
Mature miRNA identification via the use of a Naive Bayes classifier

Katerina Gkirtzou, Panagiotis Tsakalides and Panayiota Poirazi

Abstract— MicroRNAs (miRNAs) are small single stranded
RNAs, on average 22nt long, generated from endogenous
hairpin–shaped transcripts with post–transcriptional activity.
Although many computational methods are currently available
for identifying miRNA genes in the genomes of various species,
very few algorithms can accurately predict the functional part
of the miRNA gene, namely the mature miRNA. We introduce
a computational method that uses a Naive Bayes classifier to
identify mature miRNA candidates based on sequence and
secondary structure information of the miRNA precursor.
Specifically, for each mature miRNA, we generate a set of
negative examples of equal length on the respective precursor(s).
The true and negative sets are then used to estimate probability
distributions for sequence composition and secondary structure
on each position along the RNA. The distance between these
distributions is estimated using the symmetric Kullback-Leibler
metric. The positions at which the two distributions differ
significantly and consistently over a 10-fold cross-validation
procedure are used as features for training the Naive Bayes
classifier. A total of 15 classifiers were trained with true positive
and negative examples from human and mouse. A performance
of 76% sensitivity and 65% specificity was achieved using a con-
sensus averaging over a 10-fold cross-validation procedure. Our
findings suggest that position specific sequence and structure
information combined with a simple Bayes classifier achieve a
good performance on the challenging task of mature miRNA
identification.

I. INTRODUCTION

M IcroRNAs (miRNAs) are small, non–coding RNAs
that play an important role in regulating the ex-

pression of numerous genes across several species [1]. As
regulatory molecules, they influence the output of many
protein–coding genes by targeting mRNAs for cleavage or
translational repression [2].

Although miRNAs are functionally similar to short inter-
fering RNAs (siRNAs), they are unique in terms of their
biogenesis. Most of the miRNA genes are transcribed by
RNA Polymerase II. The primary transcripts of miRNAs
(pri–miRNAs) are then processed into hairpin intermediates
(precursor miRNAs or pre–miRNAs) by the microproces-
sor complex (the enzyme Drosha and the binding protein
DGCR8/Pasha). The pre-miRNAs are then exported to the
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cytoplasm by RanGTP and Exportin–5. In the cytoplasm,
the pre-miRNAs are processed by Dicer into short RNA
duplexes termed miRNA duplexes. The mature miRNA from
each miRNA duplex then binds to an Argonaute protein,
forming the miRNP complex. The miRNAs base–pair with
their mRNA targets, leading either to mRNA cleavage, if
there is sufficient complementarity between miRNA and the
target mRNA, or to translational repression [3].

Several computational methods have been developed and
are currently used in parallel with experimental techniques
in order to facilitate the discovery of new miRNAs. Most
computational methods focus on the discovery of either novel
miRNA genes in the genomes of various species or possible
mRNA targets of the known miRNAs. On the contrary, few
attempts have been made to computationally predict the
functional part of the miRNA precursor, namely the mature
miRNA. A number of studies ([4], [5], [6]) combine miRNA
gene prediction with the identification of a possible start
position for the mature. To our knowledge, only one study [7]
focuses exclusively on mature miRNA prediction, utilizing
thermodynamic and structural information of the precursor
RNA.

In this work, we introduce a computational method that
uses a Naive Bayes classifier to identify mature miRNA
candidates based on sequence and secondary structure in-
formation of the miRNA precursor.

II. METHOD

A. Naive Bayes Classifier

Naive Bayes is a simple probabilistic classifier which
is based on the application of the Bayesian theorem with
strong (naive) independence assumptions. According to the
Bayesian classifier, a new sample x described by the feature
vector x = 〈x1, x2, . . . , xn〉 will be assigned to the class that
minimizes the overall risk using the following formula:

α(x) = argminαi∈A

c∑

j=1

λ(αi|ωj)P (ωj |x)

where:
• ω1, . . . , ωc is a finite set of classes,
• A = {α1, . . . , αc} is a finite set of actions, where αi

means selecting class ωi,
• λ(αi|ωj) is the loss associated with deciding ωi, when

the true state of nature is ωj and
• P (ωj |x) is the posterior probability of ωj being the true

state of nature given x.
The posterior probability P (ωj |x) can be computed by

the Bayes’ formula (see section 2.9 of [8]):



P (ωj |x) =
P (x|ωj)P (ωj)

P (x)
,

where
• P (x|ωj) is the state–conditional probability for x con-

ditioned on ωj being the true class,
• P (ωj) is the prior probability that nature is in state ωj

and
• P (x) =

∑c
j=1 P (x|ωj)P (ωj) is the evidence for x.

The Naive Bayes classifier is based on the simplifying
assumption that the input features among samples of any
given class are conditionally independent given the class [9].
In other words, given the class of a sample, the probability
of observing the conjuction x1, x2, . . . , xn is just the product
of the probabilities for the individual features of this sample:

P (x1, x2, . . . , xn|cj) =
n∏

i

P (xi|cj).

In our case, an observation for classification (i.e. a sample)
is a mature miRNA candidate and the possible classes are
two: the Positive class, which contains true mature miRNAs
(denoted ω1) and the Negative class, which contains false
mature miRNAs (denoted ω−1). Suppose we have a mature
miRNA candidate with features x = 〈x1, x2, . . . , xn〉 and
we want to classify it to the class that minimizes the
classification error. The simplest case is to consider that all
errors have the same cost, so the loss function of interest is
the zero–one loss function and the Bayes Decision Rule is
converted to the following:

Decide ω1 if P (ω1|x) > P (ω−1|x);
otherwise decide ω−1

(see section 2.3 of [8]). Since P (x) is only a normalization
factor, it can be omitted in order to minimize calculation
time. Moreover, since there is no information about the
probabilities of each class we can assume that the prior
probability that nature is in state ωj , P (ωj), is 50% for
both positive and negative data. This assumption prevents us
from favoring a particular class. Under these assumptions,
the Bayes Decision Rule is given by the following simplified
formula:

Decide ω1 if P (x|ω1) > P (x|ω−1);
othewise decide ω−1

In this work, we use the aforementioned formula to build
multiple classifiers that are trained to discriminate between
randomly selected sets of positive and negative miRNA
samples as detailed below.

B. The Negative class

Given that known miRNA precursors do not produce
multiple overlapping mature miRNAs from the same arm
of the foldback precursor [10], we generate a set of negative
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Fig. 1. Class conditional probabilities of a feature with combined sequence
and structural information for position 0 within mature miRNA candidates
of both the positive (black color) and the negative class (white color). The
x axis shows the possible values of the feature, where: 1 → A match, 2
→ A mismatch, 3 → C match, 4 → C mismatch, 5 → G match, 6 → G
mismatch, 7 → U match and 8 → U mismatch. The y axis shows the class
conditional probability for this feature.

examples in the following way: for each true mature miRNA,
we use a same-size sliding window and select all possible
“negative” matures which can be created by sliding 1 base
pair towards either direction from the mature, excluding
any hairpin loops. This procedure results in a very large
negative set, where each true mature has a variable number of
respective “negatives”, depending on the length and number
of precursors. To avoid overfitting the classifiers to the
negative data, we only use a randomly selected subset of
10 negative examples for each true mature.

C. Input Features

The miRNA precursors form irregular hairpin structures,
containing various mismatches, internal loops and bulges. In
our method, a mature miRNA is represented as a sequence of
positions, where each position contains sequence information
(A, C, U, G) or structural information (match or mismatch),
derived from the respective precursor(s). Apart from the
features that lie in positions within the mature miRNA, we
also consider features that lie within a flanking region of
variable size (0, 5, 7, 10 or 12nt) that extends symmetrically
along both sides of the mature sample. These features are
also positions on the precursor RNA and contain sequence or
structural information just like the features located within the
mature miRNA. Since certain positions within the flanking
region may be located outside the precursor, we use a special
’novalue’ flag to indicate the lack of information at these
positions and do not take them into account when estimating
the Kullback–Leibler divergence between the two classes
(see below).
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Fig. 2. Class conditional probabilities of a feature with combined sequence
and structural information for position 3 within mature miRNA candidates
of both the positive (black color) and the negative class (white color). The
x axis shows the possible values of the feature, where: 1 → A match, 2
→ A mismatch, 3 → C match, 4 → C mismatch, 5 → G match, 6 → G
mismatch, 7 → U match and 8 → U mismatch, while the y axis shows the
class conditional probability for this feature.

D. Feature Selection

The aforementioned location-specific information is used
to select a set of features, namely those positions on the
precursor that contain discriminatory information between
true matures and negative samples. The discriminatory power
of each position is estimated using the symmetric Kullback–
Leibler divergence between the distributions of positive and
negative data.

The Kullback–Leibler divergence (K–L divergence) is a
measure of the difference between two probability distribu-
tions [11]. For Probability Mass Functions (PMFs) P and Q
of a discrete random variable, the K–L divergence of Q from
P is defined as:

DKL(P ||Q) =
∑

i

P (i) log2

P (i)
Q(i)

Unfortunately, the KL divergence is not a true metric since
it is not symmetric. To overcome this problem we used
the symmetric and nonnegative Kullback–Leibler divergence
[12], which is defined as:

1
2
(DKL(P ||Q) + DKL(Q||P ))

and is commonly used in classification problems. Figures
1 and 2 show the class conditional probability distributions
for two features with combined sequence and structure
information for positions 0 and 3 within the mature miRNA
candidates of the negative and positive data used to train
our classifiers (see below). These features have the highest
Kullback–Leibler divergence among all features that lie
within the mature miRNA. As evident from both figures the
two class distributions are very similar making discrimination
a very challenging task.

III. RESULTS

We evaluated our method using a dataset of experimentally
verified human and mouse miRNAs from miRBase (version
10.0, [13], [14], [15]). The human dataset consists of 533
precursors and 722 mature miRNAs, while the mouse dataset
consists of 442 precursors and 579 mature miRNAs. We
used 500 of the human and 347 of the mouse precursors
-which generate 692 and 440 mature miRNAs, respectively-
to train and validate our classifiers utilizing a leave-10-out
cross validation procedure.

For each of the mature miRNAs in the training set, a
negative set was generated as described in section II-B. A
total of 15 classifiers were trained with different feature
sets and the classification performance was assessed using
consensus averaging over a 10–fold cross validation. To
ensure a realistic estimation of classification accuracy, the
validation sets consisted of true miRNA precursors, whose
mature miRNAs were left out from the training sets in
the cross validation procedure. Classification accuracy was
estimated using a fixed 22nt size sliding window. All possible
matures which could be created by sliding 1 base pair in both
stem arms of the precursor, apart from the hairpin loop(s),
were assigned to either class based on the averaged outcome
of the 15 trained classifiers. It is important to note that
classification accuracy was estimated based on exact match
of the starting position of the predicted compared to the
real mature miRNA. Even 1nt deviations were considered
as negative examples.

TABLE I
BAYES CLASSIFIER TRAINED WITH FEATURES CONTAINING SEQUENCE

INFORMATION.

Classifier’s Description Sensitivity Specificity MCC

Combination of 12 Features,
0nt flanking region 67.10% 55.10% 0.0850

Combination of 16 Features,
5nt flanking region 76.04% 53.34% 0.1074

Combination of 31 Features,
7nt flanking region 75.96% 53.20% 0.1071

Combination of 19 Features,
10nt flanking region 79.15% 47.01% 0.0960

Combination of 35 Features,
12nt flanking region 74.30% 51.33% 0.0945

Tables I, II and III show the top scoring classifiers, based
on Matthews Correlation Coefficient (MCC), for different
input features. We use three types of classifiers, each utilizing
location-specific information about the sequence (Table I),
the structure (Table II), or both the sequence and structure
(Table III) of the training examples. Each table shows the
sensitivity, specificity and Matthews Correlation Coefficient
(MCC) [16] achieved with different numbers of such features
and with different sizes of flanking regions around the



TABLE II
BAYES CLASSIFIER TRAINED WITH FEATURES CONTAINING STRUCTURE

INFORMATION.

Classifier’s Description Sensitivity Specificity MCC

Combination of 10 Features,
0nt flanking region 65.70% 54.30% 0.0730

Combination of 26 Features,
5nt flanking region 76.34% 52.64% 0.1056

Combination of 23 Features,
7nt flanking region 77.85% 54.29% 0.1186

Combination of 39 Features,
10nt flanking region 81.01% 56.63% 0.1373

Combination of 38 Features.
12nt flanking region 79.89% 55.51% 0.1300

mature miRNA. The positions along the precursor which
served as input features were selected based on the K–L
divergence metric and they were located either within the
mature miRNA, or inside a flanking region around it.

We found that as the size of the flanking region increased,
the sensitivity of the classifiers tended to improve, while the
specificity remained relatively unaffected, independently of
the type of features used. This improvement seemed to reach
a maximum for a flanking region of about 10nt. For classi-
fiers with flanking regions of 12nt utilizing either sequence or
structure information (Tables I and II respectively), the extra
features did not further improve the accuracy, suggesting that
they probably add more noise than useful information.

TABLE III
BAYES CLASSIFIER TRAINED WITH FEATURES CONTAINING BOTH

SEQUENCE AND STRUCTURE INFORMATION.

Classifier’s Description Sensitivity Specificity MCC

Combination of 20 Features,
0nt flanking region 68.50% 62.50% 0.1250

Combination of 29 Features,
5nt flanking region 71.32% 65.34% 0.1394

Combination of 36 Features,
7nt flanking region 74.26% 66.46% 0.1562

Combination of 42 Features,
10nt flanking region 76.50% 65.61% 0.1606

Combination of 39 Features,
12nt flanking region 77.81% 64.14% 0.1590

Moreover, the classifiers utilizing features with combined
information for both sequence and structure achieved an
overall better performance -in terms of improved specificity
and MCC- than the ones using sequence or structure infor-

mation alone. Note that a high specificity score is particularly
important in this task, since the number of negative examples
is much larger than the number of positive ones. Finally, all
classifiers achieved a much higher sensitivity than specificity
score, most likely because of the very high similarity between
negative and positive examples as well as the requirement
for exact start position match between true and predicted
miRNAs.

IV. CONCLUSIONS

In this work, we presented a computational approach
that identifies mature miRNAs based on the secondary
structure and sequence characteristics of the precursor. We
used experimentally verified miRNAs to train and evaluate
the performance of a Naive Bayes classifier in terms of
sensitivity and specificity.

Unlike the method presented here, most of the computa-
tional tools that can be used to predict the functional part of
the miRNA precursor estimate their performance accuracy
in terms of true positive rate alone (sensitivity), ignoring the
false positive rate ([4], [6], [7]). It is a matter of semantics as
well as a great challenge to define a true negative example
when it comes to mature miRNAs. However, a major issue
in such a classification task is not only to maximize the
identification of true positives but also to minimize the false
positive rate. Our method tries to combine both of these
criteria. Since minimizing the false positive rate is very
difficult, we plan to develop and incorporate a number of
filtering criteria that will help eliminate some of the false
positive examples. Moreover, we plan to use our method
to predict the mature miRNAs on six novel miRNA genes
which were recently identified by Hidden Markov Models
in our lab and were experimentally shown to produce short
RNAs [17]. This combined computational and experimental
approach will result in a more realistic evaluation of our
method’s performance accuracy.

In conclusion, our findings suggest that position specific
sequence and structure information combined with a simple
Bayes classifier achieve a good performance on the challeng-
ing task of mature miRNA identification.
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