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Abstract—miRNAs are small regulators that mediate gene
expression and each miRNA regulates specific target genes.
In animals, target prediction of the miRNAs is accomplished
through several computational methods, i.e. miRanda, Tar-
getScan and PicTar. Typically, these methods predict targets
from features of miRNA-target interaction such as sequence
complementarity, free energy of RNA duplexes and conserva-
tion of target sites. They are constructed for high throughput
and also result in a large amount of predictions and a
high estimated false-positive rate. To date, specific rules to
capture all known miRNA targets have not been devised. We
observed that miRNAs sometimes share targets. Therefore, in
this paper we present an approach which analyzes miRNA-
miRNA relationships and utilizes them for target prediction. We
use machine learning techniques to reveal the feature patterns
between known miRNAs. Different data setups are evaluated
and compared to achieve the best performance. Furthermore,
the derived rules are applied to miRNAs of which the targets
are not yet known so as to see if new targets could be predicted.
In the analysis of functionally similar miRNAs, we found that
genomic distance and seed similarity between miRNAs are
dominant features in the description of a group of miRNAs
binding the same target. Application of one specific rule resulted
in the prediction of targets for seven miRNAs for which the
targets were formerly unknown. Some of these targets were
also detected by the existing methods. Our method contributes
to the improvement of target identification by predicting targets
with high specificity and without conservation limitation.

I. INTRODUCTION

MicroRNAs (miRNAs) are ~22 nucleotide single-stranded
noncoding RNA molecules that serve as post-transcriptional
regulators of gene expression in plants, animals and viruses.
They bind to target messengerRNAs (mRNAs) and block the
target expression by repressing mRNA translation or mediate
mRNA degradation [5], [1]. Recent studies revealed the key
roles of miRNAs in diverse regulatory functions including
developmental timing regulation [19], apoptosis [3] and cell
proliferation [13]. Some of them are even implied as potential
tumor suppressors [9] and oncogenes [8].

A central goal for understanding biological function of
miRNAs has been to identify miRNA targets since miRNAs
act as regulators by binding to mRNAs. Currently, specific
rules for functional miRNA-target pairing that capture all
known functional targets have not been devised [4]. In
animals in particular, the loose sequence complementarity
in miRNA-target interaction has complicated computational
approaches for target site identification.
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Nowadays, to establish possible miRNA targets, a number
of high throughput computational methods/tools have been
developed i.e. miRanda [5], TargetScan [15], Pictar [12],
miTarget [11] and RNAhybrid [18]. All of these predict
miRNA targets from different methodologies. MiRanda takes
position weight into account to estimate sequence comple-
mentarity, uses RNAFold for free-energy calculation, and re-
lies on evolutionary conservation of the binding sites [5], [2].
TargetScan seeks a strong 7-nucleotide seed, uses RNAFold
to calculate the thermodynamic free-energy of the binding,
and scores both single and multiple binding sites [15], [2].
PicTar takes sets of coexpressed miRNAs and searches for
combinations of miRNA binding sites in each 3’UTR [12].
miTarget is a support vector machine classifier for miRNA
target-gene prediction, which utilizes a radial basis function
kernel to characterize targets by structural, thermodynamic,
and position-based features [11]. RNAhybrid predicts multi-
ple potential binding sites of miRNAs in large target RNAs,
and finds the energetically most favorable hybridizations of
a small RNA in a large RNA [18].

The aforementioned methods however, predict large
amounts of targets per miRNA and include lots of false-
positives in the result. The estimated false-positive rate (FPR)
for PicTar, miRanda and TargetScan is about 30%, 24-39%
and 22-31% respectively [2], [22], [15]. It has been reported
that miTarget have similar performace like TargetScan [11].
In addition to the relatively high FPR, Enright et al. observed
that many real targets are not predicted by these methods and
this seems to be largely due to requirements for evolution-
ary conservation of the putative miRNA target-site across
different species [5], [17].

In general we notice that in all of these algorithms,
the target prediction is based on features that consider
the miRNA-target interaction such as sequence comple-
mentarity and stability of miRNA-target duplex. Through
the observations in the population of confirmed miRNAs-
targets we became aware that some miRNAs are validated
as binding the same target. Subsequently, we considered
that this observation would allow target identification from
the analysis of functionally similar miRNAs. Based on this
idea, in this paper, we propose a method which predicts
miRNA targets from analyzing the relationships between
miRNAs instead of miRNA-target relations. By deducting
the rules which characterize the properties of functionally
similar miRNAs, targets can be found for these miRNAs for
which no regulatory function was known. Our method avoids
considering evolutionary conservation and only produces a
small number of predictions; for such numbers, it becomes
feasible to test them through biological experiment.



II. MATERIALS AND METHODS
A. Data collection

Currently, our study focuses on human miRNAs. The input
data set is collected from Tarbase, which is the repository
for a manually curated collection of experimentally tested
miRNA targets [21]. The latest version (TarBase-V4) in-
cludes 99 human genes as translationally repressed miRNA
targets and 359 human genes as cleaved miRNA targets.
Among the cleaved miRNA targets, 335, about 93% of the
total, are supported by the microarray assay cited from one
publication [16]. Considering the fact that microarray results
tend to be rather noisy, we think that it is unreliable to treat
them as a training set. Thus in this stage only the miRNAs
with translationally repressed targets are used in this study.

According to our observations about the functionally sim-
ilar miRNAs, we pair the miRNAs as positive if they bind
the same target, and couple the rest randomly as the negative
data set. In total, 18 positive pairs and 18 negative pairs are
generated. For quality control reasons, the data generation
step is repeated 10 times and each set is tested individually
in the following analysis. Here we clarify two notions; known
miRNAs are those whose function is known and have been
validated for having at least one target, unknown miRNAs
refer to those for which the targets are unknown.

B. Feature selection

We predefine four features: overall sequence (~ 22 nt)
similarity, seed (position 2-8) similarity, nonseed (position
9-end) similarity and distance. Seed has been proven to be
an important region in miRNA-target interaction [10], thus
we suggest that seed similarity between miRNAs is a po-
tentially important feature. Additionally, including nonseed
and sequence similarity features enables us to investigate
the property behaviours of these two regions. The idea of
investigating genomic distance between miRNAs is derived
from our former study. Previously, through statistical meth-
ods and heterogeneous data support, we demonstrated that
the genomic location feature plays a role in miRNA-target
interaction for a selection of miRNA families [27]. Here we
transform this idea to the study of miRNAs relationships
based on the genomic distance.

We calculated similarity using the EBI pairwise global
sequence alignment tool called needle [20], and retrieved
genomic sequence and location from the miRBase Sequence
Database [6]. The distance between two miRNAs is calcu-
lated by genomic position subtraction when they are located
on the same chromosome, otherwise it is set to undefined.

C. Methods

The idea of this approach is to investigate feature patterns
shared by the functionally similar miRNAs and use it to
identify new targets. The workflow is presented in Fig. 1.
In the following, we will mainly explain rule generation
procedure illustrated in the framework of Fig. 1. We start
with description of each algorithm followed by detailed
configurations.
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Fig. 1. Our method is composed of three phases: rule generation,

target prediction and validation. In the first stage, rules are discovered
from three methods with respect to decision tree and relational subgroup
discovery techniques. Through combining the results from these methods,
the optimized rules describing functionally alike miRNAs are generated
which are used for final targets prediction and validation.

1) Decision Trees: The decision tree [25] is a common
machine learning algorithm used for classification and pre-
diction. It represents rules in the form of a tree structure
consisting of leaf nodes, decision nodes and edges. This
algorithm starts with finding the attribute with the highest
information gain which best separates the classes, then it
is split into different groups. Ideally, this process will be
repeated until all the leaves are pure.

As the first step (labelled as 1 in Fig. 1), decision tree
learning is utilized to build a classifier discriminating two
classes of miRNA pairs. In our experiments, we used the
decision tree from the Weka software [25]. The features were
tested using the J48 classifier and evaluated by 8 fold cross-
validation considering the fact that our dataset is relatively
small.

2) Relational subgroup discovery: Subgroup discovery is
well suited for finding interesting subsets from the overall
example set. In our experiments, we used the proposi-
tionalization based Relational Subgroup Discovery (RSD)
algorithm [26]. The main improvement compared to previous
subgroup discovery algorithms is achieved through the use
of a weighted relative accuracy heuristic:

WRAcc(H « B) = p(B) - (p(H | B) — p(H))

In rule H «— B, H stands for Head representing classes,
while B denotes the Body which consists of one or a
conjunction of first-ordered features. p is the probability
function. As shown in the equation, weighted relative accu-
racy consists of two components: weight p(B), and relative
accuracy p(H | B) — p(H). The second term, relative ac-
curacy, is the relative accuracy gain between the conditional
probability of class H given that features B is satisfied and
the probability of class H. A rule is only interesting if it
improves over this default rule H <+ true accuracy [26].

Due to the fact that not all the determinant features are
known at this stage, we are interested in finding rules for
subgroups of functionally similar miRNAs with respect to



TABLE I
CATEGORY RSD RESULTS. RULES GENERATED FROM TWO DATA STRUCTURES: CONSIDERING OVERALL SEQUENCE, SEED, NONSEED SIMILARITIES

AS WELL AS DISTANCE (LEFT) AND ONLY SEED, NONSEED SIMILARITIES AND DISTANCE (RIGHT).

+Overall sequence -Overall sequence
YES Rules 2.1 Sig YES Rules 2.2 Sig
distance < lkb 9.5 distance < 1kb 9.5
seed = very high 8 seed = very high 8
distance < 1kb AND seed = very high distance < 1kb AND seed = very high 7
nonseed = high AND seed = very high 4 seed = very high AND (seed, nonseed) = (very high, high) 4
nonseed = high 3.2 (seed, nonseed) = (very high, high) 4
distance < 1kb AND nonseed = low 2.7 distance<1kb AND nonseed = low 2.7
seqence = high 2 nonseed = high AND seed = very high 0.8

our predefined features. We prefer rules that contain only
the positive pairs and have high coverage. Thus the repetitive
rules are selected, if their E-value is greater than 0.01 and
at the same time the significance is above 0.

Both the category RSD (method 2) and the binary RSD
(method 3) marked as 2 and 3 in Fig. 1 reveal feature patterns
by utilizing the relational subgroup discovery algorithm.
The main difference is that method 2 analyzes the data
in a categorized format, whereas in method 3 the data
is transformed to a binary form. Aiming to discover the
most significant rules, different data structures and feature
thresholds are evaluated and compared.

In method 2, the similarity percentage is evenly divided
into 5 groups: very low (0-20%), low (20-40%), medium
(40-60%), high (60-80%), very high (80-100%); Distance
is categorized into 5 regions: 0-1kb!, 1-10kb, 10-100kb,
100kb-end, undef (if miRNAs that are paired are located
in two different chromosomes). Two relational input tables
(with and without the overall sequence similarity feature) are
constructed and further tested with the purpose of verifying
whether the sequence has a global effect or only contributes
as the combination of seed and nonseed parts.

Through the observation of density graphs of the features,
as displayed in Fig. 2, we concluded that distance and seed
similarity feature densities match a bimodal distribution.
The same conclusion can, however, not be drawn easily
for overall and nonseed sequence similarities. Moreover,
as a result of the previous method 2, overall and non-
seed sequence similarities have been proven as irrelevant
(shown in TABLE I). Therefore, in the third method, we
apply a decision tree algorithm to discriminate input data
into binary values with respect to only distance and seed
similarity properties of miRNA pairs. Each feature is cal-
culated individually and only the root classifier value in
the tree is used for establishing the cutoff. After that, we
generate binary tables according to three criteria: maximum
coverage where the value covers the most positive pairs
(M ax_coverage gistance,sced) 89470130, 50%), maxi-
mum density which is the region with the highest positive
pair density (M ax_density(gistance,seed) = 836b, 75%) and
median value (M edian gistance,seed)y = 4473924.5b,62.5%)
among the data sets.

IDistance unit is base pair abbreviated as b, kb = kilo base pairs.

III. RESULTS
A. Rule generation

From the decision tree analysis, six different tree structures
are generated from 10 replications of the training data.
Among them, the root attribute or the first depth of the tree is
mainly associated with distance, sequence and seed similarity
properties, while nonseed feature appeared only near the leaf
nodes. This inconsistency in the tree structures indicated that
none of the predefined features, or any combination of them,
can significantly classify miRNAs.

The feature patterns discovered from category RSD are
listed in TABLE I where the rules in the left column take
overall sequence into account but those in the right column
do not. “YES”-rules describe functionally similar miRNAs
characterized by our predefined features. Sig denotes the
average significance over 10 replications. As for choosing
the significant rules, it can be seen that the maximum gap
in the sequence of Sig is between 7 and 4, therefore rules
with Sig value equal or above 7 are considered as significant
and stable. In the table, the insignificant ones are grayed out.
Further inspection of TABLE I shows that the most signifi-
cant rules from both sides are the same and they only include
the distance and seed similarity features. These indicate that

(c) Seed (%)

(d) Nonseed (%)

Fig. 2. Density plot for the four features. The plots of distance (a) and
seed similarity (c) match bimodal distribution indicating two main groups
in each feature. However it is not straightforward to judge sequence (b) and
nonseed similarity (d) distributions.



TABLE I
BINARY RSD RESULTS. RULES GENERATED FROM 3 SETS OF PARAMETERS FOR DISTANCE AND SEED SIMILARITY ARE SHOWN IN A SEQUENCE OF
MAX COVERAGE (LEFT), MEDIAN (MIDDLE) AND MAX DENSITY (RIGHT).

Max coverage Median Max density
YES Rules 3.1 Sig YES Rules 3.2 Sig YES Rule 3.3 Sig
distance < 8947013b 8.5 distance < 4473924.5b 8 distance < 836b 9.5
distance < 8947013b AND seed > 50% 6.6 distance < 4473924.5b AND seed > 62.5% 7 seed > 75% 8
seed > 50% 54 seed > 62.5% 6 distance < 836b AND seed > 75% 7
distance < 8947013b AND seed< 50% 24 distance < 4473924.5b AND seed < 62.5% 1.8 distance < 836b AND seed < 75% 2.7

genomic location and seed similarity between miRNAs are
dominant features when deciding which miRNAs bind to the
same target.

TABLE II shows the rules generated by method 3, thereby
using three cutoff criteria: Max coverage, Max density and
Median. As can be seen, three rule sets have similar struc-
tures but different feature cutoffs which leads to different
significance. In the comparison of these rules, we find that
the Max density criterion has the best performance indicated
by the highest significance value.

When comparing the rules generated from method 2 and
3, we noticed that the category and the best binary rule sets
describe the same three subgroups of positive miRNA pairs.
Two features with 2 values: Distance < 1kb or < 836b
and Seed similarity > 80% (very high) or > 75% cover
the same amount of positive miRNA pairs illustrated by the
same significance.

To evaluate our methods, as a reference, a permutation
test is performed. We repeat the learning procedure for each
training set with the labels randomly shuffled. Using Max
density as a cutoff criterion, we obtained that all the rules
have the average significance lower than 1. This test therefore
demonstrates that the rules derived from the original data are
more significant than in the random situation.

B. Prediction and validation

Integrating the results from both category and binary
RSD with the aim to achieve the best accuracy, we optimize
the rules as following. Each rule describes a subgroup of
functionally similar miRNAs.

Rule 1: IF distance between two miRNAs < 1kb,

Rule 2: IF seed similarity between two miRNAs > 75%,
Rule 3: IF distance < lkb AND seed similarity > 75%,
THEN they bind the same target.

We apply the above rules to find all miRNAs which serve
similar functions as the known miRNAs. Rule 1, 2 and 3
discovered 46, 233 and 24 miRNA pairs respectively in each
subgroup. Among these rules, subgroup 3 has been selected
to be further examined since it has relative small pairs which
are easy to validate. Furthermore, as Rule 3 involves more
constraints, it is considered to be more reliable than the other
two.

We observed that these 24 miRNA pairs discovered by

Rule 3 consist of 6 confirmed pairs in which both miRNAs
from each pair are well studied, 11 pairs with both members
from the same family which are supposed to have the same
targets, and 7 new pairs which have one well-studied miRNA
and one functional unknown partner. Therefore, we induce
the targets for these 7 unknown miRNAs hsa-miR-18a/ 27a/
18b/ 20b /301b /212 /200c from their known partner. Their
predicted targets are listed in TABLE III.

Informatic validation is performed to check the prediction
consistency with the existing methods. TABLE III shows
validation for the 6 confirmed and 7 predicted miRNA pairs.
The miRNAs with confirmed targets are indicated in italic,
while the miRNAs in boldface are the unknown ones for
which the targets are predicted from their known partners.
All of their targets are validated by examining whether they
are predicted by TargetScan, miRanda, Pictar, miTarget and
RNAhybrid. The table can be read as following: for example,
whether the target (BCL2) is predicted by the existing
methods (TargetScan) for m1 (hsa-miR-15a) or m2 (hsa-miR-
16). Consequently, we discover that among our prediction,
V-maf musculoaponeurotic fibrosarcoma oncogene homolog
B (MAFB) for hsa-mir-301b and Retinoblastoma 1 (RB1)
for hsa-miR-20b are also predicted by TargetScan and Pictar;
Circadian Locomoter Output Cycles Kaput (Clock) for hsa-
miR-200c and Chemokine C-X-C motif ligand 12 (CXCL12)
for hsa-miR-27a are captured by miRanda; Rho GTPase-
activating protein (RICS) for hsa-miR-212 is detected by
Pictar; E2F transcription factor 1 (E2F1) and AIB1 for hsa-
miR-18a are identified by miTarget.

IV. CONCLUSIONS AND DISCUSSION

To date, the interaction between miRNAs and their targets
is not fully understood. In an effort to identify miRNA
targets, some of the existing methods induce a large number
of predictions and have a high estimated false-positive rate.
These complicate biological validation. In this paper, we pre-
sented an approach which discovers miRNAs relationships
through rule mining and utilized them for target prediction.
Existing analysis methods are insufficient in identifying
targets from this perspective.

Given the circumstances that not all the targets and useful
features are known in advance, the classification of miRNA
data using decision trees failed due to the relatively small
number of samples. Whereas the relational subgroup discov-
ery, an advanced subgroup discovery algorithm, is suitable



TABLE III
INFORMATIC VALIDATION OF CONFIRMED AND PREDICTED MIRNA PAIRS. MIRNA1 AND MIRNA2 ARE THE PARTNERS IN ONE PAIR. TARGET
COLUMN SHOWS THE VALIDATED TARGETS FOR THE KNOWN MIRNAS (IN ITALIC) AND THE PREDICTED TARGETS FOR THE UNKNOWN MIRNAS (IN
BOLDFACE). M1 AND M2 COLUMNS DENOTE WHETHER THE TARGETS ARE PREDICTED BY THE EXISTING METHODS FOR MIRNAT1 (M1) AND MIRNA2
(M2) RESPECTIVELY.

Targets predicted by

miRNA1 miRNA2 Target TargetScan MiRanda Pictar miTarget RNAhybrid-mfe (kcal/mol)
(ml) (m2) ml m2 ml m2 ml m2 ml m2 ml m2
hsa-miR-15a hsa-miR-16 BCL2 IV v X X Vv Vv X v, 243 -24.1
hsa-miR-15b hsa-miR-16 BCL2 Vv Vv X X Vv Vv X v 262 -24.1
Confirmed hsa-miR-17 hsa-miR-20a E2F1 vV V4 V4 X v V4 vV v, 268 -24.6
hsa-miR-221 hsa-miR-222 KIT vV Vv X X X X v v, 249 -26.4
hsa-miR-23b hsa-miR-27b Notchl X X X X X X - - - -
hsa-miR-372 hsa-miR-373 LATS2 VA VA X X Vv Vv X X -174 =232
. . E2F1 v X vV X v X v v, 268 -26.8
hsa-miR-17 hsa-miR-18a AIBI v : v B v R V. V. 263 26.6
. . FLJ13158 - - - - - - - - -
New ~ [samiR23a  hsa-miR-27a  overpps 0w x oy  x o x 242 244
hsa-miR-106a  hsa-miR-18b RBI v X X X v X X X =232 -28.3
hsa-miR-106a  hsa-miR-20b RBI v Vv X X vV v X X =232 -27.2
hsa-miR-130b  hsa-miR301b  HIALE vVovoox x VW e 266 219
hsa-miR-132 hsa-miR-212 RICS X X - - Vv Vv - -
hsa-miR-141 hsa-miR-200c  Clock X X v vV X X X -22.1 -20.1

for this application domain since it can discover the rules for
subgroups of similar function miRNAs with respect to our
predefined features. During the rule mining, we also noticed
that feature threshold optimization is a crucial procedure
which helps revealing the significant rules.

We have established that distance and seed similarity
are determinants. The question is whether it makes sense
from the biological point of view? It has been reported that
many miRNAs appear in clusters on a single polycistronic
transcript [23]. They are transcribed together in a long
primary transcript, yielding one or more hairpin precursors
and finally are cut to multi-mature miRNAs. Tanzer et al.
reported that the human mir-17 cluster contains six precursor
miRNA (mir-17/ 18/ 19a/ 20/ 19b-1/ 92-1) within a region of
about 1kb on chromosome 13 [23]. These observations are
consistent with the feature embedded in Rule 1. Besides the
fact that clustered miRNAs can be transcribed together, we
further showed that miRNAs that are in each others proximity
can bind to the same targets so as to serve as the regulators
for the same purpose.

As for seed similarity, Rule 2 describes that the miRNAs
with seed similarity above 75% share the same targets.
This means only a perfect match or one mismatch in the
seed is allowed in the process of binding the same targets.
This is consistent with the idea that seed is a specific
region, in particular it requires nearly perfect match with
the target [10]. Moreover, TargetScanS (the new version
of TargetScan) [14] also only requires a 6-nt seed match
comprising nucleotides 2-7 of the miRNA. Thus, the rule
requiring at least 6 out of 7 nucleotides to be similar in seed
region is reasonable.

In this research field, there is, currently, already an agree-
ment on the importance of seed region, but little attention has
been given to the genomic vicinity. In this study, we proved

that the genomic location also contributes for miRNA target
identification.

At the end of our analysis, we assigned targets for seven
miRNAs according to Rule 3. For instance, we suggest hsa-
miR-20b has the same targets as hsa-miR-106a which targets
tumor suppressors Retinoblastoma 1 (RB1). It has been
studied that hsa-miR-106a and hsa-miR-20a are associated to
colon, pancreas and prostate cancers [24]. And hsa-miR-20b
is another isoform of hsa-miR-20. Therefore hsa-miR-20b
has high probability of binding to RB1.

In order to support our findings, we validated the results
using five existing algorithms presented in TABLE III. Not
all of the predicted targets are identified by TargetScan,
miRanda, Pictar, miTarget and RNAhybrid, whereas this is
the same case for the known targets. Besides FLJ13158 and
MCSF whose 3’ UTR sequence information is not available
in the database, the rest of the candidates are predicted
by at least one of these methods. Both miTarget and our
method are based on machine learning techniques; miTarget
considers sequence and structure features of miRNA-target
duplexes whereas we focus on the genomic location and
sequence features between miRNAs. Moreover, we noticed
that miRanda has a relatively low performance for target
prediction in human. This may be due to the fact that
miRanda was initially developed to predict miRNA targets
in Drosophila melanogaster, and later adapted to vertebrate
genomes [5]. In the application of RNAhybrid tool, pre-
defined threshold of the normalized minimum free energy
(mfe) is lacking, we therefore decided to list the original
data resulting values. We found that most of our predicted
miRNA-target duplexes are more stable illustrated by the
relatively lower minimum free energy than the known ones.

In addition to these encouraging results, we also noticed
that only groups of miRNA relationships are discovered by



our method. Some miRNAs which are located far apart and
whose seed similarity is low still have the same target. This
indicated that besides genomic distance and seed similarity,
more features need to be included in order to find more and
better pattens shared by functionally alike miRNAs. Grimson
et al. uncovered five general features of target site context
beyond seed pairing that boost site efficacy [7]. In future
research we will explore the site context in the miRNA
relationship analysis. Additionally, we also consider to take
into account miRNA co-expression patterns.

In summary, we conclude that genomic distance and
seed similarity are the determinants for describing the re-
lationships of functionally similar miRNAs. Our method
contributes to the improvement of target identification by
predicting targets with high specificity. Moreover, it does not
require conservation information for classification, so it is
free from the limitations of some of the existing methods. In
future research, with more biologically validated targets and
features available, more rules can be generated from a large
dataset, and consequently more targets can be identified to
the functionally unknown miRNAs.
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