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Abstract— Reconstructing and modeling regulatory networks changes can be monitored with microarrays on a genome-
is an active area of research in bioinformatics and systems yjide scale. One aim in analyzing such data is to determine
biology. Hence, various computational methods have been \g|ationships between TFs and genes, hence the inference of

published, often successfully modeling one aspect of regulatory s .
control. Gene regulation, however, is a process that depends on CRNS. This inference can be approached directly, by con-

many different components such as transcription factors (TFs), necting TFs to genes based on expression data and additional
cis-regulatory motifs and their temporal and spatial coordina-  a priori information ([12], [19]). This direct inference based
tion. Accordingly, a promising new direction for computational  solely on mRNA levels, however, is problematic as many
analysis is the incorporation of multiple data types to discover,  athods assume causal relationships between the mRNA
for instance, cluster membership, the spatial organization of .
cisregulatory motifs and TFs that bind to these motifs. levels Of the TFs and the regulated genes,.th.at the SySFem IS
Here7 we present such a data-driven frar‘newor‘k7 Comprising at equ|l|br|um, and that the rate Of tranSCI’Iptlon (the dll’eCt
four stages, to infer gene regulatory networks (GRNs) by target of TFs) is a function of accumulated mRNA level.
modeling: 1. motif presence in the promoter, 2. spatial motif  Qther approaches were designed to circumvent this prob-
arrangement in co-regulated genes, 3. TFs that bind the oy by 5 multi-step analysis integrating further data types, in

respective motifs, and 4. dynamic properties of the GRN. A . . . .
nov% method is presented %n stagepZ,pwhere we optimize for addition to expression data. Typically, the first step thereby

the spatial motif properties: orientation, occurrence of multiple IS (bi)clustering of all genes [7], with the hypothesis that
motifs, relative distance between two motifs and distance to the clustered genes are under the same regulatory control. The
Transcription Start Site (TSS). To find optimal distance based second step is the detection afs-regulatory motifs in
properties in efficient time we describe a dynamic programming 1o promoters of clustered genes 8§ novomethods [8]
approach. To combine multiple motif properties that are shared - ’

by genes with similar expression profiles a Hill-climber is phy"?ge”_y based methods [10], or by. SearCh.'ng for known
employed. Subsequently, in stage 3 and 4, we infer GRNs by binding sites [22]. Thereafter, TF-gene interactions can be es-
assigning TFs to the derived motifs and model time-dependent tablished by associating binding sites of TFs to the respective
regulatory relationships between them with the Inferelator motifs [4], without assuming expression correlation between
approach. None of the stages require the user to manually TFs and genes. In a last step, a dynamical and predictive

adjust any parameter, and thus derived properties can be . .
analyzed without the bias introduced by parametrization. we MOdel can be inferred, in accordance to the GRN topology

applied this approach to'S. cerevisiaadata and obtained insight ~ derived in the previous steps.
into individual and general properties of the spatial assembly Bonneauet al. have described one path through this

of regulatory elements and inferred the corresponding GRN.  process, combining an integrative clustering and motif find-
| INTRODUCTION ing Wlth_a dynam!cal modeling e_approac_h (they _m_odel the
o o ) . change in transcript level over time-series, avoiding some
Transcriptional and posttranscriptional regulation are imgf the problematic assumptions above) [5]. Another recent
portant mechanisms for controlling protein abundance. Dufcys of attention, complementing these efforts, is the spatial
ing this process non-static protein complexes dynamicallyrganization of regulatory motifs. Several publications have
bind to regulatory DNA and RNA sequences, controlling thgyginted out spatial properties that are essential for the
generation and degradation of mRNA. Currently the analySgnctionality of certain binding motifs [15]. In accordance
of cor’nplex.blochemlcal |nteract|ons is restricted to specifigy these findings computational methodologies have aimed at
proteins of interest. For the analysis of regulatory control ogyracting regulatory modules with certain motif properties.
a genome-wide scale it is, therefore, necessary to focus i most cases, however, these studies were focused on one
analysis on DNA and RNA binding sequences which servgroperty like co-occurrence of other motifs or the positional
as proxy for more complex protein dynamics. influence was investigated by sliding window approaches
Accumulated mRNA levels and changes thereof afte[r15]. Beer et al. [2] and Elementoet al. [9] presented

perturbations are strongly influenced by specific TFs. Thesgyable frameworks capable of modeling different motif
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Fig. 1. Pipeline of the inference approach. The first stage is the promoter annotation, followed by the Hill-climber involved in learning the GMEs (stage
2). In the third stage TFs are assigned to the derived motifs. The fourth, and last, stage is the inference of the GRN through the Inferelator. The biological
datasets used in each stage are plotted next to each stage.

calculating the activation of different motifs globally. To map TFs to the derived motifs (stage 3) TF-
In this work we present a novel framework which is notbinding specificities are needed. These are downloaded from

dependent on preclustering of datasets, and does not requiRANSFAC [13] and YEASTRACT [22]. For stage 4 no ad-

for parametrization by the user. We show the biologicadlitional data is necessary, since the Inferelator only requests

applicability on aS. cerevisiaedataset previously used by putative TFs and gene expression data.

Beeret al.[2] and Nguyeret al.[14]. The resulting network

contains rich information including motifs and their spatiaB- Sampling gene-motif ensembles (GMEs) - Stage 2

arrangement, TFs binding to these sites, and a model thatFirst, we present the main methodology (Fig. 1, stage 2),

explains the network dynamics. which aims to grouping genes that are co-expressed and have

Il. APPROACH a shared spacial motifs arrangement in their promoters. We
dstart this method by seeding the optimization with genes

The aim of §h|s_yvork IS tw_ofold, first we present a metho sharing a certain motif. Such genes, that have one shared
that reveals significant motif arrangements, and second w,

embed i metfod 1o a GRN nirencs ppein (g DO "%, (ST [0 Sean oenenoll ensenton
bir-lrehse rfnnoeé]t]Osngorg;\;eﬂ?gressg?éfl (g?at"f aﬁﬁergzznigmgatterr;l (i.e. multiple_]c motifs, 8|r ;pﬁ(lzzific spatial arrangement)
an objeptive functiqn (see Eq. 3?’ thaF Is related to g_enerfl}_(;: ?je?i(\j/geegel\;lrggtlr;VCSGeI\TEsqare uz)e;d as seeds and subse-
expression correlation. To describe biologically plausible uently refined by ic\dding spatial properties of further motifs.

mofuf _ar_rangements_ we implemented four_fllter_types —ca hereby, for several iterations, the spatial property with the
optimizing one motif property —, that are iteratively applied

i ! : maximal score (Eq. 3) is added. The spatial motif properties
and allow the accumulation of multiple properties. we consider are: orientation, occurrence of multiple motifs
The pipeline to infer GRNS is depicted in Fig. 1, Whererelative distance between two motifs and the distance of

) . N i .
the motif analysis (stage 1 + 2) is supplemented with ?notifs o the transcription start site (TSS).

down-stream pipeline. Thereby, TF binding specificities are For each of these properties a filter is implemented that
mapped (T-Reg) to derived motifs (stage 3), and subsequeng}éds new constraints to the GMEs, and removes all genes

a dynamical modeling approach is applied (stage 4). that do not comply to it. Thereby, each filter is required to
A. Biological data and promoter annotation - stage 1 return the optimal GMEs with respect to its property. Thus,
To reveal biologically functional promoters (stage 1 +every filter performs an exhaustive search. To sample to
2) we need gene expression data, motif data and promotverall search space a Hill-climber utilizes all implemented
sequences. As gene expression dataset we choose the dafiltesis. Thereby, the Hill-climber proceeds as follows: for
of Spellmanet al. [21] and Gasctet al. [11], that has been every GME apply the filter which returns the GME with the
previously used to infer GRNs ([2], [14], [9]). This datasetbest score (Eq. 3). Then repeat this step iteratively, until the
covers response measurements to environmental stress stieere cannot be further improved or every filter was applied.
uli and cell-cycle progressions — in total 255 conditions. Wd his procedure is repeated for every raw GME.
obtained the motif data from the publication of Nguyedral. ) . .
[14]. There they provide 62 motifs — 37 from literature and>: Scoring co-expression for gene-motif ensembles (GMEs)
25 from AlignACE and ScanACE. The promoter sequences If genes that have certain motif properties in common
are specified as -1 to -1 000 bp upstream of the TS&e actually co-regulated, one should expect to observe a
and annotated with motif data including the position andignificant correlation signal in the gene expression data. To
orientation of every motif (stage 1). guantify and score this correlation for a set of ge@eghe



average correlation of the gene expression profiles is det&f motif positions annotated throughout a set of promoters,
mined by averaging over all pairwise Pearson correlatiorthere existmz—z‘m distinguishable intervals. Thus, the average
(see Eq. 1). Wherp; j is the correlation between genand  correlation (Eq. 1) has to be calculated for each interval. If
j- this is done separately it results in a complexityQin®).
o To avoid the quadratic runtime complexity a dynamic
2i—12j—i+1Pij 1 programming scheme is developed that exploits the structure
|G|2— |G| @) of the average correlation formula (Egq. 1) and allows to
erform this calculation i©(?). In this approach the basic
|§erat|on step is to calculate the average correlation for each
mterval from smaller intervals. Thereby, each interval is
referred to by the index of the starting matiénd the index

(G|
Pav(G) =

To determine if the average correlation of a gene set
significant, its size has to be taken into account. Thus, for
all gene set sizes from 2 to 1 000 a background probability
density distributionf, is calculated. This distribution is cre- ) . .
ated for everyn by randomly sampling 10 000 times from theOf the ending motij. G|.ven such an interval defmeq by
complete expression dataset, and each time calculating th(gi‘nOI I, all genes therein are referred to G ;. In this
average correlation (Eqg. 1). To obtain a density d|str|but|0n,Omenclature motifs are sorted frorhi6 3.

a log-normal function is fitted to these datasets, and verified To calculatePy for a set of geness; j in one iteration,
by a x2 goodness-of-fit test, av(Gij—1), Pav(Giy1,j) andPay(Giy1,j—1) have to be known.

. The corresponding iteration formula reads as follows:
To calculate the score for a gene &0bf sizen, we com- P 9

pare its average correlatioR,(G) against the cumulative 1
distribution of the background distribution: P.(G (P G
av( IJ) ‘GIJ|2 |G|J| ( sum( N 1)

Forr(G) = /pav«;) Fn(X)elx @ +Psum(Giva,j) — PoundGigaj-1) +pij)  (4)

Thus, we calculate the probability of obtaining By, as with
high or higher in the background model. )

Adding filters that result in marginal increases in the PounlGij) = (IGi,j|* = |Gij|) - Pav(Gij) ®)
score can result in over-fitted models. To maintain a trade- In Eq. 4 the correlations of the intervalg j — 1] and
off between the number of filters applied and the scorg+1,j] are summed up and the correlations of the interval
(Eg. 2), we employ a Bonferroni correction with respecfi + 1, j — 1] are subtracted, since its correlation values are
to the number of filters applied. Hence, for each GME theovered twice. To thip; j is added and the overall term is
corrected score (Eq. 3) is calculated by multiplying Eq. Zormalized, as in Eq. 1.

with the number of filterk applied. A special case can occur if a certain motif is assigned
multiple times to one promoter. In this case the correlation
Seorr (G, K) = k- S (G) (3) of 1, is removed from Eq. 1. Whenever removing such a

value the denominator is corrected for this effect.

The overall approach is implemented as an iterative pro-
We describe four filter types that, in combination, Wegedure. In the first step all intervals containing two motifs
expect to capture biologically plausible promoters. For everyre calculated. Thereupon, all intervals containing more than

motif property one filter is implemented. These filters ar@wo motifs are calculated. Thus, in each step G )
designed in a modular way, so that filters can be removed ggjue is calculated with a fixed number of simple algebraic
added, while accounting for dependencies that might exigperations (Eq. 4). Overall, this is repeated — m times,
(e.g. therelative motif distancdilter depends on thether |eading to a runtime reduction fro@(n?) to O(n?).
motif filter). In this design each filter obtains a GME as input 2) Orientation: Each motif is either oriented in 5’ to 3’
and returns a GME as output, which has one additional rulsr 3’ to 5’ direction. Hence, therientation filter considers
assigned. Internally, each filter removes genes according §oth possibilities for all motifs and returns the orientation
some criteria, and if multiple possibilities exist, each filtefyith the best score.
considers all of them. The following selection of filters was 3) Other motif: This filter removes all genes which do not
chosen because they were pointed out as important in sevefiale a certain other motif in their promoter. Thus, the filter
publications ([1], [14], [23], [3], [9], [18]). allows to select genes with multiple yet different motifs in
1) Position: The positionfilter removes all genes that do their promoter, and thereby employs 'and’ logic. All motifs
not have a motif at a certain distance to the TSS, givesire considered as additional motifs.
a distance interval [fnin,max). In most previous works 4) Relative motif distanceThe relative motif distance
the optimal interval was determined by sliding window offilter uses theositionfilter, by calculating distances with re-
binning approaches [14]. It is not clear, however, if a fixedpect to motif pairs, instead of the TSS. This filter considers
window size is appropriate. Therefore, here a parameter fré®e orientational arrangement of the motifs, and is capable
approach is chosen to determine the optimal distance intervaf. capturing relative motif orientations. This calculation is
One possible way to determine the optimal distance inteperformed only if a second motif is already added to the
val is to calculate all of them. Given that is the number GME.

D. Filters: spatial motif properties



E. Permutation analysis and functional enrichment points (TF—target dynamics). For each GME we optimize

When sampling multiple times from large datasets, thi1® time constant (determining the response time of gene
problem of over-fitting must be addressed. Hence, we pepXPression) over the interval 5 to 50 min and employ a
form a permutation analysis to investigate if the signals foungigmoidal activation fU.”Ct'O”- The shrmkgge parameter (usgd
in biological data are distinguishable from signals found® constrain model size, enforce parsimonious models) is
in a background dataset (obtained through permutation gftérmined by choosing the model with the smallest 10-fold
the biological data). To construct the background datasgf0ss-validation (CV) error.
associations between the motifs and the expression data arédf hypothesis 2 is true we expect to obtain the null model
randomly shuffled. To this shuffled dataset, the frameworftom the Inferelator.
is applied and the score of the best GME for each raw
GME is stored. This procedure is repeated 250 times. To . RESULTS
gvaluate results from the biological .dataset their sk A. Overview: (raw) gene-motif ensembles
is compared against the scores obtained from the permutation
analysisS (Eq. 6). This score reflects the likelihood of To determine if the presence of one motif alone is suffi-

obtaining a result as good as or better in a shuffled datasélent to capture groups of co-expressed genes the correlation
and thus is considered aspavalue approximation. and score of the raw GMEs is analyzed. The average number

of genes in a raw GME is 551 (see Table 1), with a
_ o median correlation of 0.024 and a median sc&eg of
- H'|Scorr z Spa' =1 ,250}’ 2.21-1072, indicating the probability of sampling such a
B(Sp’S’O”) - ‘gj’ (6) score at random. Thus, only weak signals are detected in
raw GMEs. For instance, only two out of 62 raw GMEs
To analyze the functional enrichment of GMEs, ahave an an average expression correlation over 0.1 and most
gene set enrichment analysis is performed with th&MEs do not have a statistically significant signal (39 out
GO::TermFinder [6]. of 62), when considering a significance level of 0.01.
- - : The optimized GMESs, on the other hand, contain 77 genes
F. Determining TF binding sites - stage 3 on average and have an average correlation of 0.22 and a
To infer GRNs from the GMEs learned by our procedurgnedian correlation of 0.33. Surprisingly, 46 of the 62 GMEs
potential regulators (TFs) have to be determined. This is domwe better scores when derived from the biological dataset
by matching the PSSMs ('Position-Specific Scoring Matrixthan in all 250 runs of the permutation analysis, leading to
of the TFs (from TRANSFAC and YEASTRACT) againsta median scor&. of 2.06-108.
the motifs of the GMEs with the T-Reg comparator [17].
Where a TF-motif relationship with a T-Reg score over 0.8, Analysis of gene-motif ensemble properties
is considered as match.

In each Hill-climber iteration every filter can potentially be
G. Network inference by the Inferelator - stage 4 applied to the GME. Nonetheless, a bias in filter utilization
Ultimately, when inferring GRN the aim is to obtain ¢an be observed. Thposition and other motif filter, for
a quantitative and predictive model of the network. Thudnstance, are applied frequently, and in most cases only one
we test the applicability of such an inference approacﬂner is applied. An overview of the filter utilization is given

Given a set of potential regulators (TFs) for a GME, we The results of theositionfilter are shown in Fig. 3. The
consider two simple hypothesis: position intervals accumulate near the TSS and no interval

1) The TF regulates this GME and the TF’s activity is aCCUrs more than 739 bp upstream of the TSS. The average
simple function of its MRNA level. start position is 127, the average end position 344, the
2) The TF regulates this GME but the TF's activity@Verage length 217, and the standard deviation 160.

is regulated post-transcriptionally in an un-observed The orientationfilter is applied only two times, however,
manner. an orientational bias might be observable in more GMEs. To

investigate this, a sign test is applied to all GMEs. In this

relationship between the TF and the expression profile of ﬂ,?é'\aly5|§ e|ght. GME§ h.?d a statistically significant orienta-
GME. To model this relationship for each GME we apply thé'onf"lI bias (with a S|gn|f|cange level of 0.01). Fur'_[herm_ore,
Inferelator framework, and consider only binding TFs — fronin SiX of these GMEs all motifs have the same orientation.
stage 3 — as potential regulators. The Inferelator proceeds
selecting the minimal number of regulatory influences that”
are predictive utilizing the LASSO methodology, selecting On average 2.51 TFs are linked to 45 of the 62 GMEs.
from complex dynamical relationships between TFs anBor each GME with at least one assigned TF the Inferelator
target genes [20]. By integrating time-series and steadgnalysis is applied. For two GMEs the Inferelator returned
state datasets and allowing for a combinatorial logic ththe null model, indicating that no simple relationship be-
Inferelator is able to learn models that can predict future timeveen the TFs and the GMEs exists. For all other GMEs

If hypothesis 1 is true we expectdetectableregulatory

Building Gene Regulatory Networks (GRNs)
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Fig. 2. Selectedyene-motif ensembl§SMEs). The relative expression levels of the genes are displayed in the upper part of the figure, while only
conditions with aP,y score over 0.5 are drawn. The lower part shows the derived motifs and the associated rules. All TFs which have a T-Reg score over
0.8 to one of the motifs are shown. For each TF the correlation to the GME is depicted above the box. The arrows indicate that these interactions were
modeled by the Inferelator, where the (-) sign indicates an inhibitory interaction term. If a mapped TF was not contained in the expressimt data a
present(NP) is plotted. The statistical scores for each GME can be found in Table I.
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Fig. 3. Intervals in which binding motifs are allowed to occur for all GMEs. The considered upstream sequence is -1 to -1 000 bp and each interval is
specified by a start and end position. Overall, 44 intervals from 42 GMEs are depicted, each on average containing 77 genes.



TABLE |
STATISTICAL RESULTS FOR SEVERAL RAWGMES. FOR EACH (RAW) GME THE AVERAGE CORRELATION(P,y) AND THE SCORE(S:orr) IS PROVIDED.
FOR GMES THESE STATISTICAL VALUES ARE COMPLEMENTED BY THE SCORESperm) AND THE APPLIED FILTERS THE FILTERS ARE SPECIFIED AS
FOLLOWS: positionFILTER (PF),other motif FILTER (OMF), relative motif distanc&ILTER (RMDF) AND orientationFILTER (OF). THE INDEX OF THE
PFREFERS TO THE MOTIF TO WHICH THE INTERVAL FILTER WAS APPLIED TONot presen{NP) ENTRIES OCCUR FORGMES CONTAINING MORE
THAN 1 OOOGENES(SEESECTION |I-C). THE MEAN AND MEDIAN ARE CALCULATED FROM THE COMPLETE ANALYSIS ON62 GMES.

raw gene-motif ensembles gene-motif ensembles

Motif #genes Py score &orr) #genes Py score &orr)  p-value Sperm) filters

glyoxylate cycle n4 1140  0.018 NA 53 0.43 .0p-10°1 0.016 OMF RMDF Pg

ribosomal protein n58 84 0.029 0.06 13 0.63 304107 0.00 OMF RMDF OF

RRPE 1061  0.105 NA 69 0.56 0.00 0.00 PF

MCB 213 0.969 0.00 99 0.21 0.00 0.00 PF

BAS1 541  0.021 0.21 20 049 44108 0.00 OMF PR

MCM1 884  0.021 0.11 70 042 .BL-1018 0.00 OMF

rrna processing n3 542 0.194 0.00 . 66 0.65 0.00 0.00 PF

mean 551 0.03 28101 77 031 205.10°* 0.04

median 255 0.02 21.10°7? 63 0.22 206-10°8 0.00

TABLE |I .
B. Comparison to other methods
OVERALL FILTER STATISTICS. THE UPPER PART SHOWS HOW OFTEN
EACH FILTER WAS APPLIED. THE LOWER PART SHOWS HOW MANY In 2006 Nguyeret al. [14] presented an approach called
FILTERS WERE APPLIED TO DIFFERENTGMES. MED (mOtIf EXDFESSIOH deCOanOSItIOI’I), tO Calculate aCtIVIty
values for motifs from gene expression data. In a subsequent
filters analysis they investigated motif positioning and orientation.
44 31 14 2 To analyze the motif position they divided promoters into
position  other motif  relative motif distance  orientation three partitions (short-, mid-, and long-range), and performed

4 36 13 9 an analysis for each. One result they derived is based on the
none one two three motif RRPE. After dividing the promoter into bins of length

150 bp they report the highest average correlation of 0.27
with an interval from -1 to -150 bp.

such models is established. Interestingly, 61% of the inter- OUr results refine this GME, as tipesitionfilter requires

action terms had a negative effect on transcription rate, thifs& motif to occur -129 to -143 bp upstream of the TSS. The
indicating an inhibitory relationship. corresponding GME contains 69 genes, and has an average
For instance, according to our learned Inferelator modeforrelation of 0.56 over all conditions. The most significant

GSM1 inhibits the GME containing the ‘ribosomal proteins®©O-term for this GME was ‘ribonucleoproteinigoomplex
n58' motif and the RRPE based GME is inhibited byPl0genesis and assembly’ withpavalue of 290- 10"
MATALPHA2, which is known to act as inhibitor [16]. Another GME described by Nguyeet al. [14] is based

A model with OR logic was derived for the GME with O" the MCB motif, for which they report a positional
the ‘metabolism of energy reserves n4' motif, assuming gnd directional conservation. Accordingly, their motif was

negative regulation by PPR1 and HAP1, both zinc fingers/€duired to be within -150 to -300 bp and in 5-orientation.
For this GME they report an average correlation of 0.2.

Our GME filters require the same motif to be within -87
to -302 bp of the TSS. 99 genes comply to this requirement
displaying an average correlation of 0.21. To test for the
orientational conservation reported by Nguyedral. [14] we

We obtained numerous highly significant GMEs by applymanually restricted the motifs to be oriented only in 5’ di-
ing our framework toS. cerevisiaelata. Further analysis of rection or in 3’ direction, leading to an average correlation of
the spatial organization of these modules provide insight int.27 and 0.15 respectively. The reason why the 5’ orientation
the characteristics and importance of different properties. Ffitter is not applied in our analysis, is the lower number of
instance, th@ositionfilter was applied to the majority of the genes. Given the trade-off between the number of genes,
GMEs and is often displayed near the TSS, which could algbe average correlation (Eq. 3) and the additional Bonferroni
be observed in previous studies [3]. Furthermore, the intervabrrection (Eq. 6), theorientation filter is not considered
length and positioning display a high degree of flexibilitysignificant in our framework. A GO-analysis of this module
Other properties such as the conservation of orientation couleturned ‘DNA replication’ with ap-value of 28- 1024,
be observed in 8 of 62 cases, implying that in most cases Complementing the analysis of specific GMEs, a global
GMEs can be described irrespective of orientation. view on the investigated properties should be discussed in

IV. DISCUSSION

A. Gene-motif ensemble (GME) properties



light of modeling assumptions. For instance, the assumptiof]
of fixed interval sizes for motif positioning, is problem-
atic when respecting the high degree of variance observe,
throughout the GMEs. This can also be observed for the
relative motif distancdilter.

V. CONCLUSION (6]

We propose a parameter free and data-driven framework
for inferring GRNs, with a novel method to reveal spatial
motif arrangements (stage 2). This approach was realizeg
with modular filters. Theposition filter was implemented
as dynamic programming approach, this allowed for an ex-8]
haustive analysis of positional motif properties with respect[
to expression correlation. The statistical results obtained
with this filter provide valuable information regarding the ]
positional flexibility and biological utilization. Such results
derived from system-level analysis can play an important rolgo]
for understanding regulatory control mechanisms.

In comparison to previous publications we were capablgy;
of refining many GMEs, that upon more careful analysis
showed high significance and have mechanistic descriptions
of DNA binding sites and the dynamical effect of TF1y
binding. Furthermore, the derived GMEs are accompanied
by a wealth of information, such as statistical validatio
scores, condition specific average correlation, the occurren
and spatial constraints of motifs and TFs potentially binding
these motifs (stage 3). In addition, for each GME a model
of regulatory regulation was inferred with the Inferelator
approach (stage 4). These dynamic response models allgi
to capture the type of regulation and the time scales these
effects might be acting on. Many regulatory influences wergs;
inhibitory and all regulatory relationships were learned as
effects on dynamical change in transcription from time series. ]

The GMESs support experimental validation, as the reIevaJ:t
experimental condition, the regulatory mode and the putative
regulators are provided. Towards, the goal of inferring genlé’]
regulatory networks the derived GMEs provide a fairly
comprehensive model.
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