
Modeling gene regulation and spatial organization of sequence based
motifs

Jochen Supper1, Claas aufm Kampe1, Dierk Wanke2,
Kenneth W. Berendzen2, Klaus Harter2, Richard Bonneau3, and Andreas Zell1

Abstract— Reconstructing and modeling regulatory networks
is an active area of research in bioinformatics and systems
biology. Hence, various computational methods have been
published, often successfully modeling one aspect of regulatory
control. Gene regulation, however, is a process that depends on
many different components such as transcription factors (TFs),
cis-regulatory motifs and their temporal and spatial coordina-
tion. Accordingly, a promising new direction for computational
analysis is the incorporation of multiple data types to discover,
for instance, cluster membership, the spatial organization of
cis-regulatory motifs and TFs that bind to these motifs.

Here, we present such a data-driven framework, comprising
four stages, to infer gene regulatory networks (GRNs) by
modeling: 1. motif presence in the promoter, 2. spatial motif
arrangement in co-regulated genes, 3. TFs that bind the
respective motifs, and 4. dynamic properties of the GRN. A
novel method is presented in stage 2, where we optimize for
the spatial motif properties: orientation, occurrence of multiple
motifs, relative distance between two motifs and distance to the
Transcription Start Site (TSS). To find optimal distance based
properties in efficient time we describe a dynamic programming
approach. To combine multiple motif properties that are shared
by genes with similar expression profiles a Hill-climber is
employed. Subsequently, in stage 3 and 4, we infer GRNs by
assigning TFs to the derived motifs and model time-dependent
regulatory relationships between them with the Inferelator
approach. None of the stages require the user to manually
adjust any parameter, and thus derived properties can be
analyzed without the bias introduced by parametrization. We
applied this approach toS. cerevisiaedata and obtained insight
into individual and general properties of the spatial assembly
of regulatory elements and inferred the corresponding GRN.

I. INTRODUCTION

Transcriptional and posttranscriptional regulation are im-
portant mechanisms for controlling protein abundance. Dur-
ing this process non-static protein complexes dynamically
bind to regulatory DNA and RNA sequences, controlling the
generation and degradation of mRNA. Currently the analysis
of complex biochemical interactions is restricted to specific
proteins of interest. For the analysis of regulatory control on
a genome-wide scale it is, therefore, necessary to focus the
analysis on DNA and RNA binding sequences which serve
as proxy for more complex protein dynamics.

Accumulated mRNA levels and changes thereof after
perturbations are strongly influenced by specific TFs. These
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changes can be monitored with microarrays on a genome-
wide scale. One aim in analyzing such data is to determine
relationships between TFs and genes, hence the inference of
GRNs. This inference can be approached directly, by con-
necting TFs to genes based on expression data and additional
a priori information ([12], [19]). This direct inference based
solely on mRNA levels, however, is problematic as many
methods assume causal relationships between the mRNA
levels of the TFs and the regulated genes, that the system is
at equilibrium, and that the rate of transcription (the direct
target of TFs) is a function of accumulated mRNA level.

Other approaches were designed to circumvent this prob-
lem by a multi-step analysis integrating further data types, in
addition to expression data. Typically, the first step thereby
is (bi)clustering of all genes [7], with the hypothesis that
clustered genes are under the same regulatory control. The
second step is the detection ofcis-regulatory motifs in
the promoters of clustered genes byde novomethods [8],
phylogeny based methods [10], or by searching for known
binding sites [22]. Thereafter, TF-gene interactions can be es-
tablished by associating binding sites of TFs to the respective
motifs [4], without assuming expression correlation between
TFs and genes. In a last step, a dynamical and predictive
model can be inferred, in accordance to the GRN topology
derived in the previous steps.

Bonneau et al. have described one path through this
process, combining an integrative clustering and motif find-
ing with a dynamical modeling approach (they model the
change in transcript level over time-series, avoiding some
of the problematic assumptions above) [5]. Another recent
focus of attention, complementing these efforts, is the spatial
organization of regulatory motifs. Several publications have
pointed out spatial properties that are essential for the
functionality of certain binding motifs [15]. In accordance
to these findings computational methodologies have aimed at
extracting regulatory modules with certain motif properties.
In most cases, however, these studies were focused on one
property like co-occurrence of other motifs or the positional
influence was investigated by sliding window approaches
[15]. Beer et al. [2] and Elementoet al. [9] presented
valuable frameworks capable of modeling different motif
properties in preclustered datasets. Preclustering, however,
provides groups of co-expressed rather than co-regulated
genes, thus this preprocessing step can lead to invalid
assignments. Responding to this problem Nguyenet al.
[14] presented a methodology called MED, which could
overcome the potentially erroneous preclustering step, by



Fig. 1. Pipeline of the inference approach. The first stage is the promoter annotation, followed by the Hill-climber involved in learning the GMEs (stage
2). In the third stage TFs are assigned to the derived motifs. The fourth, and last, stage is the inference of the GRN through the Inferelator. The biological
datasets used in each stage are plotted next to each stage.

calculating the activation of different motifs globally.
In this work we present a novel framework which is not

dependent on preclustering of datasets, and does not require
for parametrization by the user. We show the biological
applicability on aS. cerevisiaedataset previously used by
Beeret al. [2] and Nguyenet al. [14]. The resulting network
contains rich information including motifs and their spatial
arrangement, TFs binding to these sites, and a model that
explains the network dynamics.

II. APPROACH

The aim of this work is twofold, first we present a method
that reveals significant motif arrangements, and second we
embed this method into a GRN inference pipeline (Fig. 1).

The method for revealing spatial motif properties com-
bines motif and gene expression data, while optimizing
an objective function (see Eq. 3), that is related to gene
expression correlation. To describe biologically plausible
motif arrangements we implemented four filter types – each
optimizing one motif property –, that are iteratively applied
and allow the accumulation of multiple properties.

The pipeline to infer GRNs is depicted in Fig. 1, where
the motif analysis (stage 1 + 2) is supplemented with a
down-stream pipeline. Thereby, TF binding specificities are
mapped (T-Reg) to derived motifs (stage 3), and subsequently
a dynamical modeling approach is applied (stage 4).

A. Biological data and promoter annotation - stage 1

To reveal biologically functional promoters (stage 1 +
2) we need gene expression data, motif data and promoter
sequences. As gene expression dataset we choose the dataset
of Spellmanet al. [21] and Gaschet al. [11], that has been
previously used to infer GRNs ([2], [14], [9]). This dataset
covers response measurements to environmental stress stim-
uli and cell-cycle progressions – in total 255 conditions. We
obtained the motif data from the publication of Nguyenet al.
[14]. There they provide 62 motifs – 37 from literature and
25 from AlignACE and ScanACE. The promoter sequences
are specified as -1 to -1 000 bp upstream of the TSS
and annotated with motif data including the position and
orientation of every motif (stage 1).

To map TFs to the derived motifs (stage 3) TF-
binding specificities are needed. These are downloaded from
TRANSFAC [13] and YEASTRACT [22]. For stage 4 no ad-
ditional data is necessary, since the Inferelator only requests
putative TFs and gene expression data.

B. Sampling gene-motif ensembles (GMEs) - Stage 2

First, we present the main methodology (Fig. 1, stage 2),
which aims to grouping genes that are co-expressed and have
a shared spacial motifs arrangement in their promoters. We
start this method by seeding the optimization with genes
sharing a certain motif. Such genes, that have one shared
motif are referred to asraw gene-motif ensembles(raw
RMEs), whereas genes that share a more complex motif
pattern (i.e. multiple motifs, or specific spatial arrangement)
are calledgene-motif ensembles(GMEs).

To derive GMEs, raw GMEs are used as seeds and subse-
quently refined by adding spatial properties or further motifs.
Thereby, for several iterations, the spatial property with the
maximal score (Eq. 3) is added. The spatial motif properties
we consider are: orientation, occurrence of multiple motifs,
relative distance between two motifs and the distance of
motifs to the transcription start site (TSS).

For each of these properties a filter is implemented that
adds new constraints to the GMEs, and removes all genes
that do not comply to it. Thereby, each filter is required to
return the optimal GMEs with respect to its property. Thus,
every filter performs an exhaustive search. To sample to
overall search space a Hill-climber utilizes all implemented
filters. Thereby, the Hill-climber proceeds as follows: for
every GME apply the filter which returns the GME with the
best score (Eq. 3). Then repeat this step iteratively, until the
score cannot be further improved or every filter was applied.
This procedure is repeated for every raw GME.

C. Scoring co-expression for gene-motif ensembles (GMEs)

If genes that have certain motif properties in common
are actually co-regulated, one should expect to observe a
significant correlation signal in the gene expression data. To
quantify and score this correlation for a set of genesG, the



average correlation of the gene expression profiles is deter-
mined by averaging over all pairwise Pearson correlations
(see Eq. 1). Whereρi, j is the correlation between genei and
j.

Pav(G) =
∑|G|

i=1 ∑|G|
j=i+1 ρi, j

|G|2−|G|
(1)

To determine if the average correlation of a gene set is
significant, its size has to be taken into account. Thus, for
all gene set sizesn from 2 to 1 000 a background probability
density distributionfn is calculated. This distribution is cre-
ated for everyn by randomly sampling 10 000 times from the
complete expression dataset, and each time calculating the
average correlation (Eq. 1). To obtain a density distribution,
a log-normal function is fitted to these datasets, and verified
by a χ2 goodness-of-fit test.

To calculate the score for a gene setG of sizen, we com-
pare its average correlationPav(G) against the cumulative
distribution of the background distribution:

S∗corr(G) =
∫ ∞

Pav(G)
fn(x)dx (2)

Thus, we calculate the probability of obtaining anPav as
high or higher in the background model.

Adding filters that result in marginal increases in the
score can result in over-fitted models. To maintain a trade-
off between the number of filters applied and the score
(Eq. 2), we employ a Bonferroni correction with respect
to the number of filters applied. Hence, for each GME the
corrected score (Eq. 3) is calculated by multiplying Eq. 2
with the number of filtersk applied.

Scorr(G,k) = k ·S∗corr(G) (3)

D. Filters: spatial motif properties

We describe four filter types that, in combination, we
expect to capture biologically plausible promoters. For every
motif property one filter is implemented. These filters are
designed in a modular way, so that filters can be removed or
added, while accounting for dependencies that might exist
(e.g. therelative motif distancefilter depends on theother
motif filter). In this design each filter obtains a GME as input
and returns a GME as output, which has one additional rule
assigned. Internally, each filter removes genes according to
some criteria, and if multiple possibilities exist, each filter
considers all of them. The following selection of filters was
chosen because they were pointed out as important in several
publications ([1], [14], [23], [3], [9], [18]).

1) Position: The positionfilter removes all genes that do
not have a motif at a certain distance to the TSS, given
a distance interval ([min,max]). In most previous works
the optimal interval was determined by sliding window or
binning approaches [14]. It is not clear, however, if a fixed
window size is appropriate. Therefore, here a parameter free
approach is chosen to determine the optimal distance interval.

One possible way to determine the optimal distance inter-
val is to calculate all of them. Given thatm is the number

of motif positions annotated throughout a set of promoters,
there existm

2−m
2 distinguishable intervals. Thus, the average

correlation (Eq. 1) has to be calculated for each interval. If
this is done separately it results in a complexity ofO(m4).

To avoid the quadratic runtime complexity a dynamic
programming scheme is developed that exploits the structure
of the average correlation formula (Eq. 1) and allows to
perform this calculation inO(m2). In this approach the basic
iteration step is to calculate the average correlation for each
interval from smaller intervals. Thereby, each interval is
referred to by the index of the starting motifi and the index
of the ending motif j. Given such an interval defined by
i and j, all genes therein are referred to byGi, j . In this
nomenclature motifs are sorted from 5′ to 3′.

To calculatePav for a set of genesGi, j in one iteration,
Pav(Gi, j−1), Pav(Gi+1, j) andPav(Gi+1, j−1) have to be known.
The corresponding iteration formula reads as follows:

Pav(Gi, j) =
1

|Gi, j |2−|Gi, j |
·
(
Psum(Gi, j−1)

+Psum(Gi+1, j)−Psum(Gi+1, j−1)+ρi, j
)

(4)

with

Psum(Gi, j) = (|Gi, j |2−|Gi, j |) ·Pav(Gi, j) (5)

In Eq. 4 the correlations of the intervals[i, j − 1] and
[i +1, j] are summed up and the correlations of the interval
[i + 1, j − 1] are subtracted, since its correlation values are
covered twice. To thisρi, j is added and the overall term is
normalized, as in Eq. 1.

A special case can occur if a certain motif is assigned
multiple times to one promoter. In this case the correlation
of 1, is removed from Eq. 1. Whenever removing such a
value the denominator is corrected for this effect.

The overall approach is implemented as an iterative pro-
cedure. In the first step all intervals containing two motifs
are calculated. Thereupon, all intervals containing more than
two motifs are calculated. Thus, in each step onePav(Gi, j)
value is calculated with a fixed number of simple algebraic
operations (Eq. 4). Overall, this is repeatedm2−m times,
leading to a runtime reduction fromO(m4) to O(m2).

2) Orientation: Each motif is either oriented in 5’ to 3’
or 3’ to 5’ direction. Hence, theorientation filter considers
both possibilities for all motifs and returns the orientation
with the best score.

3) Other motif: This filter removes all genes which do not
have a certain other motif in their promoter. Thus, the filter
allows to select genes with multiple yet different motifs in
their promoter, and thereby employs ’and’ logic. All motifs
are considered as additional motifs.

4) Relative motif distance:The relative motif distance
filter uses thepositionfilter, by calculating distances with re-
spect to motif pairs, instead of the TSS. This filter considers
the orientational arrangement of the motifs, and is capable
of capturing relative motif orientations. This calculation is
performed only if a second motif is already added to the
GME.



E. Permutation analysis and functional enrichment

When sampling multiple times from large datasets, the
problem of over-fitting must be addressed. Hence, we per-
form a permutation analysis to investigate if the signals found
in biological data are distinguishable from signals found
in a background dataset (obtained through permutation of
the biological data). To construct the background dataset
associations between the motifs and the expression data are
randomly shuffled. To this shuffled dataset, the framework
is applied and the score of the best GME for each raw
GME is stored. This procedure is repeated 250 times. To
evaluate results from the biological dataset their scoreScorr

is compared against the scores obtained from the permutation
analysis~Sp (Eq. 6). This score reflects the likelihood of
obtaining a result as good as or better in a shuffled dataset,
and thus is considered as ap-value approximation.

B
(
~Sp,Scorr

)
=

∣∣∣{i|Scorr ≥~Sp
i , i = 1, · · · ,250

}∣∣∣∣∣∣~Sp
∣∣∣ (6)

To analyze the functional enrichment of GMEs, a
gene set enrichment analysis is performed with the
GO::TermFinder [6].

F. Determining TF binding sites - stage 3

To infer GRNs from the GMEs learned by our procedure
potential regulators (TFs) have to be determined. This is done
by matching the PSSMs (’Position-Specific Scoring Matrix)
of the TFs (from TRANSFAC and YEASTRACT) against
the motifs of the GMEs with the T-Reg comparator [17].
Where a TF-motif relationship with a T-Reg score over 0.8
is considered as match.

G. Network inference by the Inferelator - stage 4

Ultimately, when inferring GRN the aim is to obtain
a quantitative and predictive model of the network. Thus,
we test the applicability of such an inference approach
(Inferelator) to the derived GMEs and their TFs.

Given a set of potential regulators (TFs) for a GME, we
consider two simple hypothesis:

1) The TF regulates this GME and the TF’s activity is a
simple function of its mRNA level.

2) The TF regulates this GME but the TF’s activity
is regulated post-transcriptionally in an un-observed
manner.

If hypothesis 1 is true we expect adetectableregulatory
relationship between the TF and the expression profile of the
GME. To model this relationship for each GME we apply the
Inferelator framework, and consider only binding TFs – from
stage 3 – as potential regulators. The Inferelator proceeds by
selecting the minimal number of regulatory influences that
are predictive utilizing the LASSO methodology, selecting
from complex dynamical relationships between TFs and
target genes [20]. By integrating time-series and steady-
state datasets and allowing for a combinatorial logic the
Inferelator is able to learn models that can predict future time

points (TF→target dynamics). For each GME we optimize
the time constantτ (determining the response time of gene
expression) over the interval 5 to 50 min and employ a
sigmoidal activation function. The shrinkage parameter (used
to constrain model size, enforce parsimonious models) is
determined by choosing the model with the smallest 10-fold
cross-validation (CV) error.

If hypothesis 2 is true we expect to obtain the null model
from the Inferelator.

III. RESULTS

A. Overview: (raw) gene-motif ensembles

To determine if the presence of one motif alone is suffi-
cient to capture groups of co-expressed genes the correlation
and score of the raw GMEs is analyzed. The average number
of genes in a raw GME is 551 (see Table I), with a
median correlation of 0.024 and a median scoreScorr of
2.21· 10−2, indicating the probability of sampling such a
score at random. Thus, only weak signals are detected in
raw GMEs. For instance, only two out of 62 raw GMEs
have an an average expression correlation over 0.1 and most
GMEs do not have a statistically significant signal (39 out
of 62), when considering a significance level of 0.01.

The optimized GMEs, on the other hand, contain 77 genes
on average and have an average correlation of 0.22 and a
median correlation of 0.33. Surprisingly, 46 of the 62 GMEs
have better scores when derived from the biological dataset
than in all 250 runs of the permutation analysis, leading to
a median scoreScorr of 2.06·10−8.

B. Analysis of gene-motif ensemble properties

In each Hill-climber iteration every filter can potentially be
applied to the GME. Nonetheless, a bias in filter utilization
can be observed. Theposition and other motif filter, for
instance, are applied frequently, and in most cases only one
filter is applied. An overview of the filter utilization is given
in Table II and several GMEs are depicted in Table I.

The results of thepositionfilter are shown in Fig. 3. The
position intervals accumulate near the TSS and no interval
occurs more than 739 bp upstream of the TSS. The average
start position is 127, the average end position 344, the
average length 217, and the standard deviation 160.

The orientationfilter is applied only two times, however,
an orientational bias might be observable in more GMEs. To
investigate this, a sign test is applied to all GMEs. In this
analysis eight GMEs had a statistically significant orienta-
tional bias (with a significance level of 0.01). Furthermore,
in six of these GMEs all motifs have the same orientation.

C. Building Gene Regulatory Networks (GRNs)

On average 2.51 TFs are linked to 45 of the 62 GMEs.
For each GME with at least one assigned TF the Inferelator
analysis is applied. For two GMEs the Inferelator returned
the null model, indicating that no simple relationship be-
tween the TFs and the GMEs exists. For all other GMEs
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Fig. 2. Selectedgene-motif ensembles(GMEs). The relative expression levels of the genes are displayed in the upper part of the figure, while only
conditions with aPav score over 0.5 are drawn. The lower part shows the derived motifs and the associated rules. All TFs which have a T-Reg score over
0.8 to one of the motifs are shown. For each TF the correlation to the GME is depicted above the box. The arrows indicate that these interactions were
modeled by the Inferelator, where the (-) sign indicates an inhibitory interaction term. If a mapped TF was not contained in the expression data anot
present(NP) is plotted. The statistical scores for each GME can be found in Table I.

Fig. 3. Intervals in which binding motifs are allowed to occur for all GMEs. The considered upstream sequence is -1 to -1 000 bp and each interval is
specified by a start and end position. Overall, 44 intervals from 42 GMEs are depicted, each on average containing 77 genes.



TABLE I

STATISTICAL RESULTS FOR SEVERAL RAWGMES. FOR EACH (RAW) GME THE AVERAGE CORRELATION(Pav) AND THE SCORE(Scorr ) IS PROVIDED.

FOR GMES THESE STATISTICAL VALUES ARE COMPLEMENTED BY THE SCORE(Sperm) AND THE APPLIED FILTERS. THE FILTERS ARE SPECIFIED AS

FOLLOWS: positionFILTER (PF),other motif FILTER (OMF), relative motif distanceFILTER (RMDF) AND orientationFILTER (OF). THE INDEX OF THE

PF REFERS TO THE MOTIF TO WHICH THE INTERVAL FILTER WAS APPLIED TO. Not present(NP) ENTRIES OCCUR FORGMES CONTAINING MORE

THAN 1 000GENES(SEESECTION II-C). THE MEAN AND MEDIAN ARE CALCULATED FROM THE COMPLETE ANALYSIS ON62 GMES.

raw gene-motif ensembles gene-motif ensembles
Motif #genes Pav score (Scorr) #genes Pav score (Scorr) p-value (Sperm) filters

glyoxylate cycle n4 1140 0.018 NA 53 0.43 2.00·10−11 0.016 OMF RMDF PF2
ribosomal protein n58 84 0.029 0.06 13 0.63 4.30·10−7 0.00 OMF RMDF OF
RRPE 1061 0.105 NA 69 0.56 0.00 0.00 PF
MCB 213 0.969 0.00 99 0.21 0.00 0.00 PF
BAS1 541 0.021 0.21 20 0.49 7.44·10−8 0.00 OMF PF2
MCM1 884 0.021 0.11 70 0.42 5.21·10−13 0.00 OMF

...
rrna processing n3 542 0.194 0.00 66 0.65 0.00 0.00 PF

mean 551 0.03 2.18·10−1 77 0.31 2.05·10−4 0.04 -
median 255 0.02 2.21·10−2 63 0.22 2.06·10−8 0.00 -

TABLE II

OVERALL FILTER STATISTICS. THE UPPER PART SHOWS HOW OFTEN

EACH FILTER WAS APPLIED. THE LOWER PART SHOWS HOW MANY

FILTERS WERE APPLIED TO DIFFERENTGMES.

filters

44 31 14 2
position other motif relative motif distance orientation

4 36 13 9
none one two three

such models is established. Interestingly, 61% of the inter-
action terms had a negative effect on transcription rate, thus
indicating an inhibitory relationship.

For instance, according to our learned Inferelator model,
GSM1 inhibits the GME containing the ‘ribosomal proteins
n58’ motif and the RRPE based GME is inhibited by
MATALPHA2, which is known to act as inhibitor [16].
A model with OR logic was derived for the GME with
the ‘metabolism of energy reserves n4’ motif, assuming a
negative regulation by PPR1 and HAP1, both zinc fingers.

IV. DISCUSSION

A. Gene-motif ensemble (GME) properties

We obtained numerous highly significant GMEs by apply-
ing our framework toS. cerevisiaedata. Further analysis of
the spatial organization of these modules provide insight into
the characteristics and importance of different properties. For
instance, thepositionfilter was applied to the majority of the
GMEs and is often displayed near the TSS, which could also
be observed in previous studies [3]. Furthermore, the interval
length and positioning display a high degree of flexibility.
Other properties such as the conservation of orientation could
be observed in 8 of 62 cases, implying that in most cases
GMEs can be described irrespective of orientation.

B. Comparison to other methods

In 2006 Nguyenet al. [14] presented an approach called
MED (motif expression decomposition), to calculate activity
values for motifs from gene expression data. In a subsequent
analysis they investigated motif positioning and orientation.
To analyze the motif position they divided promoters into
three partitions (short-, mid-, and long-range), and performed
an analysis for each. One result they derived is based on the
motif RRPE. After dividing the promoter into bins of length
150 bp they report the highest average correlation of 0.27
with an interval from -1 to -150 bp.

Our results refine this GME, as thepositionfilter requires
the motif to occur -129 to -143 bp upstream of the TSS. The
corresponding GME contains 69 genes, and has an average
correlation of 0.56 over all conditions. The most significant
GO-term for this GME was ‘ribonucleoprotein complex
biogenesis and assembly’ with ap-value of 2.90·10−20.

Another GME described by Nguyenet al. [14] is based
on the MCB motif, for which they report a positional
and directional conservation. Accordingly, their motif was
required to be within -150 to -300 bp and in 5-orientation.
For this GME they report an average correlation of 0.2.

Our GME filters require the same motif to be within -87
to -302 bp of the TSS. 99 genes comply to this requirement
displaying an average correlation of 0.21. To test for the
orientational conservation reported by Nguyenet al. [14] we
manually restricted the motifs to be oriented only in 5’ di-
rection or in 3’ direction, leading to an average correlation of
0.27 and 0.15 respectively. The reason why the 5’ orientation
filter is not applied in our analysis, is the lower number of
genes. Given the trade-off between the number of genes,
the average correlation (Eq. 3) and the additional Bonferroni
correction (Eq. 6), theorientation filter is not considered
significant in our framework. A GO-analysis of this module
returned ‘DNA replication’ with ap-value of 2.8·10−24.

Complementing the analysis of specific GMEs, a global
view on the investigated properties should be discussed in



light of modeling assumptions. For instance, the assumption
of fixed interval sizes for motif positioning, is problem-
atic when respecting the high degree of variance observed
throughout the GMEs. This can also be observed for the
relative motif distancefilter.

V. CONCLUSION

We propose a parameter free and data-driven framework
for inferring GRNs, with a novel method to reveal spatial
motif arrangements (stage 2). This approach was realized
with modular filters. Theposition filter was implemented
as dynamic programming approach, this allowed for an ex-
haustive analysis of positional motif properties with respect
to expression correlation. The statistical results obtained
with this filter provide valuable information regarding the
positional flexibility and biological utilization. Such results
derived from system-level analysis can play an important role
for understanding regulatory control mechanisms.

In comparison to previous publications we were capable
of refining many GMEs, that upon more careful analysis
showed high significance and have mechanistic descriptions
of DNA binding sites and the dynamical effect of TF
binding. Furthermore, the derived GMEs are accompanied
by a wealth of information, such as statistical validation
scores, condition specific average correlation, the occurrence
and spatial constraints of motifs and TFs potentially binding
these motifs (stage 3). In addition, for each GME a model
of regulatory regulation was inferred with the Inferelator
approach (stage 4). These dynamic response models allow
to capture the type of regulation and the time scales these
effects might be acting on. Many regulatory influences were
inhibitory and all regulatory relationships were learned as
effects on dynamical change in transcription from time series.

The GMEs support experimental validation, as the relevant
experimental condition, the regulatory mode and the putative
regulators are provided. Towards, the goal of inferring gene
regulatory networks the derived GMEs provide a fairly
comprehensive model.
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