the hierarchical
relationships between clusters and how those clusters are supported by the
data. Red and green numbers in the edges correspond to AU and BP p-
values, respectively.

B. Cell lines coverage using a cutoff value

We define the coverage of cell line k which we denote by
Ωk, k ∈ S = {1,2, ...,22}, as

Ωk = ∑
n
i=1 Iik

n
(1)

where Iik is a binary variable, with Iik = 1, if probe i intensity
of the kth cell line exceeds C0, and 0 otherwise. We found
coverages to vary in the closed interval [50.84,53.67], where
the minimum coverage corresponds to Molt4 cell line and
WERI1 achieves the maximum coverage.

The estimated coverage is not adequately high given that
in a microarray experiment the researcher expects to receive
a detectable signal for most probes of the array. For that
reason we test whether a subgroup of the available cell lines
would exhibit better coverage percentage with respect to their
between arrays adjusted intensities. In this case all possible
combinations of the 22 cell lines are considered. As an
example, if k = 2 we consider all 231 pairwise combinations
of the 22 cell lines. Let us denote by sk

m = {sk
m(1), ...,s

k
m(k)} a

vector which consists of indexes for the k cell lines sampled
without replacement from S and m ∈ [1, ..., k(k−1)

2 ]. Here, the
estimate coverage Ω

′

sk
m

is given by

Ω
′

sk
m

=
∑

sk
m(k)

j=sk
m(1)

∑
n
i=1 Ii j

kn
(2)

where Ii j is the binary variable defined above. Our aim is
to find the optimal number k and the particular content of
sk

m which would achieve coverage percentage higher than
53.63%. In Fig.3 we can observe the maximum estimated
coverage percentage per combination, i.e. for each k ∈ S
and all possible sk

m groups. As can be seen from the graph,
coverage varies from 55.1% to 57.12% and achieves its
maximum when k = 11 (green vertical line), whereas, when
k = 22 the estimated coverage equals 55.85%. The optimal
pool sample for k = 11 is {Hs578T , OVCAR3, Panc1,
T ERA1, Ra ji, Saos2, T HP1, HUV EC, HepG2, LNCap,
WERI1}. Fig. 4 shows the individual coverage percentages
per cell line participant in that optimal mix. Although, those
vary in [51.68,53.67], when considered together they succeed
a coverage of 57.12%.

C. Estimation of optimal cell line sample without employing
cutoff value

In the previous section we considered an exhaustive search
along all possible combinations of cell lines in the data. Here
we consider algorithms to minimize the computational cost
of section III-B. An important advantage of the analysis in
this section is that we use absolute Cy5 intensities without
imposing a cutoff value.

In particular, one approach would be to order genes in
descending order for each cell line based on the magnitude
of their absolute expression values, and assign a significance
level to each cell line given the number of genes that
achieve their maximum value in that cell line. Then,
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adding one cell line at a time from their ordered list and
calculating Ω

′

sk
m

, where k ∈ S now refers to the ordered list
of cell lines, would give the coverage for each specific
set of cell lines. We found the ordered cell line list to be
{WERI1, T HP1, Ra ji, T ERA1, HepG2, Hs578T, OVCAR3,
HUV EC, Panc1, U87MG, LNCap, JAR, McF7, SKMM2,
Saos2, Molt4, T 47D, HL60, SW872, HeLa, HCT 116,
SKMEL3}. The optimal mix in this case is the subset of the
first nine cell lines of the previous ordering with coverage
percentage 57.03%, which is very close to 57.12% found
from the exhaustive search.

Additionally, we consider pool reference sample selection
as a variable selection problem. Our aim is to identify a sub-
set of the original variables that can approximate the whole
data set without using a threshold value on the absolute

intensities, but rather rely on their underlying correlation. We
then compare our findings with those of section III-B. Specif-
ically, we employ Simulated Annealing (SA) algorithm [4] on
the correlation matrix of the absolute intensity values when
all 34,771 genes and 22 cell lines are considered. SA is
an iterative stochastic optimization method which is often
employed when the function h, we wish to maximize has
many local maxima. SA performs random walks along the
problem space S′ = { sk

m(k), m ∈ [1, ..., k(k−1)
2 ], k ∈ [1,22]},

with probability depending on a temperature function T . In
this setup, let θ ∈ S′ be a subset of k cell lines, known as the
current state, and θ ′ ∈ S′ the proposed subset or state, which
differs from θ by a single variable. SA accepts the proposed
state with probability α equal to the Metropolis function

α = min{1,exp(
h(θ

′
)−h(θ)
T

)} (3)

We consider three alternatives for h and in particular
three of the criteria suggested by Cadima et al.(2004) in
the content of Principal component analysis (PCA), i.e. RM
coefficient, RV coefficient and Yanai’s generalised coefficient
of determination (GCD), which are implemented in subselect
package of R software (http://www.r-project.org/). All three
criteria measure the similarity between the correlation matrix
of the data and a sub-matrix defined by θ ′ say, and vary in
the closed interval [0,1]. Briefly, they are defined as

RM = {∑
N
i=1 λir2

i
∑

N
i=1 λi

} 1
2 (4)

RV = { ∑
N
i=1 λ 2

i
trace(V 2)} (5)

GCD = 1
k ∑

k
i=1 r2

i (6)

where V is the variance-covariance matrix of the data,
λi are the principal components variances and r2

i are the
correlations between the data matrix and the sub-matrix
defined by θ ′.

We set the number of iterations for SA equal to 106, the
initial temperature is T = 1 and decreases in each iteration
with a rate of 0.05, which allows for faster moves in the
surface of function h. The algorithm finds the best set of cell
lines for each k, and we then select a specific configuration
with coefficient 0.9 to control for parsimonious models.

Additionally, we consider grouping cell lines based on
results from the bootstrapping analysis as this is shown in
Fig. 2. Namely, we focus our search on estimating the cell
lines that can best describe the wider A2 cluster and reduce
its dimension. Cell lines outside A2 are considered important.

The results of our analysis are shown in Table III, where by
Cov we denote coverage analysis presented in section III-A,
by Ord the analysis based on the ordering of cell lines given
their absolute intensity values, and by 2g we denote results
of the SA algorithm when it was only employed to cluster A2
with RM coefficient. The rest of the columns correspond to
SA results when the criterion specified by the column’s name
is used. We can observe that all methods except from RV
suggest similar sets, and they all agree in the importance of



TABLE III
REFERENCE CELL LINE POOL

Cell line Cov Ord RM RV GCD 2g
1. HL60 X
2. Hs578T X X X X
3. McF7 X X X
4. OVCAR3 X X X X X
5. Panc1 X X X X X
6. SKMEL3
7. SKMM2 X X
8. T47D
9. TERA1 X X X X X
10. U87MG
11. Raji X X X X X
12. JAR X X
13. Saos2 X X X
14. SW872 X X
15. THP1 X X X X
16. HCT116 X
17. HUVEC X X X X X
18. HepG2 X X X X X
19. HeLa X
20. LNCap X X X X
21. Molt4 X
22. WERI1 X X X X X X

WERI1 cell line. Ord method suggests a subset of Cov’s op-
timal mix, excluding Saos and LNCap. Cov and RM criteria
mostly agree in the content of the optimal set which consists
of 11 cell lines in both cases. 2g method suggests the same
cell line set with Cov adding McF7 cell line. GCD criterion
finds 15 cell lines. RV criterion suggests the smallest optimal
set which consists of 6 cell lines, and mostly disagrees with
the other criteria. The remaining five methods agree for
{OVCAR3, Panc1, T ERA1, Ra ji, HUV EC, HepG2}.

D. Verification for Cov optimal reference sample

We carried out two more assays to compare the coverage
of optimal reference mix suggested by the Cov approach,
which we call New Mix, and the UHRR Stratagene reference
sample. New Mix consists of equal quantities from the 11
cell lines of Cov analysis. Each of the the two reference
samples were co-hybridized with our original reference sam-
ple. Fig. 5 shows the coverage percentages Ωk for all cell
lines, Stratagene’s UHRR and New Mix. We can observe that
the theoretical value of 57.12% estimated for New Mix, is
very similar to the experimental one 57.84%. Furthermore,
the UHRR reference sample exhibits a lower coverage of
54.02%.

IV. CONCLUSIONS AND FUTURE WORK

A. Conclusions

We showed that analysis of cell-line samples can identify
systematic structure in measured gene expression levels,
which was also suggested by Ross et al.(2000) and Yang
et al.(2002). Thus, estimation of pooled reference samples
could aim not only on the expression of individual probes
in each cell line but also on the expression levels of probes
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Fig. 5. The individual coverage percentages for the 22 cell lines (coloured
red), UHRR Stratagene (coloured green) and the optimal New Mix (coloured
purple) selected from Cov method.

within cell lines. Based on the correlation structure found
among cell lines, we considered whether the array coverage
could benefit from the exclusion of some of the cell lines.

Particularly, when coverage was defined as the percentage
of probe intensities above a pre-specified threshold, we found
the maximum coverage per cell line to be 53.67. This
percentage was increased to 57.12% for an optimal reference
pool of 11 cell lines. When that particular reference mix was
experimentally tested, it achieved coverage equal to 57.84%.
For the same platform Stratagene’s UHRR achieved 54.02%
coverage.

We also considered alternative methods to estimate the
optimal cell line set and test whether our results from
different types of analysis were similar. In this case a cutoff
value was not used. Firstly, we considered ordering the cell
lines according to the number of genes that achieve their
maximum in each cell line. We succeeded reducing the
computational burden of the exhaustive search and found
an optimal mix very similar to the one suggested by Cov
approach. Secondly, we estimated the set of those cell lines
that can best describe the correlation matrix of the data.
Particularly, we employed SA algorithm to maximize three
PCA relevant criteria given the correlation matrix of the
data and found very similar results with Cov approach for
two of the three criteria used. Thus, SA algorithm would be
preferable since it can potentially handle higher dimensional
problems.

B. Future Work

The definition of a broadly accepted universal microarray
reference sample would further allow to utilize data from dif-
ferent studies and eventually facilitate the integration of data



obtained from different platforms. Although the estimated
coverage of the cell lines mix suggested here is not very
high, using the optimization techniques applied we could
investigate a wider group of cell lines given the coverage
criterion. Future work includes expanding our search to other
publicly available data sets, such as the NCI60 set [7], and
explore whether cell lines with different origin from the
examined cell lines, would achieve higher array coverage.
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